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Abstract. Let M be a representable matroid on n elements. We give
bounds, in terms of n, on the least positive characteristic and smallest
field over which M is representable.

Our starting point is given by the following two theorems of Rado [5].

Theorem 1 (Rado, 1957). Let M be a matroid representable over a field
K. Then M is representable over a simple algebraic extension of the prime
field of K.

Theorem 2 (Rado, 1957). Let K be an extension field of Q of degree N , and
let M be a matroid representable over K. Then there is a positive integer
c such that given any prime p > c there is a positive integer k = k(p) ≤ N
such that M is representable over GF(pk). For infinitely many p, k(p) = 1.

Together, these two theorems say that if a matroid is linearly repre-
sentable, then it is representable over a finite field. We ask, given a rep-
resentable matroid on n elements, how large must such a field be? That is,
given an n-element representable matroid M , what bound, depending just
on n, can we place on the size of a field required to represent M?

To that end, letMn be the set of all representable matroids on n elements.
For a matroid M , let c(M) be the least positive characteristic of a field over
which M is representable. For each positive integer n, define

c(n) = max{c(M) : M ∈Mn}.
Let f(M) be the order of the smallest field over which M is representable.
For each positive integer n, define

f(n) = max{f(M) : M ∈Mn}.
By Rado’s Theorems 1 and 2 above, c(n) exists and f(n) is finite for all

n. Note that c(n) ≤ f(n) for all n, and that, since adding a loop to an
n-element matroid yields a matroid on n + 1 elements representable over
exactly the same fields, c and f are non-decreasing. A result of Brylawski
[1] provides a lower bound for c (and thus for f ; see Section 4). We ask
for upper bounds on c(n) and f(n). For matroids on at most 8 elements,
Table 1 summarises the data (the fact that f(8) = 11 is courtesy G. Royle
[personal communication].

We obtain the following bounds.
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n c(n) f(n)

1 2 2
2 2 2
3 2 2
4 2 3
5 2 4
6 2 5
7 3 7
8 ? 11

Table 1

Theorem 3. For all positive integers n,

log2 log2 c(n) ≤ n5 and log2 log2 log2 f(n) ≤ n3.

The following fact falls out of the proof of Theorem 3.

Theorem 4. Let M be an n-element matroid representable over a field of
characteristic 0, and let p be a prime satisfying

log2 log2 log2 p > n5.

Then M is representable over GF(p).

We consider the cases of representability over only positive characteris-
tic (Theorem 2.1) and representability over characteristic 0 (Theorem 3.1)
separately. Theorem 3 then follows immediately from these results.

By Table 1, we may assume throughout the rest of the paper that n > 7.

1. Bounding the degree of a field extension

Our first step is to prove an effective version of Rado’s Theorem 1:

Theorem 1.1. Let M be a matroid on n elements representable over a field
K. Then M is representable over a simple algebraic extension of the prime

field of K of degree at most 22
2n2

.

1.1. A system of polynomials arising from a matroid. Our approach
is a standard one in studies of representability of matroids over fields. In-
deed, it is that used by Rado in [5]; however, as Rado’s proofs are non-
constructive, beyond this starting point our proofs require substantially
more work than Rado’s. We assign to an n-element, rank-r matroid M an
r × n matrix A whose entries are indeterminates x1, . . . , xt, where t = rn.
Each element of the matroid is represented by a column of the matrix. From
this matrix we obtain a system of polynomial equations in Z[x1, . . . , xt] as
follows. For each r-element subset X of the ground set of M , there is a cor-
responding r × r submatrix of A whose columns are those representing the
elements in X. Setting the determinants of r× r submatrices corresponding
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to dependent sets to zero, and demanding that the determinants of those
r × r submatrices that correspond to bases be nonzero, yields a system of
polynomials. The latter conditions may be expressed by multiplying each
polynomial fi obtained from a basis by a new dummy variable zi and sub-
tracting 1 to form the polynomial equation zifi−1 = 0. Alternatively, these
conditions may be expressed by the single polynomial obtained by taking
the product of all determinants corresponding to bases, then multiplying by
a single dummy variable and subtracting 1. Writing fi for the polynomials
obtained by taking the r × r determinants of A, and B for the index set of
determinants given by r×r submatrices whose columns correspond to bases
of M , this gives the equation z

∏
i∈B fi − 1 = 0. This is more expensive

in terms of the degree of the resulting polynomial, but cheaper in terms
of the number of new variables added to the system. We therefore prefer
this second formulation. In either case, the system can be interpreted in
any field K by extending the canonical homomorphism Z → K to a map
Z[x1, . . . , xt]→ K[x1, . . . , xt] in the natural way. Those fields over which M
is representable are exactly the fields over which the corresponding system
of polynomials has a solution.

Given a system of polynomials f1, . . . , fs ∈ Z[x1, . . . , xt] arising in this way
from a rank-r, n-element matroid, we will require bounds on four parame-
ters, described in the following lemma. Let deg f denote the total degree of
the polynomial f ; set d = maxi deg fi. The height H(f) of a polynomial f
is the maximum absolute value of a coefficient in f ; set H = maxiH(fi).

Lemma 1.2. Let f1, . . . , fs ∈ Z[x1, . . . , xt] be a system of polynomials aris-
ing as described above from a rank-r, n-element matroid. Then s ≤ 2n,
t ≤ n2 + 1, d ≤ n2n, and H ≤ nn2n.

Proof. It is straightforward to see that s ≤
(
n
r

)
≤ 2n, t ≤ nr + 1 ≤ n2 +

1, and d = r ·
(
n
r

)
+ 1 ≤ n2n. A bound on H is less obvious, but no

more difficult. Since the polynomials in our system corresponding to non-
bases have height one, the maximum height of a polynomial in our system
will be that of the polynomial obtained by taking the product of all r × r
determinants corresponding to bases of M . Since this polynomial is obtained
as the product of at most

(
n
r

)
≤ 2n polynomials given by determinants, each

of which has r! < nn terms, the number of terms in the product, before
summing identical monomials, is at most (nn)2

n
. Hence the height of this

polynomial is certainly at most nn2
n
. Thus for our system, H ≤ nn2n . �

1.2. Algebraic tools. Before proceeding, we summarise the algebraic no-
tions we require. A system of polynomials f1, . . . , fs ∈ K[x1, . . . , xt] is con-
sistent if it has a solution in the algebraic closure K of K; that is, there
is an assignment of values xi = αi ∈ K, for i ∈ {1, . . . , t}, so that for each
j ∈ {1, . . . , s}, fj(α1, . . . , αt) = 0. By Hilbert’s Nullstellensatz, a system of
polynomials P in the ring of polynomials K[x1, . . . , xt] is consistent if and
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only if the ideal generated by P in K[x1, . . . , xt] does not contain 1 (one
reference is [2, Chapter 30]).

