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Abstract. If S is a set of matroids, then the matroid M is S-fragile if,
for every element e ∈ E(M), either M\e or M/e has no minor isomor-
phic to a member of S. Excluded-minor characterizations often depend,
implicitly or explicitly, on understanding classes of fragile matroids. In
certain cases, when M is a minor-closed class of S-fragile matroids, and
N ∈ M, the only members of M that contain N as a minor are ob-
tained from N by increasing the length of fans. We prove that if this is
the case, then we can certify it with a finite case-analysis. The analysis
involves examining matroids that are at most two elements larger than
N .

1. Introduction

Let S be a set of matroids. When we say that a matroid has an S-minor,
we mean that it has a minor isomorphic to a member of S. The matroid M is
S-fragile if, for every element e ∈ E(M), either M\e or M/e has no S-minor.
Note that every minor of an S-fragile matroid is also S-fragile. Fragility has
been studied at various times under different names: Oxley examined non-
binary {U2,4}-fragile matroids [11]; Truemper proved a constructive char-
acterization of a class of binary {F7, F

∗
7 }-fragile matroids [13]; and Kingan

and Lemos have made a study of binary {F7, F
∗
7 ,M

∗(K3,3),M
∗(K5)}-fragile

matroids [6, 7].
Our study of fragile matroids is motivated by the goal of finding new

excluded-minor characterizations. The matroid S is a strong stabilizer for
the partial field P, if, roughly speaking, every P-representation of S ex-
tends uniquely to a P-representation of any P-representable matroid that
contains S as a minor. More information on strong stabilizers can be found
in [3] or [12]. Understanding S-fragile matroids, where S is a set of strong
stabilizers, has been important in excluded-minor characterizations. For
example, U2,4 is a strong stabilizer for both GF(4) and the near-regular par-
tial field. The excluded-minor characterizations of GF(4)-representable [4]
and near-regular matroids [5] both implicitly use the fact that a non-binary
3-connected GF(4)-representable matroid is {U2,4}-fragile if and only if it is
a whirl. Geelen, Gerards, and Whittle conjecture that, for any prime power
q, and any GF(q)-representable matroid N , there is an integer k such that
every GF(q)-representable {N}-fragile matroid has branch width at most k
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[2, Conjecture 5.9]. In another application of the link between fragility and
excluded-minor results, Mayhew, Van Zwam, and Whittle [8] have shown
that this conjecture implies that there are only finitely many excluded mi-
nors for GF(5)-representability.

In our study of S-fragile matroids, S will typically be a set of excluded
minors for representability over some partial field. This allows us to assume
certain properties of S. In particular, we can assume that the members
of S are 3-connected and contain at least four elements. We say that the
matroid N is 3-connected up to series and parallel sets if it is connected,
and min{r(X), r(Y )} = 1 or min{r∗(X), r∗(Y )} = 1 for every 2-separation
(X,Y ) of N . The next result follows immediately from [6, Proposition 3.1].

Proposition 1.1. Let S be a collection of 3-connected matroids, each of
which has at least four elements. Assume that N is S-fragile and that N
has an S-minor. Then N is 3-connected up to series and parallel sets.

It is a fairly easy exercise to show that wheels and whirls are representable
over every partial field, except that whirls are not representable over GF(2)
and the regular partial field. Therefore we will henceforth assume that S
contains no wheels or whirls. This implies that any matroid with an S-minor
is neither a wheel nor a whirl.

A fan is a sequence of elements, where consecutive sets of three ele-
ments alternately form triads and triangles. In some cases, the only way
to construct P-representable S-fragile matroids by building from a matroid
N is to increase the length of fans in N . For example, Figure 1(i) shows
the rank-6 binary matroid N12. This matroid is obtained by gluing three
copies of M(K4) to F7 along three lines that contain a common point p, and
then deleting the points of intersection, apart from three that lie in a com-
mon line avoiding p. The matroid in Figure 1(ii) is obtained from N12 by
lengthening the fan (u1, u2, u3, u4) to (u1, a, b, u2, u3, u4), and by lengthen-
ing (v1, v2, v3, v4) to (v1, v2, v3, v4, c). Any matroid obtained by lengthening
fans in this way is a fan-extension of N12. (We delay the formal definition
of fan-extensions until Section 2.) Any 3-connected binary matroid that
is {F7, F

∗
7 }-fragile and contains N12 as a minor is obtained from N12 by

lengthening the three disjoint 4-element fans. The resulting family of ma-
troids is essentially the same as the family F1(m,n, r), as described in [6].
This result, and other applications of our main theorem, will be described
in Section 4. These applications bring the excluded-minor characterisations
for matroids representable over the partial fields H5 and U2 within reach.

Suppose we are given a minor-closed class, M, and a matroid N ∈ M.
We would like to know whether M ∈ M being 3-connected with N as a
minor implies that M is a fan-extension of N . Our main theorem allows
us to use a finite case-analysis to check whether this implication is true.
From now on we make no mention of fragility. Theorem 1.2 instead uses the
conditions implied by Proposition 1.1, and the assumption that S does not
contain any wheels or whirls.
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Figure 1. N12, and one of its fan-extensions.

Theorem 1.2. Let M be a set of matroids closed under isomorphism and
minors. Let N ∈ M be a 3-connected matroid such that |E(N)| ≥ 4 and N
is neither a wheel nor a whirl. Assume that any member ofM with N as a
minor is 3-connected up to series and parallel sets. If there is a 3-connected
matroid in M with N as a minor that is not a fan-extension of N , then
there exists such a matroid, M , satisfying |E(M)| − |E(N)| ≤ 2.

This is restated as Theorem 6.10 later in the paper. The assumptions on
M and N are justified if M is a minor-closed class of S-fragile matroids,
and N is a member of M with an S-minor, where we make the assumption
that the members of S are 3-connected with at least four elements, and S
contains no wheel or whirl.

To see that the bound |E(M)| − |E(N)| ≤ 2 is best possible, we let G be
one of the graphs drawn schematically in Figure 2. If G is the graph on the
left, let N = M(G)\x\y. If G is the graph on the right, let N = M(G)/x\y.
In either case, let M = M(G). Now set M to be the class containing all
minors of M and their isomorphs. We note that M is not a fan-extension
of N relative to the fans (u1, u2, u3) and (v1, v2, v3). However, any member
ofM that has N as a minor and that is at most one element larger than N
is a fan-extension.
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Figure 2. Schematic drawings of two graphs.

In Section 2 we state some definitions, including that of a fan-extension.
Section 3 is dedicated to an alternative formulation of fan-extensions, based



4 CHUN, CHUN, MAYHEW, AND VAN ZWAM

upon the idea of gluing wheels to a ‘core’ matroid. We use this alternative
formulation in Section 4, where we sketch some applications of our theorem
to binary {F7, F

∗
7 }-fragile matroids and {U2,5, U3,5}-fragile matroids that are

representable over the partial field H5. The proof of the main theorem is
contained in Sections 5 and 6.

2. Fan-extensions

Any unexplained terminology or notation that we use can be found in
Oxley [9].

Definition 2.1. Let M be a matroid. A fan of M is an ordered sequence,
(e1, . . . , en), of n ≥ 3 distinct elements such that

{e1, e2, e3}, {e2, e3, e4}, . . . , {en−2, en−1, en}
is an alternating sequence of triangles and triads.

If {e1, e2, e3} is a triangle, then the elements with odd indices in
(e1, . . . , en) are spoke elements, and elements with even indices are rim ele-
ments. These labels are reversed if {e1, e2, e3} is a triad. We sometimes blur
the distinction between ordered and unordered sets where doing so creates
no problems. So for example, we may talk about fans being disjoint. Note
that (e1, . . . , en) is a fan of M if and only if it is a fan of M∗. If 1 < i < n,
then ei is an internal element of the fan, otherwise it is a terminal element.
In a 3-connected matroid with at least five elements, no triangle can be a
triad, so the partitioning into spoke and rim elements is unambiguous. In
particular, in a 3-connected matroid with at least four elements that is not
a whirl, an element in a fan is either a spoke element or a rim element, and
not both. We frequently replace the ordering (e1, . . . , en) with (en, . . . , e1).
We call this process reversing. A contiguous subsequence of (e1, . . . , en) is
a subsequence of the form (es, es+1, . . . , et−1, et), where 1 ≤ s ≤ t ≤ n.
If F = (e1, . . . , en) and F ′ = (e′1, . . . , e

′
m) are two sequences, then we say

that F is consistent with F ′ if (e1, . . . , en) is a subsequence (not necessar-
ily contiguous) of either (e′1, . . . , e

′
m) or (e′m, . . . , e

′
1). If F = (e1, . . . , en) is

an ordered sequence of elements, and X ⊆ {e1, . . . , en}, then F −X is the
subsequence produced from F by omitting all elements in X. As usual, we
abbreviate the singleton set {x} to x. We say that the fan F = (e1, . . . , en)
is maximal if there is no fan (e′1, . . . , e

′
m) such that {e′1, . . . , e′m} properly

contains {e1, . . . , en}.
Now we formally define fan-extensions. To avoid disrupting the exposi-

tion, we will relegate some technical lemmas until later sections. Let M be
a 3-connected matroid with a fan (e1, . . . , en), where n ≥ 4. If e1 is a spoke
element, and M\e1 is 3-connected, then clearly (e2, . . . , en) is a fan of M\e1,
and M is said to be obtained from M\e1 by a fan-lengthening move on this
fan. Similarly, if e1 is a rim element, and M/e1 is 3-connected, then M is
obtained from M/e1 by a fan-lengthening move on (e2, . . . , en). If n ≥ 5,
and ei is a rim element, where 1 ≤ i ≤ n− 1, and M/ei\ei+1 is 3-connected,



FAN-EXTENSIONS IN FRAGILE MATROIDS 5

then Proposition 5.2 shows (e1, . . . , ei−1, ei+2, . . . , en) is a fan of M/ei\ei+1,
and M is said to be obtained from M/ei\ei+1 by a fan-lengthening move
on this fan. Note that M is obtained by a fan-lengthening move on M ′ if
and only if M∗ is obtained by a fan-lengthening move on (M ′)∗ (applied to
the reversed fan, in the case that |E(M)| = |E(M ′)| + 2). Moreover, M is
necessarily 3-connected.

Let N be a 3-connected matroid with at least four elements. Let FN be
a collection of pairwise disjoint fans in N . Note that we do not require fans
in FN to be maximal. A fan in N could potentially contain many fans in
FN as subsequences. If M ′ has N as a minor, and F ′ is a family of fans of
M ′, then we say that F ′ is a covering family of M ′ (relative to N and FN )
if the following conditions are satisfied:

(i) the fans in F ′ are pairwise disjoint,
(ii) |F ′| = |FN |,
(iii) for every FN ∈ FN , there is a fan F ′ ∈ F ′ such that FN is consistent

with F ′,
(iv) every element in E(M ′) − E(N) is contained in one of the fans in

F ′.
Observe that the fan F ′ in condition (iii) may contain elements of E(N) that
are not in FN . If we reverse any fan in a covering family, we obtain another
covering family. Informally, a fan-extension of N is obtained by finding a
covering family, applying a fan-lengthening move to one of the fans in that
family, and then reiterating this process. More formally, we have:

Definition 2.2. We define N to be a fan-extension of N . We recursively
define the set of fan-extensions of N (relative to FN ) to be the smallest set
satisfying the following condition:

• if M ′ is a fan-extension of N , and F ′ is a covering family of M ′

containing the fan F ′, then any matroid obtained from M ′ by a
fan-lengthening move on F ′ is a fan-extension of N (relative to FN ).

If M is obtained from M ′ by lengthening F ′ into the fan F , then (F ′ −
{F ′}) ∪ {F} is a covering family of M . Therefore the next result follows
easily from the definition.

Proposition 2.3. Let N be a 3-connected matroid with at least four ele-
ments and let FN be a collection of pairwise disjoint fans in N . If M is a
fan-extension of N , then M is 3-connected, has N as a minor, and has a
covering family.