Given a field extension L ⊇ K, L can be viewed as a vector space V
over K. The degree of the extension is the dimension of this vector space,
denoted [L : K]. Given an element α ∈ L, the map mα : L → L defined
by multiplication by α is an K-linear transformation. When [L : K] is
finite, the map mα is given by a matrix, with respect to a chosen basis for
V ; different bases yield different but similar matrices for mα. The norm
of α, denoted NormL/K α, is the determinant of a matrix corresponding
to the linear transformation mα. The norm is a map L → K satisfying
NormL/K(αβ) = (NormL/K α)(NormL/K β).

A nonzero polynomial f ∈ K[X] is said to split in K if each of its irre-
ducible factors has degree 1. A splitting field for a polynomial f ∈ K[X] of
degree d, is a field extension L of K, in which f splits

f(x) = a
d∏
i=1

(x− αi)

for some a ∈ K, such that L is generated over K by the roots αi ∈ L of f .

Lemma 1.3 ([2], Theorem 17.18, Lemma 17.20, Corollary 17.21). Let f ∈
K[X] be a nonzero polynomial. There exists a field L ⊇ K such that f splits
over L, and L contains a unique splitting field L for f over K.

A polynomial f ∈ K[X] of degree d has distinct roots if f has d different
roots in every splitting field L ⊇ K for f . A nonzero polynomial f ∈ K[X]
is separable over K if each irreducible factor of f in K[X] has distinct roots;
otherwise f is inseparable.

For any field extension K ⊆ L, the Galois group Gal(L/K) of L over
K is the subgroup of the group of automorphisms of L consisting of those
automorphisms that fix all elements of K. Given an arbitrary subgroup H
of the group of automorphisms of L, define Fix(H) = {α ∈ L : σ(α) = α
for all σ ∈ H}. Then Fix(H) is a subfield of L. A field extension L ⊇ K is
Galois if [L : K] is finite and K = Fix(Gal(L/K)).

Lemma 1.4 ([2], Theorem 18.13). Let L ⊇ K be a field extension of finite
degree. The following are equivalent.

(1) L is a splitting field over K for some separable polynomial over K.
(2) L is a Galois extension of K.

Lemma 1.5 ([2], Lemmas 18.3, 18.19, Corollary 23.10). Let L ⊇ K be a
Galois extension, and let G be the Galois group of L over K. Let f ∈ K[X]
be nonzero, and let Ω = {α ∈ L : f(α) = 0} be nonempty. Then

(1) |G| = [L : K].
(2) The action of G on L permutes the elements of Ω.
(3) If f is irreducible and L is a splitting field over K for some polyno-

mial in K[X], then G acts transitively on Ω.
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(4) For α ∈ L,

NormL/K α =
∏
σ∈G

σ(α).

We also use Gauss’s Lemma:

Lemma (Gauss’s Lemma; [2], Lemma 16.19). Let R be a unique factorisa-
tion domain and K its field of fractions. A nonzero polynomial in R[X] is
irreducible in R[X] if and only if it is irreducible in K[X].

Let f1, . . . , fs ∈ K[x1, . . . , xt] be a system of polynomials with coefficients
in the field K. For each index i ∈ {1, . . . , t}, let x − i denote the set of
indeterminates {x1, . . . , xt}\{xi}. For each pair of indices i, j, we may regard
fj as a single-variable polynomial in xi with coefficients in the field K(x−i).
By Gauss’s Lemma, it is sufficient that f be irreducible in K[x1, . . . , xt] to
guarantee that f be irreducible in K(x− i)[xi] for any i.

In order to take advantage of the tools of Galois Theory, we will want
to select a polynomial fj from our system that has an irreducible factor
with distinct roots, when viewed as a polynomial in K(x − i)[xi] for some
i ∈ {1, . . . , t}. We need to deal with the possibility that every polynomial in
our system, when viewed as a polynomial in the polynomial ring K(x−i)[xi],
for every i, is inseparable. The following lemma describes the situation in
this rather special case.

Lemma 1.6 ([2], Corollary 19.6). Let K be a field. Let f ∈ K[X] be an
irreducible polynomial that does not have distinct roots. Then the character-
istic of K is a prime p and f(X) = g(Xp) for some irreducible polynomial
g ∈ K[X].

1.3. Reduced systems of polynomials. We need one more notion before
proving Theorem 1.1. The variety defined by the polynomials f1, . . . , fs ∈
K[x1, . . . , xt] is the set of all tuples (γ1, . . . , γt) ∈ K

t
that are solutions to the

system f1 = 0, . . . , fs = 0, and is denoted V (f1, . . . , fs). Denote by deg(f, x)
the degree of the polynomial f in indeterminate x. Let S = {f1, . . . , fs} be
a system of polynomials in indeterminates x1, . . . , xt with coefficients in the
field K. The leading indeterminate of S is the unique indeterminate (among
those appearing in a term with nonzero coefficient) xl satisfying:

• for some polynomial f ∈ S, deg(f, xl) > 0;
• for all polynomials f ∈ S, and for all i > l, deg(f, xi) = 0.

Write each polynomial f ∈ S as a sum of monomials each consisting of a
single power xnl of the leading indeterminate xl of the system, together with
a coefficient an ∈ K[x1, . . . , xl−1], where each power of xl appears in no more

than one term; that is, write f = adx
d
l + ad−1x

d−1
l + · · · + a1xl + a0. The

leading coefficient of f is the coefficient ad ∈ K[x1, . . . , xl−1] of its highest
power xdl of the leading indeterminate xl of the system, where both d and
ad are nonzero. Thus a polynomial having no term containing the leading
indeterminate has no leading coefficient.
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Let P =
√
〈S〉 be the radical ideal of the ideal generated by f1, . . . , fs in

K[x1, . . . , xt]. The system f1, . . . , fs ∈ K[x1, . . . , xt] is reduced over K if

• each of f1, . . . , fs is irreducible,
• xt is the leading indeterminate of the system,
• no leading coefficient is in P .

These may be thought of as non-degeneracy conditions that we wish to
impose on our system of polynomials: If f ∈ S is reducible, then when-
ever f(γ1, . . . , γt) = 0 one of its irreducible factors must be zero; choosing
such a factor from each polynomial in S yields a simpler system (which,
if the original system is consistent, will remain consistent as long as the
factors are chosen appropriately). And clearly there is no reason to work
in K[x1, . . . , xl, . . . , xt] if indeterminates xl+1, . . . , xt do not appear in any
polynomial in S other than with degree 0 or in a term whose coefficient is
0; we may just as well work in K[x1, . . . , xl]. The third condition is a little

more subtle. Consider a polynomial in S, f = adx
d
t +ad−1x

d−1
t + · · ·+a1xt+

a0, as a polynomial in the indeterminate xt with coefficients ad, . . . , a0 in
K[x1, . . . , xt−1]. Write f = adx

d
t + p, where p = ad−1x

d−1
t + · · ·+ a1xt + a0,

and let γ ∈ V (P ). If ad ∈ P , then both ad and p are zero at γ. Thus in the
leading term adx

d
t of the polynomial f , the indeterminate xt is redundant:

removing f from S while adding ad and p to S yields a simpler system of
polynomials. This new system has one more polynomial than S, but the two
polynomials added each have degree strictly smaller than the polynomial f
that has been removed.

There are two main technical reasons that we wish to work with a reduced
system, which we summarise in the following sketch of the ideas used in the
proof of Theorem 1.1. The proofs of Lemmas 1.8 and 1.10 provide the
details.

We prove Theorem 1.1 inductively, on the number of indeterminates in the
system of polynomials S given by a matroid as described in Section 1.1. To
do so, we choose a polynomial f ∈ S. Considering f as a polynomial in the
single indeterminate xt with coefficients in K[x1, . . . , xt−1], we choose a root
xt = α of f in the algebraic closure of the field K(x1, . . . , xt−1). So that we
may make use of item 3 of Lemma 1.5, we wish f to be irreducible. To take
advantage of the properties of elementary symmetric polynomials, we form
the monic polynomial f ′ = (1/ad)f ∈ K(x1, . . . , xt−1)[xt] by dividing f by
its leading coefficient ad ∈ K[x1, . . . , xt−1]. We make the substitution xt = α
in each of the polynomials fj in our system S, and taking norms we obtain a
new system of polynomials in K[x1, . . . , xt−1], for which we obtain a solution
x1 = γ1, . . . , xt−1 = γt−1, each γi ∈ K, via our induction hypothesis.
We next wish to find a root xt = γt ∈ K such that (γ1, . . . , γt−1, γt) is a
solution to our original system. Roughly speaking, because we divided by
ad to make f monic, we must now consider a system of the form {(ad)mj ·
NormK1/K0

fj(α) : fj ∈ S}, where mj is a positive integer, K0 is the field

K(x1, . . . , xt−1), and K1 is the splitting field in K0 for f over K0. We will
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wish to use the fact that one of the factors in the expression for the norm
given in item 4 of Lemma 1.5 must be zero when evaluating at x1 = γ1, . . . ,
xt−1 = γt−1. This will be the case provided ad does not evaluate to zero at
x1 = γ1, . . . , xt−1 = γt−1. Insisting that ad /∈ P is sufficient to guarantee
this.

Fortunately, reduced systems are not hard to find.

Lemma 1.7. Let h1, . . . , hr ∈ K[x1, . . . , xu] be a consistent system of poly-
nomials, with deg(hj , xi) ≤ D for each j, i. Assume that xi = 0 for each
i ∈ {1, . . . , u} is not a solution of the system. Then there is a consistent re-
duced system of polynomials f1, . . . , fs ∈ K[xi1 , . . . , xit ], where {i1, . . . , it} ⊆
{1, . . . , u}, with deg(fj , xik) ≤ D for each j, ik, and with V (〈f1, . . . , fs〉) ⊆
V (〈h1, . . . , hr〉), where 〈f1, . . . , fs〉 is generated in K[x1, . . . , xu].

Remark. In our context, the condition that xi = 0 for each i not be a solution
of the system is natural and benign. A system of polynomials arising from
a matroid as described in Section 1.1 may have the all-zeros solution just
in the uninteresting case that the matroid has no bases. In this case, every
element of the matroid is itself dependent and so the matroid is represented
over every field just by a matrix in which every entry is zero. But such a
matroid has rank zero. Since the system of polynomials we construct from
a matroid starts with an r×n matrix of indeterminates, where r is the rank
of the matroid, a matroid of rank zero does not even have an associated
system of polynomials defined for it. Theorems 3 and 4 obviously hold for
every matrix of rank zero.

If h′1, . . . , h
′
r is a system of polynomials chosen so that for each j ∈

{1, . . . , r}, polynomial h′j is an irreducible factor of hj , and the system

h′1, . . . , h
′
r is consistent, then we say h′1, . . . , h

′
r is a valid choice of factors

of h1, . . . , hr. Clearly, every consistent system of polynomials has a valid
choice of factors. Having made a valid choice of factors h′1, . . . , h

′
r from a

system of polynomials h1, . . . , hr ∈ K[x1, . . . , xu], we may consider the ideal
〈h′1, . . . , h′r〉 generated in K[x1, . . . , xu] even if h′1, . . . , h

′
r ∈ K[xi1 , . . . , xit ]

where {i1, . . . , it} ⊂ {1, . . . , u}. We do so in the following proof.

Proof of Lemma 1.7. Let S0 = {h1, . . . , hr}, and let S1 = {h′1, . . . , h′r} be a
valid choice of factors of the polynomials in S0. Then V (〈S1〉) ⊆ V (〈S0〉).
Let xi1 , . . . , xil denote the indeterminates with positive degree appearing
in a polynomial in S1 in a term with nonzero coefficient, where xil is the
leading indeterminate of S1. If setting all indeterminates appearing in S1
equal to zero were a solution to S1, then setting all of x1, . . . , xu to zero
would be a solution to S0. Thus S1 does not consist entirely of monomials.
If no polynomial in S1 has a leading coefficient in

√
〈S1〉, we are done: S1

is a reduced system of polynomials in K[xi1 , . . . , xil ]. Otherwise, repeat the
following step until obtaining either a reduced system or a system consisting
entirely of monomials.
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Choose a polynomial p = adx
d
il

+ · · · + a1xil + a0 ∈ S1, where each

ai ∈ K[xi1 , . . . , xil−1
], and ad ∈

√
〈S1〉. Then ad vanishes at every point

in V (〈S1〉). Write p = adx
d
il

+q, where q = ad−1x
d−1
il

+ · · ·+a1xil +a0. Then

q also vanishes at every point in V (〈S1〉). Hence V (〈S1 − {p} ∪ {ad, q}〉) =
V (〈S1〉). Let S2 be a system of polynomials obtained by a valid choice of
factors of S1−{p}∪{ad, q}. Then V (〈S2〉) ⊆ V (〈S1〉). Note that S2 does not
consist entirely of monomials, for if so then (0, . . . , 0) ∈ V (〈S2〉 ⊆ V (〈S1〉) ⊆
V (〈S0〉), a contradiction. If no polynomial in S2 has leading coefficient in√
〈S2〉, then stop. Otherwise, set S1 = S2 and repeat.
In each step, we obtain a new system of polynomials by replacing a polyno-

mial p with two polynomials each of strictly smaller total degree than p, one
of which is a monomial, the other with one less term than p. We then take a
valid choice of factors, so each step ends with a system of irreducible polyno-
mials. Since r, u, and D are finite, this process must eventually terminate:
if not with a system consisting entirely of monomials then because we have
obtained a reduced system. Valid choices of factors in each step ensure that
the variety remains non-empty, so the final system S = {f1, . . . , fs} obtained
is consistent. Moreover, if (γ1, . . . , γu) ∈ Ku

and (γi1 , . . . , γit) ∈ V (S), then
(γ1, . . . , γu) ∈ V (〈S0〉), so V (〈S〉) ⊆ V (〈S0〉). Again, if S consists entirely of
monomials then (0, . . . , 0) ∈ V (〈S0〉), contrary to assumption. Thus S is a
consistent reduced system. Clearly, by its construction, for each fj ∈ S and
each indeterminate ik, deg(fj , xik) ≤ D. �

1.4. Proof of Theorem 1.1. Theorem 1.1 follows from Lemmas 1.8 and
1.9, which in turn require the more technical Lemma 1.10.