Note that M is a fan-extension of N relative to FN if and only if M∗ is
a fan-extension of N∗ relative to FN . The converse of Proposition 2.3 need
not hold. In Lemma 6.11, we essentially construct a 3-connected matroid
that is not a fan-extension, although it does have N as a minor and a
covering family. However, we will have occasion to use the partial converse
in Corollary 2.5. If F is a covering family of M , then we say that F admits
a fan-shortening move if M is obtained from M ′ by using a fan-lengthening
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move on F ′ ∈ F ′ to produce the fan F , where F ∈ F and M ′ has N as a
minor.

Proposition 2.4. Assume N is neither a wheel nor a whirl, and that no fan
in N contains two distinct fans in FN (considered as unordered sets). LetM
be a 3-connected matroid with N as a minor, and assume that every minor
of M that has N as a minor is 3-connected up to series and parallel sets. Let
F be a covering family of M . If M 6= N , then F admits a fan-shortening
move.

Proof. Let (e1, . . . , en) be an arbitrary fan in F , and assume that the inter-
nal element ei belongs to E(M) − E(N). By duality, we can assume that
ei is a rim element. If N is a minor of M\ei, then n ≤ 4, for otherwise
M\ei contains a triangle that contains a series pair, and this contradicts the
hypotheses of the proposition (see Proposition 6.2). But if n ≤ 4, the three
elements in {e1, e2, e3, e4}− ei all belong to a fan in FN , and as this set con-
tains a series pair in M\ei, it follows that N is not cosimple, a contradiction.
Therefore N is a minor of M/ei. As {ei−1, ei+1} is a parallel pair in M/ei,
we can reverse (e1, . . . , en) as necessary, and assume that N is a minor of
M/ei\ei+1. Thus n ≥ 5, as (e1, . . . , en) must contain three elements from
E(N). Proposition 6.4 implies thatM/ei\ei+1 is 3-connected, and we can set
M ′ to be M/ei\ei+1. Now Proposition 5.2 implies (e1, . . . , ei−1, ei+2, . . . , en)
is a fan of M ′. As M is obtained from M ′ by performing a fan-lengthening
move on this fan, we are done. Therefore we will now assume that the
internal elements of fans in F all belong to E(N).

As M 6= N , we can reverse as necessary, and let (e1, . . . , en) be a fan in
F where e1 belongs to E(M)−E(N). By duality, we can assume that e1 is
a spoke element. If M\e1 is 3-connected, then we set M ′ to be M\e1 and
we are done. Therefore we assume that M\e1 is not 3-connected, and thus
contains a series pair. Now e1 is contained in a triad, T ∗, of M . Orthog-
onality with the triangle {e1, e2, e3} means that T ∗ contains e2 or e3. Let
x be the element in T ∗ − {e1, e2, e3}. Because (e1, . . . , en) contains at least
three elements of E(N), n ≥ 4, so e2 and e3 are internal elements, and hence
belong to E(N). As either {x, e2} or {x, e3} is a series pair in M\e1, we see
N is a minor of M\e1/x. Because F is a covering family, x is contained in
a fan in F . Because x is not in E(N), it is not an internal element, so x is
a terminal element of a fan in F . Orthogonality with T ∗ shows that it is a
rim element. It cannot be the case that x is in (e1, . . . , en), for then x = en,
so this fan would contain a triad that does not consist of three consecutive
elements. The dual of Proposition 5.6 shows that this is a contradiction.
Assume that x = fm, where (f1, . . . , fm) is a fan in F . If M/fm is 3-con-
nected we are done, so we assume fm is in a triangle, T . This triangle must
contain either fm−2 or fm−1, and an element from T ∗. Orthogonality with
the triad {e2, e3, e4} shows that T cannot contain e2 or e3, so it contains e1.
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If T = {fm−1, fm, e1} and T ∗ = {fm, e1, e2}, then (f1, . . . , fm, e1, . . . , en)
is a fan of M that contains two fans in FN . Let (x1, . . . , xp) be the subse-
quence obtained from (f1, . . . , fm, e1, . . . , en) by omitting the elements not
in E(N). (Any such elements have to be in {f1, fm, e1, en}.) It follows from
[9, Corollary 8.2.5] that any three consecutive elements in (x1, . . . , xp) are
3-separating in N , and therefore form either a triangle or a triad in N . It
is not too difficult to see, using orthogonality, that either (x1, . . . , xp) is
a fan in N , or min{rN ({x1, . . . , xp}), r∗N ({x1, . . . , xp})} ≤ 2. In the for-
mer case, N has a fan that contains two distinct fans from FN , so we
have a contradiction to the hypotheses. Therefore {x1, . . . , xp} is a line
in either N or N∗. However, {e2, e3, e4} is a triad of M , and of N also
(since {e2, . . . , en−1} ⊆ E(N) and {e2, . . . , en} contains at least three el-
ements of E(N)). Similarly, {fm−3, fm−2, fm−1} is a triangle of N , so
{fm−3, fm−2, fm−1, e2, e3, e4} cannot be contained in a line of N or N∗.

This disposes of the case that T = {fm−1, fm, e1} and T ∗ = {fm, e1, e2}.
Next we assume that T 6= {fm−1, fm, e1}. A symmetrical argument will then
deal with the case that T ∗ 6= {fm, e1, e2}. Because T is not {fm−1, fm, e1},
it is {fm−2, fm, e1} instead. This means that m = 4, for otherwise we violate
orthogonality between T and {fm−4, fm−3, fm−2}. If T ∗ = {fm, e1, e2}, then
(f1, f3, f2, f4, e1, e2, . . . , en) is a fan of M that contains two fans of FN . If
T ∗ is not {fm, e1, e2}, then it is {fm, e1, e3}, which implies that n = 4. In
this case (f1, f3, f2, f4, e1, e3, e2, e4) is a fan of M that contains two fans
in FN . In either case, we can obtain a contradiction to the hypotheses of
the proposition, exactly as in the previous paragraph. This completes the
proof. �

Corollary 2.5. Let M and N be as described in Proposition 2.4. If M
contains a covering family, then it is a fan-extension of N relative to FN .

Proof. The proof is by induction on |E(M)| − |E(N)|. If M = N , then M
is a fan-extension of N , as desired. Therefore we assume M 6= N . Let F
be a covering family of M . By Proposition 2.4, M is obtained from some
matroid M ′ by a performing a fan-lengthening move on F ′ to obtain F ∈ F .
As (F −{F})∪{F ′} is a covering family of M ′, it follows by induction that
M ′ is a fan-extension of N . Now the result is immediate. �

3. A wheel-gluing lemma

In this section we develop an alternative description of fan-extensions that
will be of use in Section 4, where we describe some applications of our main
theorem. Intuitively, a family of fans in N can be seen as the result of gluing
wheels along a family of triangles in a matroid that is smaller than N . A
fan-extension of N can be obtained in the same way, except that we glue on
larger wheels. The object of this section is to make these ideas formal. Our
focus here will be on the case that N is representable, although it would be
possible to extend these results to arbitrary matroids.
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Proposition 3.1. Let M1 and M2 be matroids on the same ground set.
Assume (e1, e2, e3, e4) is a fan with e1 as a spoke element in both M1 and
M2. If M1\e1 = M2\e1, then M1 = M2.

Proof. Assume that M1 6= M2. Without loss of generality, we can assume
that X is a circuit in M1, but an independent set in M2. Then e1 must
be contained in X. As M1\e1/e2 = M2\e1/e2, and Mi/e2 is obtained from
Mi\e1/e2 by adding the element e1 parallel to e3 (for i = 1, 2), it follows that
M1/e2 = M2/e2. Therefore e2 is not in X. Now M1/e2\e3 = M2/e2\e3, and
Mi\e3 is obtained from Mi/e2\e3 by adding e2 in series to e4. Therefore
M1\e3 = M2\e3, so e3 ∈ X. By strong circuit-exchange between X and
{e1, e2, e3}, there is a circuit, C, in M1 contained in (X − e1) ∪ e2 that
contains e2. As C does not contain e1, it is also a circuit of M2. Now C
and {e1, e2, e3} are distinct circuits of M2, both of which are contained in
X ∪ e2 and both of which contain e2. As X is independent in M2, this is a
contradiction. �

Let M1 and M2 be matroids with E(M1) ∩ E(M2) = T . The generalised
parallel connection of M1 and M2 is defined if M1|T = M2|T , and T is a
modular flat of M2. In this case, we use the notation M1 �T M2 to denote
the generalized parallel connection. Note that a triangle in a simple binary
matroid is a modular flat. The flats of M1 �T M2 are precisely the subsets
F ⊆ E(M1) ∪ E(M2) such that F ∩ E(Mi) is a flat of Mi, for i = 1, 2
(see [9, Proposition 11.4.13]). Assume M1, M2, and M3 are matroids with
E(M2) ∩ E(M3) ⊆ E(M1). Let Ti = E(M1) ∩ E(Mi) for i = 2, 3. If
M1 �T2 M2 and M1 �T3 M3 are both defined, then it follows easily from the
definition that (M1 �T2 M2) �T3 M3 and (M1 �T3 M3) �T2 M2 are defined
and equal.

Let N0 be a matroid and let T = {Ti}i∈I be a multiset of triangles of
N0, indexed by the set I = {1, . . . , t}. Note that triangles in T need not be
disjoint, nor indeed distinct. These are the triangles to which we will glue
wheels. For each i ∈ I, let Ti = {ai, bi, ci}. The end points of the fan that
we generate by the gluing operation will be ai and ci. Let r be a function
from I to {2, 3, 4, 5, . . .}. This function determines the rank of the wheels
that we glue to the triangles in T . Finally, let X be a subset of ∪k∈ITk such
that, for all i ∈ I, bi /∈ X implies bi = aj or bi = cj for some j ∈ I. After
gluing the wheels to the triangles in T , we delete the set X. We call the
tuple (N0, T , r,X) a blueprint.

Assume that (N0, T , r,X) is a blueprint. For each i ∈ I, we let the
matroid Wi be a copy of a wheel with rank r(i). The ground set of Wi

will be {xi1, . . . , xir(i), y
i
1, . . . , y

i
r(i)}, where we make the identifications xi1 =

ai, y
i
r(i) = bi, and xir(i) = ci. The ground set of Wi is labeled in such a

way that (xi1, y
i
1, x

i
2, y

i
2, . . . , x

i
r(i), y

i
r(i)) is a fan with xi1 as a spoke element.

Moreover {xi1, yir(i), x
i
r(i)} is a triangle. Thus E(Wi) ∩ E(Wj) ⊆ ∪k∈ITk

when i 6= j. For each i ∈ I = {1, . . . , t}, we recursively define Ni to be
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Ni−1 �Ti Wi. By an earlier observation, the ordering of the indices in I
makes no difference to the definition of Nt. We define �(N0, T , r,X) to be
Nt\X, and we say that this matroid is obtained by gluing wheels to N0.
From the definition of generalized parallel connection, it is straightforward
to show that (xi1, y

i
1, x

i
2, . . . , y

i
r(i)−1, x

i
r(i))−X is a fan in �(N0, T , r,X), for

every i ∈ I. We call such a fan a canonical fan of �(N0, T , r,X).
Henceforth we take N to be a 3-connected representable matroid that is

neither a wheel nor a whirl. Let E be the ground of N . We assume that
|E| ≥ 4, so that N is simple. If X and Y are disjoint subsets of E(N),
then u(X,Y ) = r(X) + r(Y ) − r(X ∪ Y ). Given an embedding of N in a
projective geometry, the parameter u(X,Y ) tells us the rank of the maximal
subspace spanned by both X and Y . The next two results are standard, and
not difficult to prove. We omit their proofs.

Proposition 3.2. Let F = (e1, . . . , en) be a fan of N . If e1 is a rim element,
then u({e1, e2}, E − F ) = 1.

Proposition 3.3. Let F = (e1, . . . , en) be a fan of N , and let R be the set
of rim elements in F . Then u(R,E − F ) = 1.