Lemma 1.8. Let K be a field of characteristic 0, and let f1, . . . , fs be poly-
nomials in the ring K[x1, . . . , xt] of polynomials over K. Assume that the
system is consistent, and that deg(fj , xi) ≤ D for each i, j. Then there is a

solution (γ1, . . . , γt) ∈ K
t

to f1 = 0, . . . , fs = 0 such that

[K(γ1, . . . , γt) : K] ≤ 22
t−t−1D2t−1.

Lemma 1.9. Let K be a field of characteristic p > 0, and let f1, . . . , fs be
polynomials in the ring K[x1, . . . , xt] of polynomials over K. Assume that
the system is consistent, and that deg(fj , xi) ≤ D for each i, j. Then there

is a solution (γ1, . . . , γt) ∈ K
t

to f1 = 0, . . . , fs = 0 such that

[K(γ1, . . . , γt) : K] ≤ 23·2
t−1−2t−1D3·2t−1−2.

The proofs of Lemmas 1.8 and 1.9 are by induction on t. Lemma 1.10
below provides the required tool for the inductive step. Each polynomial
fj may be considered as a single-variable polynomial in xt with coefficients
in the field K(x1, . . . , xt−1). Writing K0 = K(x1, . . . , xt−1) for this field,
we have fj ∈ K0[xt]. We sometimes write fj(xt) to indicate that we are
considering fj as a single-variable polynomial in xt with coefficients in K0.
Assume fs(xt) is irreducible and separable over K0. Let K1 be the splitting
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field in K0 for fs(xt) over K0. Suppose deg(fs, xt) = d and ad is the leading
coefficient of fs. Let f = (1/ad)fs. Then f splits over K1, so

f =

d∏
i=1

(xt − αi)

for some elements αi in K1, and the αi are the roots of both f(xt) and
fs(xt) in K1. It will be important for us that these roots αi are distinct.
Put α = α1. Substituting xt = α in each polynomial fj(xt) ∈ K0[xt] yields
a polynomial fj(α), which is an element of K1. Applying the norm to each
of these elements, we obtain an element of K0,

NormK1/K0
fj(α) =

gj(x1, . . . , xt−1)

hj(x1, . . . , xt−1)
∈ K0

where gj , hj ∈ K[x1, . . . , xt−1]. Place an order on monomials—say, reverse
lexicographic— and insist that gj and hj share no common factor, and that
gj be monic with respect to this order. As K0[xt] is a unique factorisation
domain, this guarantees that the expression gj/hj is unique. Denote by
N(α, fj) the polynomial gj ∈ K[x1, . . . , xt−1] obtained in this way:

Definition 1. For each polynomial f(xt) ∈ K0[xt], define N(α, f) to be the
unique polynomial g ∈ K[x1, . . . , xt−1] for which NormK1/K0

f(α) = g/h,
where g and h share no common factor and g is monic with respect to the
reverse lexicographic order on monomials.

Note that N(α, fs) is the zero polynomial.

Lemma 1.10. Let f1, . . . , fs ∈ K[x1, . . . , xt] be a consistent reduced system
of polynomials. Let K0 = K(x1, . . . , xt−1), and assume fs, considered as a
polynomial in xt with coefficients in K0, is separable over K0. Let K1 be
the splitting field in K0 for fs over K0, and let α ∈ K1 be a root of fs.
Then the system of polynomials N(α, f1), . . . , N(α, fs−1) ∈ K[x1, . . . , xt−1]
is consistent.

Proof. Let P =
√
〈f1, . . . , fs〉 be the radical ideal of the ideal generated

by f1, . . . , fs in K[x1, . . . , xt]. Write fs = adx
d
t + · · · + a1xt + a0, where

each ai ∈ K[x1, . . . , xt−1] and ad 6= 0. Since the system is reduced, fs is
irreducible and ad /∈ P . Let f ′s = (1/ad)fs. Polynomials fs and f ′s have the
same roots α1, . . . , αd ∈ K1. Put α = α1.

Let Pα = {g(x1, . . . , xt−1, α) : g ∈ P}. Then Pα is an ideal ofK[x1, . . . , xt−1][α].
Let Q = Pα ∩K[x1, . . . , xt−1]. Let S = {akd : k ∈ Z≥0}, and let S−1Pα be
the ideal {pα

b
: pα ∈ Pα, b ∈ S

}
in the ring

S−1K[x1, . . . , xt−1][α] =

{
f

b
: f ∈ K[x1, . . . , xt−1][α], b ∈ S

}
.
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If L ⊇ K is a field extension, and A ⊆ L, denote by NormL/K A the set
{c ∈ K : c = NormL/K a for some a ∈ A}.

Claim 1. For each j ∈ {1, . . . , s− 1}, N(α, fj) ∈ Q.

Proof of claim. Write

f ′s(xt) = (xt − α1)(xt − α2) · · · (xt − αd)

= xdt + εd−1(α1, . . . , αd)x
d−1
t + εd−2(α1, . . . , αd)x

d−2
t + · · ·+ ε0(α1, . . . , αd)

where each εi is an elementary symmetric polynomial in α1, . . . , αd. Com-
paring coefficients, we see that εi(α1, . . . , αd) = ai/ad.

Let F ∈ S−1Pα. Then F = g/b for some g ∈ Pα and b ∈ S. Since the
norm respects multiplication (and 1/akd ∈ K0 for all integers k), we just need
consider NormK1/K0

f(α) where f(α) ∈ K[x1, . . . , xt−1][α] is an irreducible
factor of the numerator of F . By Lemmas 1.4 and 1.5,

NormK1/K0
f(α) =

∏
σ∈Gal(K1/K0)

σ(f(α)).

Since each σ ∈ Gal(K1/K0) fixesK0 and permutes α1, . . . , αd, and Gal(K1/K0)
acts transitively on α1, . . . , αd, NormK1/K0

f is given by∏
σ∈Gal(K1/K0)

f(x1, . . . , xt−1, σ(α))

and this expression is symmetric in α1, . . . , αd. Hence NormK1/K0
f(α) can

be written as a polynomial G in the elementary symmetric polynomials εi
[8, Theorem 1.12] and we have

NormK1/K0
f(α) = G (εd−1(α1, . . . , αd), . . . , ε0(α1, . . . , αd))

= G

(
ad−1
ad

, . . . ,
a0
ad

)
where G is a polynomial in K[x1, . . . , xt−1][X1, . . . , Xd]. This shows that

NormK1/K0
F ∈ S−1K[x1, . . . , xt−1].

Since one of the automorphisms σ ∈ G is the identity, it follows that
NormK1/K0

F ∈ S−1Pα. That is,

NormK1/K0
F ∈ S−1Pα ∩ S−1K[x1, . . . , xt−1].