Recall that we have required N to be representable, so henceforth we
identify elements of E with points in a projective geometry, P . Let F =
{Fi}i∈I be a family of pairwise disjoint fans in N indexed by the set I =
{1, . . . , t}. As N is neither a wheel nor a whirl, Proposition 5.4 implies
that the complement of any fan Fi contains at least two elements. We are
going to apply Propositions 3.2 and 3.3 to each fan in F and its reversal.
This identifies three points in P that are distinguished by the fan. We
add three elements in parallel to these points. To be more precise, we let
Fi = (e1, . . . , en) be a fan in F . If e1 is a spoke element, then we add ai
in parallel to e1. If e1 is a rim element, then we add ai in parallel to the
single point in P that is in the closure of E − Fi and {e1, e2}. Note that if
e1 is a spoke element, and e1 is not in the closure of E − Fi, then it is in
the closure and the coclosure of {e2, . . . , en}. This implies λ(Fi) ≤ 1, which
contradicts the 3-connectivity of N . Therefore ai is in the closure of E −Fi

in any case. Similarly, we add ci in parallel to en if en is a spoke element,
and otherwise we add ci in parallel to the point of P that lies in the closure
of both E −Fi and {en−1, en}. Let R be the set of rim elements in Fi. Add
bi in parallel to the point of P that is in the closure of both R and E − Fi.
Proposition 5.1 implies that λ(Fi) = 2, so the maximal subspace of P that
lies in the closure of Fi and E − Fi has rank two. The points ai, bi, and ci
are all parallel to points in this subspace.

Define N+ to be the matroid consisting of the points in E(N) and
∪i∈I{ai, bi, ci}. (We have defined N+ relative to a representation of N .
In fact, any two representations of N will lead to the same matroid N+, but
we will not make use of this fact.) We define Core(N) to be the matroid
obtained from N+ by deleting ∪i∈IFi and any other point of E(N) that is
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parallel to a point ai or ci for some i ∈ I. Figure 3 shows schematic repre-
sentations of the matroids N , N+, and Core(N). Proposition 3.4 shows that
T = {{ai, bi, ci}}i∈I is a family of pairwise disjoint triangles in Core(N). We
say that Core(N) and T are determined by F .

F1
F2

F3 F3

a1
b1

c1 a2
b2 c2

a3
b3

c3

F1
F2

a1
b1

c1 a2
b2 c2

a3
b3

c3

N N+ Core(N)

Figure 3. Geometric illustrations of N , N+, and Core(N).

If Fi = (e1, . . . , en) is a fan in F , then we define F+
i to be the sequence

(x1, . . . , xm), formed from (e1, . . . , en) by prepending ai if e1 is a rim ele-
ment, and appending ci if en is a rim element. Note that if e1 is a rim
element, then orthogonality and our choice of ai mean that ai, e1, and e2
are pairwise distinct. Thus {x1, x2, x3} is a triangle of N+ in any case. Sim-
ilarly, {xm−2, xm−1, xm} is a triangle of N+. Any triangle of N contained in
Fi is also a triangle in N+. If T ∗ is a triad of N contained in Fi, then every
point in ∪i∈I{ai, bi, ci} is in the closure of the complement of T ∗. Therefore
T ∗ is a triad in N+. We have just shown that F+

i is a fan in N+, and that
both x1 and xm are spoke elements. This implies that m is odd.

Proposition 3.4. For each i ∈ I, {ai, bi, ci} is a triangle in N+.

Proof. We have already noted that rN+({ai, bi, ci}) ≤ 2. Let Fi =
(e1, . . . , en), and let F+

i be (x1, . . . , xm). Assume that ai and ci are
parallel. This means that x1 and xm are parallel. As {x1, x2, x3}
and {xm−2, xm−1, xm} are triangles, there is a circuit contained in
{x2, x3, xm−2, xm−1} that contains xm−1. From this it follows that if
xm−1 = ek (where k is either n − 1 or n), then ek is in the closure of
{e1, . . . , ek−1}. However, we also know that {ek−2, ek−1, ek} is a triad, so
ek is in the coclosure of {e1, . . . , ek−1} in N . From this we can deduce that
λN ({e1, . . . , ek}) ≤ 1, and this leads to a contradiction to the fact that N is
3-connected. Therefore ai and ci are not parallel. Next we will show that
ai is not parallel to bi. A symmetrical argument can be used to prove that
ci is not parallel to bi, and that therefore {ai, bi, ci} is a triangle, as desired.
Assume that ai and bi are parallel. The set of rim elements in (e1, . . . , en)
is equal to {x2, x4, . . . , xm−1}. Thus ai is in the closure of this set and of
{x2, x3}. Hence {x2, x3, x4, x6, . . . , xm−1} contains a circuit, and this circuit
must contain at least three elements. If k is the largest integer such that ek is
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in this circuit, then ek is in the closure and the coclosure of {e1, . . . , ek−1} in
N . From this we can derive a contradiction to the 3-connectivity of N . �

If F1 = (e1, . . . , em) and F2 = (e′1, . . . , e
′
n) are fans, we will say that

F1 is enclosed in F2 if either (e1, . . . , em) or (em, . . . , e1) is equal to
(e′i, . . . , e

′
i+m−1), for some i ∈ {1, . . . , n − m + 1}. Let F and F ′ be col-

lections of fans. We will say that F is enclosed in F ′ if there is an bijective
function from F to F ′ such that every fan in F is enclosed in its image.

The next result shows that a fan-extension of N can be constructed by
gluing wheels to Core(N), where Core(N) is defined relative to some pairwise
disjoint family of fans in N . Note that Corollary 2.5 and the hypotheses of
the lemma imply that M is a fan-extension of N .

Lemma 3.5. Let N be a 3-connected representable matroid, where |E(N)| ≥
4 and N is neither a wheel nor a whirl. Let FN be a pairwise disjoint family
of fans in N . Assume there is no fan, F , in N such that two distinct
fans in FN (considered as unordered sets) are contained in F . Assume that
M is a 3-connected matroid with N as a minor, and every minor of M
with N as a minor is 3-connected up to series and parallel sets. Let F be
a covering family in M relative to FN . There exists a pairwise disjoint
family of fans, F0, in N , such that F0 encloses FN , and moreover, up to
relabeling, M = �(Core(N), T , r,X), for some blueprint (Core(N), T , r,X)
where Core(N) and T are determined by F0. Furthermore, F is enclosed in
the family of canonical fans of �(Core(N), T , r,X).

Proof. Let E = E(N). The proof will be by induction on |E(M)| − |E|.
First we assume |E(M)| = |E|. Then M = N . Now F is a covering family
of N , relative to FN . This does not mean that F = FN . The fans in FN

may be enclosed in larger fans, and these larger fans may be members of
F . Nonetheless, F is a pairwise disjoint family of fans in N . Because each
fan in FN is consistent with a fan in F , it follows without difficulty from
Lemma 5.8 that each fan in FN must be enclosed by a fan in F . Thus we can
define F0 to be F . Let F = {Fi}i∈I , where I = {1, . . . , t}, and let Core(N)
and T = {{ai, bi, ci}}i∈I be the matroid and family of triangles determined
by F . To prove the base case of the induction, we now need only check that
N = �(Core(N), T , r,X) (up to relabeling).

Recall that N+ is the matroid consisting of the points in E and
∪i∈I{ai, bi, ci}. Let F+

t be (x1, . . . , xm). This is a fan in N+, and x1 and xm
are spoke elements. The rim elements in Ft are {x2, x4, . . . , xm−1}. Thus bt is
in the closure of this set. Any circuit contained in {x2, x4, . . . , xm−1, bt}must
contain {x2, x4, . . . , xm−1}, for otherwise we can find a violation of orthogo-
nality with one of the triads in Ft. Thus {x2, x4, . . . , xm−1, bt} is a circuit in
N+, so {xm−1, bt} is a circuit in N+/{x2, x4, . . . , xm−3}\{x3, x5, . . . , xm−2}.
We are going to apply a result by Oxley and Wu [10, Theorem 1.8]. This
theorem applies only to 3-connected matroids, but the simplification of N+

is 3-connected, and it is easy to see that the result still holds. The the-
orem by Oxley and Wu tells us that, up to relabeling, N+ is equal to
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(N+\Ft) �{at,bt,ct} Wt, where Wt has rank (m + 1)/2. Moreover N+\Ft

is 3-connected up to parallel pairs. Now F+
t−1 is a fan in N+. Note that Ft

is disjoint from F+
t−1 by construction of Core(N). As si(N+\Ft) is 3-con-

nected, it is easy to see that F+
t−1 is a fan in N+\Ft also. By again using

[10, Theorem 1.8], we see that N+\Ft can be obtained by using generalized
parallel connection to glue a wheel of the correct rank to N+\Ft\Ft−1 along
the line {at−1, bt−1, ct−1}. We proceed inductively in this way, and conclude
that N+ is obtained from

N+\Ft\Ft−1\ · · · \F1

by attaching wheels via generalized parallel connections. Let S be the set
of elements in E− (∪i∈IFi) that are parallel to some element ai or ci. Then
Core(N) = N+\(∪i∈IFi)\S. This means that N+\S can be obtained from
Core(N) by attaching wheels to the lines {{ai, bi, ci}}i∈I . This in turn means
that N can be obtained from Core(N) in the following way: attach wheels
to the lines {{ai, bi, ci}}i∈I , and then, for each element s ∈ S, distinguish
an element in {{ai, bi, ci}}i∈I that is parallel to it, and relabel that element
as s, and then finally delete all other elements in {{ai, bi, ci}}i∈I . In other
words, up to relabeling, we can obtain N from Core(N) by gluing on wheels.
This is exactly what we aimed to prove, and it establishes the base case of
our induction.

Now we can assume that M 6= N . Proposition 2.4 implies that there is
a fan F ∈ F such that M and F are obtained from a 3-connected matroid
M ′ by performing a fan-lengthening move on the fan F ′. It is clear that
F ′ = (F − {F}) ∪ {F ′} is a covering family in M ′, and we can apply the
inductive hypothesis. There is a family, F0, of pairwise disjoint fans in N
such that F0 encloses FN . We relabel M ′ in such a way that it is obtained by
gluing wheels to Core(N) (relative to F0), and F ′ is enclosed in the family of
canonical fans. Let X be the set of elements that we delete after attaching
wheels to Core(N). This means that F ′ is enclosed in the canonical fan
(xi1, y

i
1, x

i
2, . . . , y

i
r(i)−1, x

i
r(i))−X, for some i. Let F be (e1, . . . , em).

Assume that M ′ is obtained from M by deleting a terminal spoke element
of F . By reversing, we may assume that M ′ = M\e1. Now F ′ = (e2, . . . , em)
is enclosed in (xi1, y

i
1, x

i
2, . . . , y

i
r(i)−1, x

i
r(i)) − X. As {e2, e3, e4} is a triad in

M ′, by reversing (xi1, y
i
1, x

i
2, . . . , y

i
r(i)−1, x

i
r(i)) as necessary, we can assume

e2 = yik and e3 = xik+1. Assume for a contradiction that either (i) k > 1,

or (ii) k = 1 and xi1 = e1, and hence xi1 ∈ E(N), or (iii) k = 1 and
xi1 = ai, but ai /∈ X. If any of these situations hold, then {xik, yik, xik+1}
and {e1, e2, e3} are both triangles in M , and they intersect in the elements
e2 and e3. This means that {xik, e1, e2} is a triangle in M that intersects
the triad {e2, e3, e4} in a single element. This contradiction means that
k = 1, xi1 = ai, and ai ∈ X. Now let M ′′ be the matroid obtained by
gluing the same wheels to Core(N), except that instead of deleting X, we
delete X − xi1. Obviously M ′′\xi1 = M ′ = M\e1. We relabel M so that
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it inherits the relabeling of M ′ and e1 is relabeled as xi1. This means that
(xi1, y

i
1, x

i
2, y

i
2) is a fan in both M and M ′′. Now Proposition 3.1 implies that

M ′′ = M . It is clear that after the relabeling F is enclosed in the canonical
fan (xi1, y

i
1, x

i
2, . . . , y

i
r(i)−1, x

i
r(i))− (X − xi1), so the result holds.

Next we will assume that M ′ = M/e1, where e1 is a rim element in F .
We can assume that e2 = xik and e3 = yik. If k > 1, then {yik−1, xik, yik}
is a triad in M ′, and hence in M . As {e1, e2, e3} is also a triad of M , it
follows that {yik−1, e1, e2} is a triad in M . As {e2, e3, e4} is a triangle, this

is a contradiction, so k = 1. Therefore ai is parallel to xi1 = e2. This means
that we can assume that e2 is relabeled as ai when M ′ is relabeled in such a
way that it becomes equal to �(Core(N), T , r,X). Thus ai /∈ X. Let W ′′i be
a copy of a wheel with rank r(i) + 1. Let the ground set of W ′′i be E(Wi)∪
{x, y}, labeled in such a way that (x, y, xi1, y

i
1, x

i
2, . . . , y

i
r(i)−1, x

i
r(i), y

i
r(i)) is

a fan and {x, yir(i), x
i
r(i)} is a triangle. Therefore x is identified with ai.