Now f ∈ S−1Pα ∩ S−1K[x1, . . . , xt−1] if and only if

f =
g(x1, . . . , xt−1)

akd

for some polynomial g ∈ Pα ∩ K[x1, . . . , xt−1] = Q and positive integer
k. That is, S−1Pα ∩ S−1K[x1, . . . , xt−1] = S−1Q. That is, NormK1/K0

F ∈
S−1Q. Thus NormK1/K0

S−1Pα ⊆ S−1Q. Since fj(x1, . . . , xt−1, α) ∈ S−1Pα,

for each j, NormK1/K0
fj(x1, . . . , xt−1, α) ∈ S−1Q. Hence (recall Definition

1) N(α, fj) ∈ Q. �
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Claim 2. Q is an ideal of K[x1, . . . , xt−1].

Proof of claim. Let g, h ∈ Q = Pα ∩K[x1, . . . , xt−1] and let r ∈ K[x1, . . . ,
xt−1]. Then g, h ∈ Pα, so there are polynomials g′, h′ ∈ P such that
g′(x1, . . . , xt−1, α) = g and h′(x1, . . . , xt−1, α) = h. Since P is an ideal
of K[x1, . . . , xt], g

′ + h′ ∈ P . Also rg′ ∈ P , since r, g′ ∈ K[x1, . . . , xt]. Then
g′+h′ and rg′ when evaluated at xt = α are in Pα; that is, g+h and rg are
in Pα. Since g, h ∈ K[x1, . . . , xt−1], also g + h, rg ∈ K[x1, . . . , xt−1]. Hence
g + h and rg are both in Pα ∩K[x1, . . . , xt−1] = Q. �

Hence if 1 /∈ Q, then 1 is not in the ideal generated by the system of
polynomials N(α, f1), . . . , N(α, fs−1), and so by the weak Nullstellensatz,
the system N(α, f1), . . . , N(α, fs−1) is consistent. So suppose, for a contra-
diction, that 1 ∈ Q. This occurs if and only if 1 ∈ Pα. Then there is a
polynomial f ∈ P with f(x1, . . . , xt−1, α) = 1. Since

Pα ⊆ K[x1, . . . , xt−1][α] ⊆ K(x1, . . . , xt−1)(α) ∼= K(x1, . . . , xt−1)[xt]/〈fs〉
we have

f(x1, . . . , xt−1, xt)− 1 ∈ 〈fs〉 ⊆ K(x1, . . . , xt−1)[xt].

Hence there is a polynomial g ∈ K(x1, . . . , xt−1)[xt] such that f − 1 = gfs.
Each coefficient of g is a rational expression in indeterminants x1, . . . , xt−1;
write g = n/m where m is the least common multiple of the denominators
of the coefficients of g. We may assume n and m have no common factor.
Since gfs ∈ K[x1, . . . , xt], m must be factor of fs. But fs is irreducible, so
m is a unit. That is, g ∈ K[x1, . . . , xt]. Choose a point γ ∈ V (P ). Now

f(γ)− 1 = g(γ)fs(γ)

implies −1 = 0, a contradiction. �

Proof of Lemma 1.8. We proceed by induction on t. The result clearly holds
for t = 1. As in the proof of Lemma 1.10, let P =

√
〈f1, . . . , fs〉 be the

radical ideal of the ideal generated by f1, . . . , fs in K[x1, . . . , xt], and let
K0 = K(x1, . . . , xt−1). Applying Lemma 1.7, we may assume that fs is
irreducible, has leading indeterminate xt, and has leading coefficient ad ∈
K[x1, . . . , xt−1] with ad /∈ P . As in the proof of Lemma 1.10, write fs =
adx

d
t + · · · + a0 and consider fs as a polynomial in K0[xt]; let K1 be the

splitting field in K0 for fs over K0, and let α ∈ K1 be a root of fs. Again as
in the proof of Lemma 1.10, let f ′s = (1/ad)fs, let Pα = {g(x1, . . . , xt−1, α) :
g ∈ P} and let Q = Pα ∩K[x1, . . . , xt−1]. As in the proof of the first claim
in the proof of Lemma 1.10, we have, for each j ∈ {1, . . . , s},

NormK1/K0
fj(α) =

∏
σ∈Gal(K1/K0)

fj(x1, . . . , xt−1, σ(α))

= Gj (εd−1(α1, . . . , αd), . . . , ε0(α1, . . . , αd))

= Gj

(
ad−1
ad

, . . . ,
a0
ad

)
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where Gj is a polynomial in K[x1, . . . , xt−1][X1, . . . , Xd]. Since the degree in
NormK1/K0

fj(α) of each root αk is at most D, and the degree of each αk in
the symmetric polynomials is 1, the degree of each Xi in Gj(X1, . . . , Xk) is
at most D. Since the degree of each indeterminate in each coefficient of Gj
is at most D2, and the degree of each xi in each coefficient ai of fj is at most
D, the degree of each indeterminate in the numerator of NormK1/K0

fj(α)

is at most 2D2. Thus the system

N(α, f1), . . . , N(α, fs−1) ∈ K[x1, . . . , xt−1]

has no indeterminate xi of degree more than 2D2. By Lemma 1.10, it is

consistent. By induction, this system has a solution (γ1, . . . , γt−1) ∈ K
t−1

with [K(γ1, . . . , γt−1) : K] at most

22
t−1−(t−1)−1(2D2)2

t−1−1.

Observe that for each j there is a positive integer mj such that N(α, fj) =
(ad)

mj NormK1/K0
fj(α). For each σi ∈ GalK1/K0

, i ∈ {1, . . . , d}, write
αi = σi(α) with α = α1. Consider the product

(ad)
mj NormK1/K0

fj(x1, . . . , xt−1, α1) = (ad)
mj

d∏
i=1

fj(x1, . . . , xt−1, αi).

Evaluating at x1 = γ1, . . . , xt−1 = γt−1 (working in K0), we obtain 0,
because this product is equal to (ad)

mjN(α1, fj) and evaluating N(α1, fj)
at (γ1, . . . , γt−1) yields 0.

Claim. ad does not evaluate to zero at (γ1, . . . , γt−1).

Proof of claim. Let Pα and Q be as in the proof of Lemma 1.10. Suppose ad
evaluates to zero at (γ1, . . . , γt−1). Then there is a positive integer m such
that (ad)

m ∈ 〈N(α, f1), . . . , N(α, fs−1)〉. Since 〈N(α, f1), . . . , N(α, fs−1)〉 ⊆
Q, this implies (ad)

m ∈ Q. But (ad)
m ∈ Q if and only if (ad)

m ∈ Pα, which
occurs if and only if (ad)

m ∈ P , and so if and only if ad is in P . But ad is
not in P , so this is a contradiction. �

Since ad does not evaluate to zero at (γ1, . . . , γt−1), there is an i ∈
{1, . . . , d} for which the factor fj(γ1, . . . , γt−1, αi) is zero. Since

K(x1, . . . , xt−1)[αi] ∼= K(x1, . . . , xt−1)[xt]/〈fs〉

this occurs if and only if there is a polynomial gj ∈ K(x1, . . . , xt−1)[xt] such
that

fj(γ1, . . . , γt−1, xt) = gj(γ1, . . . , γt−1, xt) · fs(γ1, . . . , γt−1, xt).