Now let M ′′ be the matroid obtained from Core(N) by gluing on the same
wheels as before, except that we use W ′′i instead of Wi, and we then delete
X ∪ ai. Now W ′′i /y\x = Wi. From this it follows easily that M ′′/y = M ′.
We relabel M in such a way that it inherits the labeling we applied to M ′,
and e1 is labeled as y. Now (y, xi1, y

i
1, x

i
2) is a fan in both M and M ′′, and

M/y = M ′ = M ′′/y. Therefore the dual of Proposition 3.1 implies that
M ′′ = M , as desired.

For the final case, we assume |E(M ′)| = |E(M)|−2. Since (F−{F})∪{F ′}
is a covering family in M ′, it follows that m ≥ 5. By reversing F as
necessary, we can assume that M ′ = M/ej\ej+1, where ej is a rim ele-
ment of F . We will assume that j > 1. An almost identical argument
will hold in the case that j = 1. Now (e1, . . . , ej−1, ej+2, . . . , em) is a
fan of M ′ that is enclosed in (xi1, y

i
1, x

i
2, . . . , y

i
r(i)−1, x

i
r(i)). By reversing

(xi1, y
i
1, x

i
2, . . . , y

i
r(i)−1, x

i
r(i)) as necessary, we can assume that ej−1 = xik

and ej+2 = yik (if j + 2 ≤ m). Let W ′′i be a copy of a wheel with rank
r(i) + 1, and let the ground set of W ′′i be E(Wi) ∪ {x, y}. We label W ′′i
in such a way that (xi1, y

i
1, . . . , x

i
k, y, x, y

i
k, . . . , x

i
r(i)) is a fan. Now let M ′′

be the matroid obtained from Core(N) by gluing on the same wheels used
to obtain M ′, except that we use W ′′i instead of Wi. After attaching these
wheels to Core(N) we delete exactly the same set X. Now W ′′i /y\x = Wi,
and it follows that M ′′/y\x = M ′. We relabel M so that it inherits the
relabeling of M ′, while ei is labeled as y and ei+1 is labeled as x. After this
relabeling, M/y\x = M ′ = M ′′/y\x. We claim that this implies M = M ′′.
Note that M/y and M ′′/y are both obtained by adding x parallel to xik
in M/y\x = M ′′/y\x. Thus M/y = M ′′/y. If either (xik−1, y

i
k−1, x

i
k, y) or

(y, x, yik, x
i
k+1) is a fan in both M and M ′′, then the dual of Proposition 3.1

implies that M = M ′′ as desired. If neither of these sequences is a fan in
M and M ′′, then since m ≥ 5, it is not difficult to see that m = 5, and
ej = e3. Thus (xi1, x

i
2, y, x, x

i
3) is a fan in both M and M ′′. In this case
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M\x and M ′′\x are both obtained from M/y\x = M ′′/y\x by adding y in
series to xi3. Thus M\x = M ′′\x, and we can use Proposition 3.1 to show
that M = M ′′, as claimed. Obviously F is contained in the canonical fan
associated with gluing W ′′i to Core(N), so the proof is complete. �

4. Applications

Now we consider some applications of Theorem 1.2. We omit the proofs,
since Theorem 1.2 and Lemma 3.5 reduce them to computational case check-
ing. Details can be found in [1]. Our first application concerns the binary
matroids that are {F7, F

∗
7 }-fragile. We describe these via grafts (see [9,

p. 386]). Recall that N12 is illustrated in Figure 1(i). Figure 4 gives graft
representations of the matroids N+

11 and N12. In both case, the distinguished
vertices in the graft are those vertices with squares around them. In N12,
let w4 be the matroid element that corresponds to the set of distinguished
vertices.

u2

u1

u3
u4

u4 v4

u3 v3

u2 v2u1 v1

w1

w2 w3

N+
11 N12

Figure 4. Graft representations of N+
11 and N12.

Now we have the tools to characterize binary {F7, F
∗
7 }-fragile matroids

that have N+
11 or N12 as a minor. The following result is known to Truem-

per [13] and Kingan and Lemos [6]. It is a straightforward application of
Theorem 1.2 and Lemma 3.5.

Theorem 4.1. Let M be a 3-connected binary {F7, F
∗
7 }-fragile ma-

troid. If M has N+
11 as a minor, then M is a fan-extension of

N+
11 relative to {(u1, u2, u3, u4)}, and M is a restriction of a mem-

ber of the family illustrated in the lefthand diagram in Figure 5. If
M has N12 as a minor, then M is a fan-extension of N12 relative to
{(u1, u2, u3, u4), (v1, v2, v3, v4), (w1, w2, w3, w4)}, and M is a restriction of
a member of the family illustrated in the righthand diagram in Figure 5.

Next we consider fragile classes of matroid representable over the partial
fields U2 and H5. Every U2-representable matroid is also H5-representable,
so it suffices to consider only the latter partial field. We currently have
a solid understanding of the H5-representable {U2,5, U3,5}-fragile matroids,
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Figure 5. The N+
11 and N12 families.

and this brings excluded-minor characterizations for these two partial fields
within grasp. Proofs and definitions can all be found in [1].

Proposition 4.2. Let M be a 3-connected H5-representable
{U2,5, U3,5}-fragile matroid. Assume that M has N as minor, where
N is in {M9,0,M9,2,M9,15,M9,18}. Then M is a fan-extension of N .

Theorem 4.3. Let M be a 3-connected H5-representable matroid. Up to
relabeling, one of the following statements holds:

(i) M has one of X8, Y8, or Y
∗
8 as a minor,

(ii) M is in {U2,6, U3,6, U4,6, P6,M9,9,M
∗
9,9},

(iii) M or M∗ can be obtained from U2,5 (with groundset {a, b, c, d, e}) by
gluing wheels to {(a, c, b), (a, d, b), (a, e, b)},

(iv) M or M∗ can be obtained from U2,5 (with groundset {a, b, c, d, e}) by
gluing wheels to {(a, b, c), (c, d, e)},

(v) M or M∗ can be obtained from M7,1 by gluing on a wheel.

5. Results on fans

Now we start moving towards a proof of our main theorem. This section
collects some results that we will need. The next proposition can be proved
with an easy inductive argument.

Proposition 5.1. Let (e1, . . . , en) be a fan of the matroid M . Then
{e1, . . . , en} is 3-separating in M .

Proposition 5.2. LetM be a 3-connected matroid, and let F1 = (e1, . . . , en)
be a fan of M such that n ≥ 5. Let ei be a rim element, for some i ∈
{1, . . . , n− 1}. Then F2 = (e1, . . . , ei−1, ei+2, . . . , en) is a fan of M/ei\ei+1,
and for all j, ej is a spoke element in F1 if and only if it is a spoke element
in F2

Proof. Any triad of M contained in {e1, . . . , ei−2} remains a triad in
M/ei\ei+1, by orthogonality with the triangle {ei−1, ei, ei+1}. Similarly, any
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triad of M in {ei+4, . . . , en} is a triad in M/ei\ei+1 by orthogonality with
{ei+1, ei+2, ei+3}. In the same way, the triad {ei, ei+1, ei+2} implies that any
triangle in {e1, . . . , ei−1} or {ei+3, . . . , en} is also a triangle in M/ei\ei+1.

Now the only sets we need check are {ei−2, ei−1, ei+2} and
{ei−1, ei+2, ei+3}. Strong cocircuit-exchange between {ei−2, ei−1, ei} and
{ei, ei+1, ei+2} gives a cocircuit contained in {ei−2, ei−1, ei+1, ei+2} that
contains ei+1. This cocircuit contains ei−1, by orthogonality with
{ei−1, ei, ei+1}. If ei−2 is not in the cocircuit, then {ei−1, ei+1, ei+2}
and {ei, ei+1, ei+2} are triads, so {ei−1, ei, ei+1} is a triad and a trian-
gle. This contradicts the fact that M is 3-connected with at least 5 ele-
ments. Hence ei−2 is in the cocircuit, and a similar argument shows that
{ei−2, ei−1, ei+1, ei+2} is a cocircuit of M . Thus {ei−2, ei−1, ei+2} is a triad
in M/ei\ei+1, as desired. We can show that {ei−1, ei+2, ei+3} is a triangle
of M/ei\ei+1 by a dual argument. �

Proposition 5.3. Let (e1, . . . , en) be a fan in the 3-connected matroid M ,
and assume that n ≥ 4. Let e ∈ E(M)− {e1, . . . , en} be such that there is a
triangle, T , satisfying {e} ⊆ T ⊆ {e, e1, . . . , en}. Then either:

(i) T = {e, e1, e2}, e1 is a rim element, and (e, e1, . . . , en) is a fan,
(ii) T = {e, en−1, en}, en is a rim element, and (e1, . . . , en, e) is a fan,
(iii) T = {e, e1, en}, and e1 and en are spoke elements,
(iv) T = {e, e2, e4}, e2 is a rim element, and n ≤ 5, or
(v) T = {e, en−1, en−3}, en−1 is a rim element, and n ≤ 5.

Proof. Let T = {e, ex, ey}, where 1 ≤ x < y ≤ n. If x = 1 and y = n,
then statement (iii) must hold, since orthogonality with T requires that
{e1, e2, e3} and {en−2, en−1, en} are both triangles. We will assume that
x > 1, and show that statement (ii) or statement (iv) holds. If x = 1, then
y < n, so we can replace (e1, . . . , en) with (en, . . . , e1), and swap labels on
x and y, and then apply exactly the same arguments to deduce that (i) or
(v) holds.

Now we assume that x > 1. Assume also that y = x + 1. If y < n,
then either {ex−1, ex, ex+1} is a triangle and {ex, ex+1, ex+2} is a triad, or
{ex, ex+1, ex+2} is a triangle and {ex−1, ex, ex+1} is a triad. As M is 3-con-
nected, in the first case {e, ex−1, ex} is a triangle, and in the second case
{e, ex+1, ex+2} is a triangle. In either case we have a contradiction to or-
thogonality. Therefore y = n, and ey is a rim element, by orthogonality
between T = {e, en−1, en} and {en−3, en−2, en−1}. Now it is clear that state-
ment (ii) holds. Hence we will assume that y > x + 1. Thus ex is a rim
element, by orthogonality between T and {ex−1, ex, ex+1}. If 2 < x, then
we have a contradiction to orthogonality between T and {ex−2, ex−1, ex}.
Therefore x = 2. If y > x + 2, then T intersects the triad {ex, ex+1, ex+2}
in a single element. Therefore y = x + 2 = 4. Finally, n ≤ 5, for otherwise
T intersects the triad {ey, ey+1, ey+2} in a single element. We have shown
that statement (iv) holds, so the proof is complete. �
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Proposition 5.4. Assume that (e1, . . . , en) is a fan of the 3-connected ma-
troid M , and that 4 ≤ |E(M)| ≤ n+ 1. Then M is a wheel or a whirl.

Proof. If |E(M)| = 4, then M is isomorphic to the whirl U2,4, and we
are done. Therefore we assume |E(M)| > 4. Since wheels and whirls are
self-dual, we can switch to M∗ as required, and assume that e1 is a spoke
element of (e1, . . . , en). If |E(M)| = n, then result follows immediately from
[10, Lemma 4.8]. Therefore we assume that |E(M)| = n + 1. Let e be the
single element in E(M)− {e1, . . . , en}.

Suppose that en is a rim element, so that n is even. Then
{e1, e3, . . . , en−3, en−1} spans E(M)−{e, en}. Since M is 3-connected, it also
spans E(M). Let C be a circuit contained in {e1, e3, . . . , en−3, en−1} ∪ {e}
that contains e. If i is odd and 3 ≤ i ≤ n−1, then ei /∈ C, or else C intersects
the triad {ei−1, ei, ei+1} in a single element. Therefore C ⊆ {e, e1}, which is
impossible as M is 3-connected. This implies that en is a spoke element and
n is odd. Suppose that {e3, e5, . . . , en−2, en} spans E(M). Let C be a cir-
cuit in {e3, e5, . . . , en−2, en} ∪ {e1} that contains e1. Then C ⊆ {e1, en}, for
otherwise C intersects a triad in a single element. This is a contradiction, so
{e3, e5, . . . , en−2, en} does not span E(M). Since it spans E(M)−{e, e1, e2},
it follows that {e, e1, e2} is a triad. Thus (e, e1, . . . , en) is a fan, and we can
again apply [10, Lemma 4.8] to deduce that M is a wheel or a whirl. �

Proposition 5.5. Let M be a 3-connected matroid with |E(M)| ≥ 4. Let
(e1, . . . , en) be a fan of M . If there is an element e ∈ E(M)− {e1, . . . , en},
and elements x, y, z ∈ {e1, . . . , en} such that {e, x, y} is a triangle and
{e, y, z} is a triad, then M is a wheel or a whirl.

Proof. Let F = {e1, . . . , en}. Then λ(F ) ≤ 2, and as e is in the closure and
coclosure of F , λ(F ∪e) ≤ 1. Therefore the complement of F ∪e contains at
most one element. If n = 3, then either F and {e, x, y} are both triangles,
or F and {e, y, z} are both triads. In the first case M |(F ∪ e) ∼= U2,4, and
in the second M∗|(F ∪ e) ∼= U2,4. In either case, F ∪ e contains a triangle
that is a triad. Since M is 3-connected, this means |E(M)| = 4, and M is
isomorphic to U2,4, so we are done. Therefore we assume n ≥ 4.

We apply Proposition 5.3. If statement (i) or (ii) holds, then we can
apply Proposition 5.4 to (e1, . . . , en, e) or (e, e1, . . . , en) and conclude that
M is a wheel or a whirl. Next assume that statement (iii) holds. Then
n ≥ 5. By reversing (e1, . . . , en) as necessary, we assume that y = en. Then
orthogonality between the triad {e, y, z} and the triangle {en−2, en−1, en}
requires that z is in {en−2, en−1}. If z = en−1, then (e1, . . . , en, e) is a fan,
and we can again apply Proposition 5.4. Therefore we assume z = en−2.
This means that the triangle {en−4, en−3, en−2} and the triad {e, y, z} meet
in a single element, a contradiction. Therefore statement (iv) or (v) in
Proposition 5.3 holds. By reversing, we can assume that {x, y} = {e2, e4},
and e2 is a rim element.

If n = 4, then we apply Proposition 5.4 to the fan (e1, e3, e2, e4, e). There-
fore we assume n = 5. If z = e1, then y = e2, by orthogonality between
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the triangles {e1, e2, e3} and {e3, e4, e5}, and the triad {e, y, z}. Therefore
(e, e1, e2, e3, e4, e5) is a fan. The same argument disposes of the case that
z = e5. Therefore we assume z = e3. But in this case either {e1, e2, e3} or
{e3, e4, e5} is a triangle that intersects the triad {e, y, z} in a single element.
This contradiction completes the proof. �

Proposition 5.6. Let M be a 3-connected matroid such that |E(M)| ≥ 4,
and M is not a wheel or a whirl. Let (e1, . . . , en) be a fan of M . If T ⊆
{e1, . . . , en} is a triangle, then T = {ei, ei+1, ei+2} for some i ∈ {1, . . . , n−2}
such that ei is a spoke element.

Proof. Let i, j, and k be such that 1 ≤ i < j < k ≤ n, and T = {ei, ej , ek}.
If ei is a rim element of (e1, . . . , en), then {ei, ei+1, ei+2} is a triad. Since
T is a triangle, it follows that ei is in the closure and the coclosure of
{ei+1, . . . , en}. As λ({ei+1, . . . , en}) ≤ 2, it follows that λ({ei, . . . , en}) ≤ 1.
AsM is 3-connected, we deduce that the complement of {ei, . . . , en} contains
at most one element. Thus M is a wheel or a whirl by Proposition 5.4, and
this is a contradiction. Therefore ei is a spoke element. The same argument
shows that ek is a spoke element.

Assume that j > i+1. If ej is a rim element of (e1, . . . , en), then j ≥ i+3,
so T intersects the triad {ej−2, ej−1, ej} in a single element, violating orthog-
onality. Therefore ej is a spoke element. If k > j + 1, then T intersects the
triad {ej−1, ej , ej+1} in a single element. Therefore k = j+ 1, implying that
ek is a rim element. Since this contradicts our earlier conclusion, we see that
j = i+ 1. Now k = i+ 2, by orthogonality between T and {ei+1, ei+2, ei+3},
and the fact that ek is a spoke element. �

Proposition 5.7. Let M be a 3-connected matroid such that |E(M)| ≥ 4
and M is neither a wheel nor a whirl. Let (e1, . . . , en) be a fan of M . If
X ⊆ {e1, . . . , en} is a 3-separating set of M such that |X| ≥ 3, then there
are integers 1 ≤ x < y ≤ n such that X = {ex, ex+1, . . . , ey}.

Proof. Assume that the result fails for X, and that X is as large as pos-
sible with respect to this assumption. If |E(M)| = 4, then M is U2,4,
contradicting the fact that M is not a whirl. If |E(M)| = 5, then M is
U2,5 or U3,5. In the first case M has no triads, and in the second, M has
no triangles. In either case, n = 3, and X = {e1, e2, e3}. Therefore we
may as well assume that |E(M)| ≥ 6. Let i be the least index such that
|X ∩ {e1, . . . , ei}| = 3. Then X ∪ {e1, . . . , ei} is contained in {e1, . . . , en},
so the complement of X ∪ {e1, . . . , ei} contains at least two elements, or
else M is a wheel or a whirl by Proposition 5.4. As M is 3-connected, it
follows that X ∪ {e1, . . . , ei} is not 2-separating. As λ({e1, . . . , ei}) ≤ 2,
λ(X) ≤ 2, and λ(X ∪{e1, . . . , ei}) ≥ 2, it follows that X ′ = X ∩{e1, . . . , ei}
is a 3-separating set with cardinality three, by the submodularity of λ ([9,
Lemma 8.2.9]). Since |E(M)| ≥ 6, it follows that (X ′, E(M) − X ′) is a
3-separation of M . Thus X ′ is a triad or a triangle ([9, Corollary 8.2.2]). By



FAN-EXTENSIONS IN FRAGILE MATROIDS 19

duality, we will assume that X ′ is a triangle of M . Proposition 5.6 implies
that X ′ = {ei−2, ei−1, ei}.

There must be an index p > i such that ep /∈ X, or else X is not a
counterexample. Let p be the least such index. Note that ep−2 and ep−1 are
in X. Therefore ep is in either clM (X) or cl∗M (X), so X ∪ ep is 3-separating.
Because X ∪ ep is strictly larger than X, it follows that X ∪ ep is not a
counterexample, so X ∪ ep = {ex, ex+1, . . . , ey} for some indices x and y.
Clearly p < y, or else X = {ex, ex+1, . . . , ey−1}. Thus ep+1 is in X. Now
{ep−2, ep−1, ep} and {ep−1, ep, ep+1} show that ep is in the closure and the
coclosure of X. Therefore λ(X ∪ ep) ≤ 1, so the complement of X ∪ ep
contains at most one element. Hence M is a wheel or a whirl, and this
contradiction completes the proof. �

Lemma 5.8. Let M be a 3-connected matroid such that |E(M)| ≥ 4 and
M is not a wheel or a whirl. Let (f1, . . . , fm) and (g1, . . . , gn) be fans of
M . Assume that |{f1, . . . , fm} ∩ {g1, . . . , gn}| ≥ 3. Then there are integers
1 ≤ x < y ≤ m and 1 ≤ x′ < y′ ≤ n such that

{f1, . . . , fm} ∩ {g1, . . . , gn} = {fx, fx+1, . . . , fy} = {gx′ , gx′+1, . . . , gy′}.

Proof. The proof is by induction on m + n. The hypotheses imply that
m+ n ≥ 6. If m+ n = 6, then obviously m = n = 3 and

{f1, f2, f3} ∩ {g1, g2, g3} = {f1, f2, f3} = {g1, g2, g3},
so there is nothing left to prove. Let us assume that m + n > 6, and that
the result does not hold for (f1, . . . , fm) and (g1, . . . , gn). We will make
the inductive assumption that the result is true for any pair of fans with
combined length less than m+ n.

Let F = {f1, . . . , fm}, and let G = {g1, . . . , gn}.

5.8.1. m,n > 3.

Proof. By symmetry, it suffices to prove that m > 3. If m = 3, then
F ∩ G = {f1, f2, f3}. Moreover, F is a triangle or a triad contained in
G. Proposition 5.6 or its dual tells us that F = F ∩ G consists of three
consecutive elements from (g1, . . . , gn). Therefore the result holds, contrary
to our choice of (f1, . . . , fm) and (g1, . . . , gn). �

5.8.2. f1, fm ∈ G and g1, gn ∈ F .

Proof. Suppose that f1 /∈ G. Then (f2, . . . , fm) and (g1, . . . , gn) are fans
by 5.8.1. Since |{f2, . . . , fm} ∩ {g1, . . . , gn}| ≥ 3, the inductive assumption
implies that there are integers 1 ≤ x < y ≤ m and 1 ≤ x′ < y′ ≤ n such
that

{f1, . . . , fm} ∩ {g1, . . . , gn} = {f2, . . . , fm} ∩ {g1, . . . , gn}
= {fx, fx+1, . . . , fy} = {gx′ , gx′+1, . . . , gy′},

and the result holds, contrary to assumption. Exactly the same argument
shows that fm ∈ G and g1, gn ∈ F . �
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Let the ground set of M be E.

5.8.3. |E − (F ∪G)| ≤ 1.

Proof. Assume that |E−(F∪G)| ≥ 2. As |F∪G| ≥ 2, and M is 3-connected,
it follows that λ(F ∪ G) ≥ 2. Since λ(F ), λ(G) ≤ 2, the submodularity of
λ shows that λ(F ∩ G) ≤ 2. Then we can set X = F ∩ G and apply
Proposition 5.7 to see that

F ∩G = {fx, fx+1, . . . , fy} = {gx′ , gx′+1, . . . , gy′}
for integers 1 ≤ x < y ≤ m and 1 ≤ x′ < y′ ≤ n. This contradiction
completes the proof of the claim. �

5.8.4. |F −G|, |G− F | ≥ 2.

Proof. We have complete symmetry between F and G, so it suffices to prove
that |F −G| ≥ 2. Assume that |F −G| ≤ 1. If |F −G| = 0, then |E−G| ≤ 1
by 5.8.3, so Proposition 5.4 implies that M is a wheel or a whirl. This
contradiction means that |F − G| = 1. Let fi be the unique element in
F − G. By 5.8.2, we deduce that 1 < i < m. Either {fi−1, fi, fi+1} and
{fi, fi+1, fi+2} are a triangle and a triad that are contained in G ∪ fi, or
we can make the same statement about {fi−1, fi, fi+1} and {fi−2, fi−1, fi}.
This means that we can apply Proposition 5.5, and deduce that M is a wheel
or a whirl. This contradiction completes the proof of 5.8.4. �

5.8.5. The elements of F−G form a consecutive subsequence of (f1, . . . , fm).
The elements of G− F form a consecutive subsequence of (g1, . . . , gn).

Proof. It suffices to prove that the elements in F − G form a consecutive
subsequence of (f1, . . . , fm). Certainly F ∪ (E − G) contains at least two
elements. Its complement, G − F , contains at least two elements by 5.8.4.
Therefore λ(F ∪ (E − G)) ≥ 2. As λ(F ), λ(E − G) ≤ 2, it follows that
λ(F ∩ (E −G)) = λ(F −G) ≤ 2.

If |F −G| ≥ 3, then we can let X = F −G, and apply Proposition 5.7 to
the fan (f1, . . . , fm). Therefore we assume |F −G| = 2. Let i, j ∈ {1, . . . ,m}
be chosen so that i < j, and {fi, fj} = F −G. By 5.8.2, 1 < i < j < m. If
j = i+ 1, there is nothing left to prove, so j > i+ 1. Assume that j > i+ 2.
Then {fi−1, fi, fi+1} and {fi, fi+1, fi+2} are a triangle or triad contained in
G∪fi. Proposition 5.5 implies that M is a wheel or a whirl. Hence j = i+2.