Since fs(γ1, . . . , γt−1, xt) has degree at most D in xt, it has a root γt ∈ K
with [K(γ1, . . . , γt) : K(γ1, . . . , γt−1)] ≤ D. Thus (γ1, . . . , γt) ∈ K

t
is a
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solution to our original system f1, . . . , fs, and

[K(γ1, . . . , γt) : K] = [K(γ1, . . . , γt) : K(γ1, . . . , γt−1)][K(γ1, . . . , γt−1) : K]

≤ D · 22t−1−(t−1)−1(2D2)2
t−1−1

= 22
t−t−1D2t−1 �

We now apply the same induction argument in the case that the field K
has positive characteristic p. We just require an additional step in order to
deal with the possibility that the polynomials in our system are all insepa-
rable over K(x− i)[xi], for every i. By Lemma 1.6, if this is the case, then
the exponent on every indeterminate in every term of every polynomial in
the system is a multiple of p.

Proof of Lemma 1.9. We proceed by induction on t. The result clearly holds
for t = 1. Applying Lemma 1.7, we may assume that the system is reduced.

Let q be the largest multiple of p that is a common factor of all expo-
nents of xt among all terms of f1, . . . , fs, so that for each j, fj = gj(x

q
t ),

where gj ∈ K[x1, . . . , xt−1][xt] is irreducible. Let z = xqt , and consider the
system of polynomials g1, . . . , gs ∈ K[x1, . . . , xt−1, z] obtained by replacing
each polynomial fj with g(z). We may assume (renaming polynomials if
necessary) that gs has at least one term in which the exponent on z not
a multiple of p. We now have a system g1, . . . , gs ∈ K[x1, . . . , xt−1, z], in
which (by Lemma 1.6) gs is separable over K(x1, . . . , xt−1).

Write gs = adz
d + · · · + a0. Since each gj is obtained from fj by just

replacing xqt with z, and ad /∈
√
〈f1, . . . , fs〉, it is also the case that ad /∈√

〈g1, . . . , gs〉. Let P =
√
〈g1, . . . , gs〉, let K0 = K(x1, . . . , xt−1), let K1 be

the splitting field in K0 for gs over K0, and let α ∈ K1 be a root of gs, as in
Lemma 1.10. Again as in the proof of the first claim in the proof of Lemma
1.10, we have

NormK1/K0
gj(α) =

∏
σ∈Gal(K1/K0)

gj(x1, . . . , xt−1, σ(α))

= Gj (εd−1(α1, . . . , αd), . . . , ε0(α1, . . . , αd))

= Gj

(
ad−1
ad

, . . . ,
a0
ad

)
for some polynomial Gj ∈ K[x1, . . . , xt−1][X1, . . . , Xd]. Just as in the proof
of Lemma 1.8, the system

N(α, g1), . . . , N(α, gs−1) ∈ K[x1, . . . , xt−1]

is consistent by Lemma 1.10, and has no indeterminate xi of degree more
than 2D2. By induction, this system has a solution (γ1, . . . , γt−1) with

[K(γ1, . . . , γt−1) : K] ≤ 23·2
t−2−2(t−1)−1(2D2)3·2

t−2−2.
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Hence by the argument in the proof of Lemma 1.8, the system g1, . . . , gs ∈
K[x1, . . . , xt−1, z] has a solution (γ1, . . . , γt−1, γz) with

[K(γ1, . . . , γt−1, γz) : K] ≤ D · [K(γ1, . . . , γt−1) : K].

Now (γ1, . . . , γt−1, q
√
γz) is a solution to our original system. The minimal

polynomial of q
√
γz over K(γ1, . . . , γt−1, γz) divides Xq − γz, and q ≤ D, so

[K(γ1, . . . , γt−1, γz, q
√
γz) : K] =

[K(γ1, . . . , γt−1, γz, q
√
γz) : K(γ1, . . . , γt−1, γz)] · [K(γ1, . . . , γt−1, γz) : K]

≤ D · [K(γ1, . . . , γt−1) : K] ·D ≤ 23·2
t−2−2(t−1)−1(2D2)3·2

t−2−2 ·D2

= 23·2
t−1−2t−1D3·2t−1−2.

Hence, taking γt = q
√
γz, certainly also

[K(γ1, . . . , γt−1, γt) : K] ≤ 23·2
t−1−2t−1D3·2t−1−2. �

Proof of Theorem 1.1. Together, Lemmas 1.8 and 1.9 guarantee that given
an arbitrary system of polynomials over a field K, in t variables, with each
variable of degree at most D, there is always an algebraic extension of K of
degree at most

(1) 23·2
t−1−2t−1D3·2t−1−2

in which we can find a solution to the system.
Given a rank-r matroid on n elements, an associated system of polyno-

mials has, in each polynomial coming from a determinant, every variable of
degree at most 1, and at most

(
n
r

)
determinantal polynomials. Hence we

have t ≤ nr+ 1 ≤ n2 + 1 and deg(fi, xj) ≤
(
n
r

)
≤ 2n for each i, j. Hence the

bound given in (1) yields (for n ≥ 2)

23·2
t−1−2t−1D3·2t−1−2 ≤ 23·2

n2−2(n2+1)−1(2n)3·2
n2−2

= 23n2
n2

+3·2n2−2n2−2n−3

< 23n2
n2+1

< 22
2n2

. �

2. Positive characteristic

Let c>0(n) = max{c(M) : M is representable only over a field of positive
characteristic} and let f>0(n) = max{f(M) : M is representable only over
a field of positive characteristic}. We obtain the following bounds.

Theorem 2.1. For all positive integers n,

log2 log2 c>0(n) < n4 and log2 log2 log2 f>0(n) < n3.

Theorem 2.1 just combines the statements of Theorems 2.2 and 2.4 below.
Let M be a representable matroid, but not over characteristic 0. Applying
a result of Krick, Pardo, and Sombra [4] gives the following bound on c(M).
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Theorem 2.2. Let M be an n-element matroid representable only over
strictly positive characteristic. Then

log2 log2 c(M) < n4.

We obtain this bound as follows. Let F ⊆ Z[x1, . . . , xt] be the system of
polynomials given by M as described at the beginning of Section 1. Denote
by 〈F 〉 the ideal in Z[x1, . . . , xt] generated by the polynomials in F . Let K
be a field, and denote by FK the system of polynomials F viewed over the
polynomial ring K[x1, . . . , xt], and by 〈FK〉 the ideal generated by FK in
K[x1, . . . , xt]. Hilbert’s weak Nullstellensatz says that FK is solvable over
some extension field of K if and only if 1 /∈ 〈FK〉. If 1 ∈ 〈F 〉, then also
1 ∈ 〈FK〉 for all fields K, so M is not representable over any field. But
suppose 〈F 〉 contains an integer a > 1. Then the system FK is solvable in
K only if the characteristic of K divides a. In other words, if M can be
represented over K, then the characteristic of K divides a. Thus a provides
an upper bound on c(M).