By duality, we can assume that fi is a rim element of (f1, . . . , fm). Since
{fi−1, fi, fi+1} is a triangle that contains fi and is otherwise contained in
G, we can apply Proposition 5.3. From 5.8.4 and the fact that |F ∩G| ≥ 3,
we see that m,n ≥ 5. Thus {fi−1, fi+1} is {g1, g2}, {gn−1, gn}, {g1, gn}, or
{g2, g4}. But {fi+1, fi+2, fi+3} is a triangle, and we can apply the same
arguments to show that {fi+1, fi+3} is also one of the same four sets.
We deduce that {{fi−1, fi+1}, {fi+1, fi+3}} is one of {{g1, g2}, {g1, gn}},
{{g1, gn}, {gn−1, gn}}, {{g1, g2}, {g2, g4}}, or {{g2, g4}, {g4, g5}}. Proposi-
tion 5.3 implies that, in the first case, g1 is both a spoke element and a
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rim element. In the second case it implies gn is a spoke element and a rim
element. In the third case, g2 is both a rim element and a spoke element,
and in the fourth, g4 is a rim element and a spoke element. Thus we have a
contradiction in any case. �

By 5.8.2, 5.8.4, and 5.8.5, there are indices 1 ≤ i < i+3 ≤ j ≤ m such that
F ∩ G = {f1, . . . , fi} ∪ {fj . . . , fm}. Note that {fi, fi+1, fi+2} is a triangle
or a triad that contains exactly one element of G. If fi = gk, then k = 1 or
k = n, for otherwise, since n ≥ 4, it follows that gk is contained in a triangle
and a triad that are both contained in G. This leads to a contradiction to
orthogonality. By applying the same arguments to {fj−2, fj−1, fj}, we see
that fj is equal to either g1 or gn. By reversing (g1, . . . , gn) as necessary, we
can assume that fi = gn and that fj = g1.

Assume that |F ∩ G| ≥ 4. Either 1 < i or j < m. Let us first assume
1 < i. The fans (f1, . . . , fm) and (g1, . . . , gn−1) intersect in {f1, . . . , fi−1} ∪
{fj , . . . , fm}, and this set contains at least three elements. The inductive
assumption implies that (f1, . . . , fm) and (g1, . . . , gn−1) should meet in con-
secutive subsequences of (f1, . . . , fm) and (g1, . . . , gn−1), but G − gn con-
tains fi−1 and fj , and no element between them. Similarly, if j < m,
then (f1, . . . , fm) and (g2, . . . , gn) intersect in {f1, . . . , fi} ∪ {fj+1, . . . , fm},
and this set is not consecutive in (f1, . . . , fm). From this contradiction
to the inductive hypothesis, we deduce that |F ∩ G| = 3. Either i = 1
and j = m − 1, or i = 2 and j = m. We can reverse (f1, . . . , fm) and
(g1, . . . , gn), and assume that the former case holds. Thus f1 = gn and
fm−1 = g1. Since {fm−2, fm−1, fm} is a triangle or a triad contained in
G∪ fm−2 that contains g1 but not gn, Proposition 5.3 implies that fm = g2.
Hence F ∩G = {f1, fm−1, fm} = {gn, g1, g2}.

By replacing M with M∗, we can assume that fm = g2 is a spoke element
of (f1, . . . , fm), so that {fm−2, fm−1, fm} is a triangle. Note that {g1, g2, g3}
is not a triangle, or else it intersects the triad {fm−3, fm−2, fm−1} in the
single element fm−1 = g1. Therefore g1 is a rim element of (g1, . . . , gn). It
follows that

(f1, . . . , fm−2, fm−1, fm, g3, . . . , gn−1) = (f1, . . . , fm−2, g1, g2, g3, . . . , gn−1)

is a fan of M . By 5.8.3, there is at most one element of E not contained in
this fan, so M is a wheel or a whirl. This contradiction completes the proof
of Lemma 5.8. �

6. A finite case-check theorem

From this point onwards, M will be a class of matroids closed under
isomorphism and minors, and N ∈ M will be a fixed 3-connected matroid
such that |E(N)| ≥ 4, and N is neither a wheel nor a whirl. We let FN be
a family of disjoint fans in N . Assume that whenever M ′ ∈ M has N as a
minor, M ′ is 3-connected up to series and parallel sets. Note that we can
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replace M with the dual class {M∗ |M ∈ M} and replace N with N∗ and
the same hypotheses will hold.

In the subsequent results we state some consequences of these definitions.
First of all, the only 3-connected minors of wheels and whirls are wheels and
whirls. This has the following implication.

Proposition 6.1. No matroid having N as a minor is a wheel or a whirl.

We are going to make continuous use of the next two results.

Proposition 6.2. Let M ′ be a matroid inM that has N as a minor. Every
triangle in M ′ is coindependent, and every triad is independent.

Proof. By duality, it suffices to assume that T is a codependent triangle
in M ′. Then rM ′(T ) = 2, and r∗M ′(T ) < 3, so λM ′(T ) ≤ 1. Clearly T is
not contained in a parallel class. If T is contained in a series class, then
λM ′(T ) = 0, so E(M ′) = T since M ′ is connected. This contradicts the fact
that N is a minor of M ′. As M ′ is 3-connected up to series and parallel sets,
the complement of T is contained in a series or parallel class. This implies
that a 3-connected minor of M ′ with at least four elements has precisely four
elements. Hence |E(N)| = 4, and N is isomorphic to U2,4, which contradicts
the assumption that N is not a whirl. �

The next result follows from Proposition 6.2 by orthogonality.

Corollary 6.3. Let M ′ be a matroid inM that has N as a minor. If X is
a U2,4-restriction of M ′, and T ∗ is a triad of M ′, then X ∩ T ∗ = ∅.

Proposition 6.4. Let M ′ be a 3-connected matroid in M. Assume that
(e1, . . . , en) is a fan of M ′ such that n ≥ 4, and N is a minor of M ′/ei\ei+1

for some i ∈ {1, . . . , n− 1}. Then M ′/ei\ei+1 is 3-connected.

Proof. If M ′/ei\ei+1 is not 3-connected, then, as it is 3-connected up to
series and parallel sets, there is a triangle that contains ei but not ei+1, or
a triad that contains ei+1 but not ei. We assume T ∗ is a triad satisfying
T ∗ ∩ {ei, ei+1} = {ei+1}.

First assume that ei+1 is a rim element. If i > 2, then {ei−2, ei−1, ei} is a
codependent triangle in M ′\ei+1, contradicting Proposition 6.2. Similarly, if
i < n−2, then {ei+1, ei+2, ei+3} is a dependent triad in M ′/ei. Therefore n−
2 ≤ i ≤ 2, implying that n = 4 and i = 2. Since ei /∈ T ∗, orthogonality with
{ei, ei+1, ei+2} implies T ∗ contains the parallel pair {ei+1, ei+2} in M ′/ei,
and we have another contradiction to Proposition 6.2.

Thus ei+1 is a spoke element. If {ei, ei+1} is contained in a triangle,
then T ∗ contains the third element of this triangle, and T ∗ is a triad of
M ′/ei that contains a parallel pair, contradicting Proposition 6.2. Therefore
there is no triangle containing {ei, ei+1}, so i = 1. In this case T ∗ contains
two elements of the triangle {ei+1, ei+2, ei+3}. In a matroid without series
pairs, two triads that intersect in two elements form a U2,4-corestriction.
Therefore, if T ∗ contains ei+2, then T ∗ ∪ ei is a U2,4-corestriction of M ′
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that intersects the triangle {ei+1, ei+2, ei+3}, contradicting Corollary 6.3.
Therefore T ∗ ∩ {ei+1, ei+2, ei+3} = {ei+1, ei+3}. Let M ′′ be produced from
M ′ by swapping labels on ei and ei+2. As {ei, ei+2} is a series pair in
M ′\ei+1, it follows that M ′′\ei+1 = M ′\ei+1, so M ′′\ei+1/ei has N as a
minor. However, M ′′/ei contains the parallel pair {ei+1, ei+3}, which is
contained in the triad T ∗. This contradicts Proposition 6.2.

To complete the proof, we must assume that there is a triangle containing
ei but not ei+1. In this case we replace M ′, N , and M by their duals, and
we reverse the fan (e1, . . . , en), relabeling en−i as ei. After the relabeling,
there is a triad that contains ei+1 but not ei, so we make the same argument
as before. �

Proposition 6.5. Let M ′ be a matroid in M with N as a minor. Assume
M ′ has a covering family, and that F = (e1, . . . , en) is a fan in that family,
where {ei, ei+1} ⊆ E(M ′) − E(N) for some rim element ei. Then N is a
minor of M ′/ei\ei+1.

Proof. Note that n ≥ 5, since F contains a fan in FN as well as {ei, ei+1}.
If N is a minor of M ′\ei, then n = 5 and i = 3, for otherwise
{ei−3, ei−2, ei−1} or {ei+1, ei+2, ei+3} is a codependent triangle in M ′\ei.
But now F − {ei, ei+1} ⊆ E(N), so N contains the series pair {ei−2, ei−1}.
Therefore N is a minor of M ′/ei. If i > 1, then N is a minor of M ′/ei\ei+1,
as {ei−1, ei+1} is a parallel pair in M ′/ei. If i = 1, then {e3, e4, e5} is a
dependent triad in M ′/ei/ei+1, so N ′ is a minor of M ′/ei\ei+1 in either
case. �

Proposition 6.6. Let M ′ be a 3-connected matroid in M with N as a
minor. Assume that M ′/x\y is 3-connected and has N as a minor. Let F
be a fan of M ′ such that a fan in FN is consistent with F . If either x or y
is an internal element of F , then they are consecutive in F , and x is a rim
element.

Proof. Let F = (e1, . . . , em), and assume x or y is an internal element in
F . In the latter case, we swap M ′, N , and M for their duals, and swap
labels on x and y. Therefore we lose no generality in assuming x is an
internal element, ei, of F . Assume x is a spoke element. If n > 5, then
{ei−3, ei−2, ei−1} or {ei+1, ei+2, ei+3} is a dependent triad in M ′/x, which
is a contradiction. Therefore n ≤ 5. If n = 4, then F − x ⊆ E(N), as F
contains a fan in FN , as well as x. But F − x also contains a parallel pair
in M ′/x. This leads to the contradiction that N contains a parallel pair.
Therefore n = 5, and x = e3, for otherwise M ′/x contains a dependent triad.
Now either {e1, e2} or {e4, e5} is contained in E(N), and as both these sets
are parallel pairs in M ′/x, this is a contradiction.

Hence x is a rim element in F . Because {ei−1, ei+1} is a parallel pair in
M ′/x, and M ′/x\y is 3-connected, it follows that y ∈ {ei−1, ei+1}, and we
are done. �
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Proposition 6.7. Let M ′ be a 3-connected member ofM, and assume that
(e1, . . . , en) is a fan ofM ′ containing x, y, and z, where {x, y, z} is a triangle
of M ′, and N is a minor of M ′/x\y. If n ≥ 5, then x and y are consecutive
elements in (e1, . . . , en).

Proof. By Proposition 5.6, there is some i ∈ {1, . . . , n − 2} such that
{x, y, z} = {ei, ei+1, ei+2}, where ei is a spoke element. By reversing
(e1, . . . , en) as necessary, we can assume that (x, y) = (ei, ei+2), for oth-
erwise there is nothing left to prove. If i+ 2 < n, then {ei+1, ei+2, ei+3} is a
dependent triad of M ′/ei = M ′/x, since {ei+1, ei+2} is a parallel pair. This
is impossible, as M ′/x has N as a minor. Therefore n = i+ 2.

Let M ′′ be the matroid obtained from M ′ by swapping the labels on
ei+1 = z and ei+2 = y. Since {y, z} is a parallel pair in M ′/x, it follows that
M ′′/x\y = M ′/x\y. Therefore N is a minor of M ′′\y. But {ei−2, ei−1, ei} is
a triangle of M ′′\y that contains a series pair. This contradiction completes
the proof. �

Proposition 6.8. LetM ′ ∈M be a 3-connected matroid with N as a minor.
If e ∈ E(M ′)−E(N), then for some (M1, N1) in {(M ′, N), ((M ′)∗, N∗)} one
of the following statements holds:

(i) M1/e is 3-connected and has N1 as a minor,
(ii) there is a triangle {x, e, f} of M1 such that N1 is a minor of M1/e\f

and M1\f is 3-connected,
(iii) there is a fan (x, e, f, y) of M1, where {x, e, f} is a triangle, and

M1/e\f is 3-connected with N1 as a minor.

Proof. By duality, we can assume N1 is a minor of M1/e. We assume M1/e
is not 3-connected. Since M1 is 3-connected, and M1/e is 3-connected up
to series and parallel sets, M1 has a triangle containing e. Let this trian-
gle be {x, e, f}, where N1 is a minor of M1/e\f . We assume M1\f is not
3-connected, so f is in a triad of M1. This triad contains x or e by orthog-
onality, and does not contain both by Proposition 6.2. Let y be the third
element in the triad. If {x, f, y} is a triad, then it is a dependent triad in
M1/e, which is impossible, so {e, f, y} is a triad, and statement (iii) holds
by Proposition 6.4. �

Proposition 6.9. Let N ′ be a matroid inM such that (e1, e2, e3, e4) is a fan
of N ′ with e2 as a rim element, and N ′/e2\e3 = N . Then N ′ is 3-connected.

Proof. Because N ′ has N as a minor, it is 3-connected up to series and
parallel sets, so it is connected. In particular, it has no loops or coloops.
If e2 is in a parallel pair, then N ′/e2 has N as a minor and a loop, which
is impossible. If e2 is in a series pair, then orthogonality requires that the
pair is contained in {e1, e2, e3}, so this set is a codependent triangle in N ′,
a contradiction to Proposition 6.2. By a dual argument, e3 is not contained
in any series or parallel pair in N . As N = N ′/e2\e3 is simple and cosimple,
it follows that N ′ is simple and cosimple.
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Assume N ′ is not 3-connected. As it is connected, we can let (X,Y )
be a 2-separation. Since N ′ is simple and cosimple, it follows that
|X|, |Y | ≥ 3. If X ∩ {e2, e3} and Y ∩ {e2, e3} are both non-empty, then
(X − {e2, e3}, Y − {e2, e3}) is a 2-separation in N , a contradiction. There-
fore we can assume e2, e3 ∈ X. If |X| > 3, then (X − {e2, e3}, Y ) is a
2-separation in N . Therefore |X| ≤ 3. If |E(N)| = 4, then N is isomor-
phic to U2,4, contradicting the hypothesis that it is not a whirl. Hence
|E(N ′)| = |E(N)| + 2 ≥ 7, so |Y | ≥ 4. Now (X ∪ {e1, e4}, Y − {e1, e4}) is
a 2-separation in N ′ that induces a 2-separation in N , so we have a contra-
diction that completes the proof. �

Now we can begin the proof of our main theorem.

Theorem 6.10. LetM be a set of matroids that is closed under minors and
isomorphism. Let N ∈ M be a 3-connected matroid such that |E(N)| ≥ 4
and N is neither a wheel nor a whirl. Assume that any member ofM with
N as a minor is 3-connected up to series and parallel sets. Let FN be a
family of pairwise disjoint fans of N . If there is a 3-connected matroid in
M with N as a minor that is not a fan-extension of N relative to FN , then
there exists such a matroid, M , satisfying |E(M)| − |E(N)| ≤ 2.

For the remainder of the paper, we let M, N , and FN be as in the
statement of Theorem 6.10. We let M ∈M be a 3-connected matroid with
N as a minor such that M is not a fan-extension of N , and, subject to
these constraints, |E(M)| is as small as possible. We assume that |E(M)| −
|E(N)| > 2, and ultimately derive a contradiction from this, thereby proving
Theorem 6.10.

Lemma 6.11. Let M0 be isomorphic to M , and assume that M0 has N as
a minor, but is not a fan-extension of N . Then M0 does not have a covering
family (relative to N and FN ).

Proof. We assume for a contradiction that M0 has a covering family. Note
M0 6= N , as M0 is not a fan-extension of N . The fans in any covering family
of M0 contain the elements of E(M0)− E(N).

6.11.1. In any fan belonging to a covering family of M0, there are no two
consecutive elements in E(M0)− E(N).

Proof. Assume there is a covering family, F , of M0, and a fan, F =
(e1, . . . , en), in F , such that ei and ei+1 are not in E(N) for some i ∈
{1, . . . , n − 1}. If ei is a spoke element, then we can replace M , M0, N ,
and M by their duals, and then apply the forthcoming arguments. Thus
we assume that ei is a rim element. Then N is a minor of M0/ei\ei+1

by Proposition 6.5. Propositions 5.2 and 6.4 show that M0/ei\ei+1 is a
3-connected matroid containing the fan F − {ei, ei+1}. The minimality
of M implies M0/ei\ei+1 is a fan-extension of N . It is easy to see that
(F − {F}) ∪ {F − {ei, ei+1}} is a covering family in M0/ei\ei+1, and M0
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is obtained from M0/ei\ei+1 by a fan-lengthening move on F − {ei, ei+1}.
Therefore M0 is a fan-extension of N , a contradiction. �

6.11.2. If F is a fan in a covering family of M0, then all internal elements
of F belong to E(N).

Proof. Assume F = (e1, . . . , en) is a fan in a covering family, and ei is an
internal element in E(M0)−E(N), so n ≥ 4. By replacing M , M0, N , and
M with their duals if necessary, we can assume ei is a rim element. If N is
a minor of M0/ei, we contradict 6.11.1, as {ei−1, ei+1} is a parallel pair in
M0/ei, so N is a minor of M0/ei\ei−1 or M0/ei\ei+1. Therefore N is a minor
of M0\ei, so n ≤ 5, and if n = 5, then i = 3, for otherwise {ei−3, ei−2, ei−1}
or {ei+1, ei+2, ei+3} is a codependent triangle in M0\ei. By reversing F as
required, we will assume that i < n − 1. Now {ei+1, ei+2} is a series pair
in M0\ei, so 6.11.1 means that N is a minor of M1\ei/ei+2. Thus n = 5,
since F contains {ei, ei+2} and at least three elements of E(N). In this case,
{ei−2, ei−1, ei+1} ⊆ E(N), which leads to a contradiction as {ei−2, ei−1} is
is a series pair in M0\ei. �

Fix the covering family F , and let F = (e1, . . . , en) be a fan in F such that
e1 /∈ E(N). This implies n ≥ 4. By duality, we assume e1 is a rim element,
and this easily implies that N is a minor of M0/e1. If M0/e1 is 3-connected,
then M0 is obtained from M0/e1 by a fan-lengthening move on F − e1,
and (F − {F}) ∪ {F − e1} is a covering family in M0/e1. By minimality,
M0/e1 is a fan-extension of N , and therefore, so is M0. Hence M0/e1 is
not 3-connected. As M0/e2 contains a parallel pair, it is not 3-connected.
The dual of Tutte’s Triangle Lemma (see [9, Lemma 8.7.7]) implies there
is a triangle, T , of M0 containing e1 and either e2 or e3. It follows from
Proposition 5.6 that T cannot be contained in F , for otherwise {e1, e2, e3}
is a triad and a triangle. Let f be the element in T − {e1, e2, e3}. Then N
is a minor of M0/e1\f , by 6.11.2. Since F is a covering family, there is a
fan, Ff ∈ F , such that f is in Ff . As Ff contains at least three elements
of E(N), any internal element of Ff is contained in a triad. Orthogonality
with the triangle T now implies that f is a terminal spoke element of Ff .
Clearly Ff − f is a fan of M0.

If e2 is in T , then F +f = (f, e1, . . . , en) is a fan of M0, and it is straight-
forward to see that (F − {F, Ff}) ∪ {F + f, Ff − f} is a covering family of
M0. But now e1 is an internal element of F +f that is not in E(N), contra-
dicting 6.11.2. Hence T = {f, e1, e3}. This means that n = 4, for otherwise
T violates orthogonality with the triad {e3, e4, e5}. Thus (e2, e3, e4) or its
reversal is in FN .

Let Ff = (f1, . . . , fm), where f = f1. By applying the duals of the pre-
vious arguments, we see that {f1, f3} is contained in a triad of M0, that
m = 4, and that either (f2, f3, f4) or its reversal is in FN . The triad con-
taining {f1, f3} contains either e1 or e3, by orthogonality with T , and the
latter case cannot occur, by orthogonality with {e2, e3, e4}. Thus {f3, f1, e1}
is a triad, and (f4, f2, f3, f1, e1, e3, e2, e4) is a fan of M0.
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Let I and I∗ be, respectively, independent and coindependent sets such
that I∩I∗ = ∅ andN = M0/I\I∗. LetN ′ = M0/(I−{e1, f1})\(I∗−{e1, f1}).
Note that {f4, f2, f3} and {e3, e2, e4} are, respectively, a triad and a triangle
in N ′, for otherwise N contains a circuit or cocircuit with at most two
elements. Since {f2, f3, f1} is a union of circuits in N ′, it is easy to see it is
a circuit of N ′, for otherwise we can use orthogonality with {f4, f2, f3} to
show that {f2, f3} contains a circuit in N ′, and hence in N . Hence f1 is not
a loop of N ′. Similarly, {e1, e3, e2} is a triad in N ′ and e1 is not a coloop.
Since {f3, f1, e1} is a union of cocircuits, orthogonality with {f2, f3, f1} now
implies that {f3, f1, e1} is a triad in N ′. Orthogonality with {e1, e3, e2}
implies {f1, e1, e3} is a triangle in N ′. Therefore (f4, f2, f3, f1, e1, e3, e2, e4)
is a fan of N ′.

Because N ′\e1 contains the codependent triangle {f1, f3, f2}, we see that
N is not a minor of N ′\e1. Therefore it is a minor of N ′/e1, and this
matroid contains the parallel pair {f1, e3}, so N = N ′/e1\f1. By applying
Proposition 6.9 to the fan (e3, e1, f1, f3), we see that N ′ is 3-connected.
Since |E(M)| − |E(N)| > 2 = |E(N ′)| − |E(N)|, N ′ is a proper minor of
M0. Therefore N ′ is a fan-extension of N .