One way to state Hilbert’s Nullstellensatz is the following.

Theorem (Hilbert’s Nullstellensatz). Let f1, . . . , fs ∈ Z[x1, . . . , xt] be poly-
nomials such that the system f1 = 0, . . . , fs = 0 has no solution in Ct. Then
there is a positive integer a ∈ 〈f1, . . . , fs〉.

The result of Krick, Pardo, and Sombra we use is the following effective
version of Hilbert’s Nullstellensatz. For a polynomial f ∈ Z[x1, . . . , xt], let
deg f denote its total degree, and let h(f) = logH(f) denote the logarithm
of the maximum absolute value of its coefficients.

Theorem 2.3 ([4]). Let f1, . . . , fs ∈ Z[x1, . . . , xt] be polynomials such that
the system f1 = 0, . . . , fs = 0 has no solution in Ct. Set d = maxi deg fi and
h = maxi h(fi). Then there is a positive integer a ∈ 〈f1, . . . , fs〉 satisfying

log a ≤ 4t(t+ 1)dt (h+ log s+ (t+ 7) log(t+ 1) d) .

Proof of Theorem 2.2. By Lemma 1.2, for our system F ⊆ Z[x1, . . . , xt] we
have s ≤ 2n, d ≤ n2n, t ≤ n2 + 1, and H ≤ nn2n . Hence

h ≤ log nn2
n
< n2n log2 n ≤ n2n log2 2n = n22n ≤ 2n2n = 22n.

Substituting these values into the result of Theorem 2.3 we obtain a positive
integer a ∈ 〈f1, . . . , fs〉 satisfying

log a ≤ 4(n2 + 1)(n2 + 2)(n2n)n
2+1

(
22n + log 2n + (n2 + 8) log(n2 + 2)n2n

)
≤ (4n4 + 12n2 + 8)(nn

2+12n
3+n)(2nn(n2 + 8) log(n2 + 2) + n log 2 + 22n)

≤ (4n4 + 12n2 + 8)(nn
2+12n

3+n)
(
2n
(
n(n2 + 8) log(n2 + 2) + n

)
+ 22n

)
.
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Using the facts nn
2+1 ≤ 2n

3
, n(n2 + 8) log(n2 + 2) + n ≤ n4, (4n4 + 12n2 +

8)(n4 + 1) ≤ n9, and n9 ≤ 24n, we obtain

log a ≤ (4n4 + 12n2 + 8)(22n
3+n)(22n(n4 + 1))

≤ n922n3+3n ≤ 24n22n
3+3n = 22n

3+7n.

Hence
log2 a < 2 · log a < 2 · 22n3+7n = 22n

3+7n+1 ≤ 2n
4
. �

Theorem 2.4. Let M be an n-element matroid representable only over
strictly positive characteristic. Then

log2 log2 log2 f(M) < n3.

Proof. By Theorem 2.2, M is representable over a field of characteristic

p, where p is a prime of size at most 22
n4

. Hence by Theorem 1.1, M is
representable over a simple algebraic extension of GF(p) of degree at most

N = 22
2n2

. That is, M is representable over a field of size at most pN . So

f(M) ≤ (22
n4

)2
22n

2

= 22
n4+22n

2

≤ 22
2n

3

. �

3. Characteristic zero

Let c0(n) = max{c(M) : M is representable over a field of characteristic
0} and let f0(n) = max{f(M) : M is representable over a field of character-
istic 0}. We obtain the following bounds.

Theorem 3.1. For all positive integers n,

log2 log2 c0(n) < n5 and log2 log2 log2 f0(n) < n3.

We use the following two results. The first combines and paraphrases a
result of Kollár [3] and a result of Sombra [7] giving bounds on the degree
of polynomials in Bézout’s identity.

Theorem 3.2 ([3, 7]). Let K be a field, and let f1, . . . , fs ∈ K[x1, . . . , xt] be
polynomials each of total degree at least 1 and at most d. Suppose f1, . . . , fs
have no common zero in K

t
. Then there exist polynomials g1, . . . , gs ∈

K[x1, . . . , xt] satisfying

g1f1 + · · ·+ gsfs = 1

where each gi has total degree at most dt.

The second gives a lower bound on the product of the primes that are at
most a given integer.

Theorem 3.3. Let a be a positive integer. The product of the primes at
most a is greater than 2a−3.

Proof. By [6, Theorem 10],
∏
p≤a p > e0.84a for a ≥ 101. Since e0.84 > 2,∏

p≤a p > 2a for x ≥ 101. It is straightforward to check by direct calculation

that the inequality
∏
p≤a p > 2a−3 holds for a ≤ 100. �
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We also use Hadamard’s inequality, a well-known bound on the determi-
nant of a matrix:

Lemma (Hadamard’s inequality). Let A be an n×n matrix with entries in

C. If every entry Aij of A satisfies |Aij | ≤ B, then |det(A)| ≤ Bnnn/2.

The height H(f) of a polynomial f is the maximum of the absolute values
of its coefficients. Theorem 3.1 is a corollary of the following theorem.

Theorem 3.4. Let f1, . . . , fs ∈ Z[x1, . . . , xt] be polynomials of total degree
at least 1 and at most d, and of height at most H, and assume f1, . . . , fs
share a common zero in Ct. Let L = s

(
dt+t
t

)
. Then there is a prime p

satisfying
p < 6 + 2L log2H + L log2 L

such that Z[x1, . . . , xt]/〈p, f1, . . . , fs〉 is nonzero. Moreover, for all p >

HL
√
L
L

the ring Z[x1, . . . , xt]/〈p, f1, . . . , fs〉 is nonzero.

Proof. Note that for a commutative ring R, the collection of polynomials of
degree at most dt in R[x1, . . . , xt] is a free R-module on the generators

S := {xi11 · · ·x
it
t : i1 + · · ·+ it ≤ dt}.

The size of S is the number of ways to write dt as a sequence of t+ 1 non-
negative integers (there is a 1-1 correspondence between the sequences of
length t whose sum is at most dt and sequences of length t+ 1 whose sum is
exactly dt, obtained by truncating each of the latter sequences at t terms).
So |S| is the number of weak compositions of dt into t + 1 parts; that is,

|S| =
(
dt+t
t

)
.

Now let S = {m1,m2, . . . ,m|S|}. Let {zi,j : 1 ≤ i ≤ |S|, 1 ≤ j ≤ s} be a
set of indeterminates; this collection has size L. Define

gj =

|S|∑
i=1

zi,jmi ∈ Z[x1, . . . , xt][zi,j : 1 ≤ i ≤ |S|, 1 ≤ j ≤ s].

Now consider the equation

(2) 1− g1f1 + · · ·+ gsfs = 0.

By Theorem 3.2 there is an assignment of values from a field K to the
indeterminates zi,j satisfying (2) if and only if 1 ∈ 〈f1, . . . , fs〉K . Let
t : Z[x1, . . . , xt][zi,j ] → K[x1, . . . , xt] be an assignment of values in K to
the indeterminates zi,j . Expand (2) and set t(zi,j) = ti,j ∈ K. Consider
the coefficient of a monomial m ∈ S appearing in this equation. Each such
coefficient yields an equation of the form

δm,1 −
|S|∑
i=1

s∑
j=1

ti,jci,m,j = 0

where ci,m,j is a coefficient of fj , and hence is at most H in absolute value
(and where δm,1 = 1 if m = 1 and is otherwise 0).
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Now write equation (2) as a matrix equation A~z = ~b, where A is a |S|×s|S|
integer matrix (with rows indexed by the monomials in S and columns by
the s|S| = L variables zij that are the components of ~z). The entries of A

are at most H in absolute value and ~b has one entry equal to one and the

rest equal to zero. Observe that, for a field K, A~z = ~b has a solution in

K
t

if and only if 1 ∈ 〈f1, . . . , fs〉K . Since 1 is not in the ideal 〈f1, . . . , fn〉Q,

we see that this equation A~z = ~b has no solutions in Ct. Let r denote the

rank of A. Then there is an (r+ 1)× (r+ 1) minor of the matrix (A|~b) that

does not vanish. Since r ≤ L − 1 and the entries of (A|~b) are at most H,

by Hadamard’s inequality this minor is bounded by (H
√
L)L. Let D denote

this minor. Then |D| ≤ HL
√
L
L

.
On the other hand, if p is prime and 1 ∈ 〈f1, . . . , fs〉GF(p) (taking reduc-

tions of the fi modulo p) then A~z = ~b has a solution modulo p. Since A has

rank at most r mod p, then (A|~b) must have rank at most r mod p and so
D must vanish modulo p.

In particular, this means that if p > HL
√
L
L

then, as D does not van-

ish modulo p, A~z = ~b does not have a solution modulo p. Thus 1 /∈
〈f1, . . . , fs〉GF(p). In other words, f1, . . . , fs share a common zero in GF(p)

t
.

Let p′ be the least prime for which A~z = ~b does not have a solution modulo
p′; equivalently, let p′ be the least prime for which 1 /∈ 〈f1, . . . , fs〉GF(p′). Let
q be the largest prime less than p′. Then D is a multiple of all primes ≤ q.
Hence, by Theorem 3.3 and Hadamard’s Inequality,

2q−3 ≤
∏
p≤q

p ≤ |D| ≤ HL
√
L
L

which implies

q ≤ 3 + L log2H + L/2 log2 L.

Hence by Bertrand’s postulate, p′ < 2q ≤ 6 + 2L log2H + L log2 L. �

Now suppose our system of polynomials f1, . . . , fs ∈ Z[x1, . . . , xt] of The-
orem 3.4 is a system arising from an n-element matroid M , of rank r, rep-
resentable over a field of characteristic zero, as described in Section 1.1.
By Theorem 3.4 there is a prime p < 6 + 2 log2H + L log2 L such that
1 /∈ 〈p, f1, . . . , fs〉. Since the polynomials f1, . . . , fs, reduced modulo p share

a common zero in GF(p)
t
, M is representable over a field of characteristic

p. Hence

c(M) ≤ 6 + 2L log2H + L log2 L.

To complete the proof of Theorem 3.1, we just need to write L and H in
terms of n. By Lemma 1.2, for our system of polynomials f1, . . . , fs, we
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have s ≤ 2n, t ≤ n2 + 1, d ≤ n2n, and H ≤ nn2n . Hence

L = s

(
dt + t

t

)
≤ s2dt+t ≤ 2n2(n2

n)n
2+1+n2+1

≤ 2n2(n
n+1)n

2+1+n2+1 ≤ 2n
n4

+n2+n+1.

Observe that H ≤ nn2n ≤ 22
2n

, which is a more convenient bound.

Proof of Theorem 3.1. Let M be an n-element matroid representable over
a field of characteristic zero. By Theorem 3.4, and the above bounds for L
and H

c(M) ≤ 6 + 2L log2H + L log2 L

≤ 6 + 2 · 2nn4
+n2+n+1 log2 22

2n
+ 2n

n4
+n2+n+1 log2 2n

n4
+n2+n+1

≤ 6 + 2n
n4

+n2+n+222n + 2n
n4

+n2+n+1 · (nn4
+ n2 + n+ 1)

≤ 6 + 2n
n4

+n2+3n+2 + 2n
n4

+n2+n+1 · (nn4
+ n2 + n+ 1)

≤ 2 · 2nn4
+n2+3n+2 · (nn4

+ n2 + n+ 1)

≤ 2n
n4

+n2+3n+3 · (nn4
+ n2 + n+ 1)

≤ 2n
n4

+n2+3n+3 · 2n5
= 2n

n4
+n5+n2+3n+3 ≤ 22

n5

.

Hence by Theorem 1.1

f(M) ≤ (22
n5

)2
22n

2

= 22
n5+22n

2

≤ 22
2n

3

. �

Proof of Theorem 4. If p > HLLL/2, then by Theorem 3.4 M is repre-

sentable over GF(p). Substituting 22
2n

for H and 2n
n4

+n2+n+1 for L yields

HLLL/2 ≤ (22
2n

)2
nn4

+n2+n+1 · (2nn4
+n2+n+1)2

−12n
n4

+n2+n+1

≤ 22
nn4

+n2+3n+1 · 2(nn4
+n2+n+1)·2nn4

+n2+n

≤ 22
nn4

+n2+3n+1 · 2(2n
5
)·2nn4

+n2+n

≤ 22
nn4

+n2+3n+1 · 22n
n4

+n5+n2+n

≤ 22·2
nn4

+n5+n2+n
= 22

nn4
+n5+n2+n+1 ≤ 22

2n
5

. �

4. A lower bound

Using a result from [1], we obtain the following lower bound on c(n).

Theorem 4.1. log2 c(n) ≥ (n− 7)/2

The result we use is the following.
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Theorem 4.2 (Brylawski [1], Corollary 3.3). For any prime p there is a
matroid M on at most 2 blog2 pc+ 6 elements with c(M) = p.

Proof of Theorem 4.1. For each positive integer n ≥ 7, choose a prime p
such that

2(n−7)/2 ≤ p ≤ 2(n−5)/2.

By Bertrand’s postulate, this is always possible. Since n−5
2 is 1

2 -integral,

blog2 pc+ 1
2 ≤

n−5
2 , so

2 blog2 pc+ 6 ≤ n.

By Theorem 4.2, there is a matroid N on at most 2 blog2 pc + 6 elements
with c(N) = p. Add to N as many loops as necessary to obtain a matroid
M on exactly n elements with c(M) = p. �
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