As |E(N ′)| − |E(N)| = 2, it follows that N ′ is obtained from N by either
one or two fan-lengthening moves. However, none of N ′/e1, N

′\e1, N ′/f1,
N ′\f1 is 3-connected, so N ′ is obtained from N by a single fan-lengthening
move. Hence there is a covering family, F ′, of N ′ containing a fan, F ′,
such that e1 and f1 are consecutive elements of F ′. Assume that e3 is
in F ′. Because F ′ is a covering family and (e2, e3, e4) or its reversal is
in FN , it follows that (e2, e3, e4) is consistent with F ′. This means that
F ′ contains {f1, e1, e3, e2, e4}. By applying Proposition 5.6 to the triangle
{f1, e1, e3}, the triad {e1, e3, e2}, and the triangle {e3, e2, e4}, we see that
(f1, e1, e3, e2, e4) is a contiguous subsequence of F ′. Hence (e2, e3, e4) is not
consistent with F ′ after all. This contradiction shows that e3 is not in F ′.
As {e3, e1, f1} is a triangle, Proposition 5.3 implies that, up to reversing, e1
and f1 are the first two elements in F ′, and F ′ starts with a rim element. If
f3 is not in F ′, then we can apply Proposition 5.3 to the triad {f3, f1, e1}
and get the contradiction that F ′ starts with a spoke element. Therefore
f3 is in F ′, and therefore (f2, f3, f4) is consistent with F ′. As {e1, f1, f3},
{f1, f3, f2}, and {f3, f2, f4} are triangles or triads of N ′ contained in F ′,
Proposition 5.6 implies that (e1, f1, f3, f2, f4) is a contiguous subsequence
of F ′, so (f2, f3, f4) is not consistent with F ′ after all. This contradiction
completes the proof. �

Lemma 6.12. Let M0 be a matroid isomorphic to M such that N is a
minor of M0, but M0 is not a fan-extension of N . Assume that (e1, . . . , en)
is a fan of M0, where n ≥ 5, and {e1, e2, e3} is a triangle. If N is a minor
of M0/e2\e3 and some ordering of {e1, e4, . . . , en} is in FN , then either
(e1, e4, . . . , en) or its reversal is in FN .
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Proof. We assume that some ordering of {e1, e4, . . . , en} is in FN . Let I and
I∗ be independent and coindependent sets such that I ∩ I∗ = ∅ and N =
M0/I\I∗ and let N ′ = M0/(I−{e2, e3})\(I∗−{e2, e3}). If 4 ≤ i ≤ n−2 and i
is odd (respectively, even), then {ei, ei+1, ei+2} ⊆ E(N), and {ei, ei+1, ei+2}
is a circuit (cocircuit) in M0, and is therefore a union of circuits (cocircuits)
in N ′. Hence it is a circuit (cocircuit) in N ′, or else N contains a circuit
(cocircuit) of at most two elements, which contradicts the 3-connectivity of
N . Thus (e4, . . . , en) is a fan of N ′. As {e3, e4, e5} is a union of circuits in
N ′, it is a circuit, for otherwise {e4, e5} contains a circuit in N ′, and hence
in N . Since {e1, e2, e3} is a union of circuits in N ′, e2 is not a coloop of N ′.
Now, as {e2, e3, e4} is a union of cocircuits, orthogonality with {e3, e4, e5}
shows that {e2, e3, e4} is a triad of N ′. Finally, e1 is not a loop of N , and
hence not a loop in N ′. Neither e2 nor e3 is a loop in N ′, as {e2, e3, e4} is a
triad. If {e1, e2, e3} is not a circuit, then it is contained in a parallel class,
and this leads to a contradiction to orthogonality with {e2, e3, e4}. Thus we
have shown (e1, . . . , en) is a fan in N ′.

As N ′\e2 contains a codependent triangle, it cannot have N as a minor.
Therefore N ′/e2 has N as a minor, as well as the parallel pair {e1, e3}.
Therefore N = N ′/e2\e3. Proposition 6.9 implies that N ′ is 3-connected.
As |E(M0)| − |E(N)| > 2 = |E(N ′)| − |E(N)|, we see that N ′ is a fan-
extension of N .

Let F ′ be the fan in a covering family of N ′ such that some ordering
of {e1, e4, . . . , en} is consistent with F ′. As (e1, . . . , en) is a fan of N ′ that
intersects F ′ in at least three elements, including e1 and en, we see from
Lemma 5.8 that there is a contiguous subsequence of F ′ comprising the
elements {e1, . . . , en}. Now, repeatedly applying Proposition 5.6, it follows
that (e1, . . . , en) is a contiguous subsequence of F ′. Thus (e1, e4, . . . , en) is
consistent with F ′, so this fan, or its reversal, is in FN . �

If we apply an arbitrary permutation to the element labels of M , we do
not know if the resulting matroid will be a fan-extension of N , or, indeed,
if it will have N as a minor. In the next lemma, and in Lemma 6.15, we
look for circumstances under which the permuted matroid is guaranteed to
have N as a minor, but not to be a fan-extension of N . This will allow us
to relabel elements of M without losing generality.

Lemma 6.13. Let M0 be isomorphic to M , and assume that M0 has N as
a minor, but is not a fan-extension of N . Assume that (e1, e2, e3, e4) is a
fan of M0 with e2 as a rim element, and N is a minor of M0/e2\e3. Let M ′

be the matroid obtained from M0 by swapping the labels on e1 and e3. Then
M ′ contains N as a minor, but is not a fan-extension of N .

Proof. Because {e1, e3} is a parallel pair of M0/e2, it follows that
M ′/e2\e3 = M0/e2\e3, so N is a minor of M ′/e2\e3. Proposition 6.4 implies
M0/e2\e3, and hence M ′/e2\e3, is 3-connected. Note that (e3, e2, e1, e4) is
a fan of M ′, where e2 is a rim element. Assume for a contradiction that M ′
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is a fan-extension of N . As e2, e3 /∈ E(N), there is a covering family of M ′

that contains fans that contain e2 and e3.

6.13.1. If F ′ is a covering family of M ′, then no fan in F ′ contains
{e1, e2, e3}.

Proof. Assume F ′ ∈ F ′ contains {e1, e2, e3}. Then Proposition 5.6 implies
that {e1, e2, e3} is a set of three consecutive elements in F ′. As e2, e3 /∈
E(N), it now is obvious that we can swap the labels on e1 and e3 and
obtain a covering family of M0, contradicting Lemma 6.11. �

6.13.2. Let F ′ be a covering family of M ′ and let F2 be a fan in F ′ that
contains e2. Then e2 is a terminal rim element of F2.

Proof. Assume that e2 is in a triangle, T , contained in F2. If e3 is not in T ,
then M ′/e2\e3 contains a parallel pair, and this is impossible as M ′/e2\e3 is
3-connected with at least four elements in its ground set. Therefore e2, e3 ∈
T . Orthogonality with the triad {e2, e1, e4} shows that e1 ∈ T or e4 ∈ T .
The former case is not true by 6.13.1, so T = {e2, e3, e4}. As {e1, e2, e3}
is also a triangle, {e1, e2, e3, e4} is a U2,4-restriction of M ′ that intersects
the triad {e2, e1, e4}, contradicting Corollary 6.3. Therefore e2 is contained
in no triangle in F2. Note that F2 contains a fan in FN , as well as the
element e2, so it contains at least four elements. Therefore e2 is a terminal
rim element in F2, as desired. �

6.13.3. There is a covering family, F ′, of M ′, and a fan F ′ ∈ F ′, such that
e2 and e3 are consecutive elements in F ′.

Proof. Assume that this is not true. Let F ′ be an arbitrary covering family
of M ′. Let F2 = (f1, . . . , fm) be a fan in F ′ where e2 = f1 and {f1, f2, f3}
is a triad. Orthogonality with the triangle {e1, e2, e3} shows that e3 or e1
is in {f2, f3}. Assume that e3 is in {f2, f3}, so e1 /∈ F2 by 6.13.1. Because
we have assumed that e2 and e3 are not consecutive in F2, we deduce that
e3 = f3. Now m ≤ 4, or else we have a contradiction to orthogonality
between {e1, e2, e3} = {e1, f1, f3} and the triad {f3, f4, f5}. However, F2

contains a fan in FN as well as the elements e2 and e3, so m ≥ 5. This
contradiction shows that e1 is in {f2, f3}, and therefore e3 /∈ F2.

Now {f1, f2, f3} = {e1, e2, z} for some element z, where z 6= e3. If
z 6= e4, then {e2, e1, e4, z} is a U2,4-corestriction of M ′ that intersects
the triangle {e1, e2, e3}, contradicting the dual of Corollary 6.3. There-
fore z = e4, so {f1, f2, f3} = {e1, e2, e4}. If (f1, f2, f3) = (e2, e1, e4), then
F2+e3 = (e3, f1, . . . , fm) is a fan of M ′. Let F3 be the fan in F ′ that contains
e3. Then F3 contains a fan in FN as well as e3, so |F3| ≥ 4. If e3 is an internal
element in F3, then it is contained in a triad that is contained in F3, and such
a triad violates orthogonality with {e1, e2, e3}. Therefore e3 is a terminal
spoke element of F3. Now we easily see that (F ′−{F2, F3})∪{F2+e3, F3−e3}
is a covering family of M ′, and e3 and e2 are consecutive in F2 + e3. This
contradicts our assumption, so (f1, f2, f3) = (e2, e4, e1).
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Now m ≤ 4, or else we have a contradiction to orthogonality between
the triangle {e1, e2, e3} and the triad {f3, f4, f5} (recall e3 is not in F2).
In fact, m = 4, since F2 contains one of the fans in FN , as well as e2.
Therefore F2 = (f1, f2, f3, f4) = (e2, e4, e1, f4), and (e4, e1, f4) or (f4, e1, e4)
is in FN . However, (e3, f1, f3, f2, f4) = (e3, e2, e1, e4, f4) is also a fan of
M ′, so (e1, e2, e3, e4, f4) is a fan of M0. Now {e1, e2, e3} is a triangle, and
N is a minor of M0/e2\e3. By Lemma 6.12, (e1, e4, f4) or (f4, e4, e1) is in
FN . Thus FN contains two distinct fans that are non-disjoint. This is a
contradiction. �

By 6.13.2 and 6.13.3 we can let F ′ be a covering family of M ′ and
let F ′ = (f1, . . . , fm) in F ′ be such that (f1, f2) = (e2, e3) where m ≥ 5
and {f1, f2, f3} is a triad. Now 6.13.1 implies e1 /∈ F ′. Observe that
F ′+e1 = (e1, f1, f2, . . . , fm) is a fan of M ′. By 6.13.1, (F ′−{F ′})∪{F ′+e1}
cannot be a covering family in M ′. Therefore there is a fan, G = (g1, . . . , gt),
in F ′−{F ′}, that contains e1. Orthogonality with {e1, e2, e3} shows that e1
is not contained in a triad that is contained in G. Let GN be the fan in FN

that is consistent with G. If e1 is not in GN , then G contains at least four
elements, so e1 must be a terminal element of G. In this case, it is easy to
see that (F ′−{F ′, G})∪{F ′+ e1, G− e1} is a covering family of M ′, which
leads to a contradiction with 6.13.1. Therefore e1 is contained in GN .

Assume that t = 3. Then, by reversing, we can assume that (g1, g2, g3) is
in FN . Orthogonality with {e1, e2, e3} implies {g1, g2, g3} is a triangle. But
{e2, e1, e4} is a triad in M ′, so orthogonality requires that e4 is in {g1, g2, g3}.
Let g be the element in {g1, g2, g3}− {e1, e4}. Then (e3, e2, e1, e4, g) is a fan
in M ′, so (e1, e2, e3, e4, g) is a fan in M0. As N is a minor of M0/e2\e3,
Lemma 6.12 implies that, up to reversing (e1, e4, g) is in FN , so (e1, e4, g) =
(g1, g2, g3). This means that (e3, e2, e1, e4, g) is a fan in M ′ that is consistent
with (g1, g2, g3), and

(F ′ − {F ′, (e1, e4, g)}) ∪ {F ′ − {f1, f2}, (e3, e2, e1, e4, g)}

is a covering family in M ′, contradicting 6.13.1. Therefore t ≥ 4.
Because e1 is not contained in any triad that is contained in G, we see

that e1 is a terminal spoke element in (g1, . . . , gt). By reversing as necessary,
we can assume that e1 = g1 and {g1, g2, g3} is a triangle.

Orthogonality between {g1, g2, g3} and {e1, e2, e4} requires that e4 is in
{g2, g3}. Assume that e4 = g2. Then

G′ = (e3, e2, g1, g2, g3, . . . , gt) = (e3, e2, e1, e4, g3, . . . , gt)

is a fan in M ′. It is easy to see that (F ′ − {F ′, G}) ∪ {F ′ − {f1, f2}, G′} is
a covering family in M ′, contradicting 6.13.1. Therefore g3 = e4.

Next we observe that t = 4, for otherwise {g3, g4, g5} is a triangle and
{e1, e2, e4} is a triad that intersects it in the element e4 = g3. Now GN is a
subsequence of at least three elements from (g1, g2, g3, g4) or (g4, g3, g2, g1)
that contains e1.
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Assume that g4 is not in GN . Then GN is equal, up to reversing,
to (g1, g2, g3). Since (e3, e2, g1, g3, g2) = (e3, e2, e1, e4, g2) is a fan in M ′,
(e1, e2, e3, e4, g2) is a fan in M0. As N is a minor of M0/e2\e3, we see from
Lemma 6.12 that (e1, e4, g2) = (g1, g3, g2), or its reversal, is in FN . There-
fore FN contains two distinct fans of three elements that are non-disjoint.
This contradiction shows that g4 is in GN .

Assume that exactly one of g2 and g3 is in GN . Then GN is consistent
with the fan G′ = (e3, e2, g1, g3, g2, g4) = (e3, e2, e1, e4, g2, g4) in M ′, and

(F ′ − {F ′, G}) ∪ {F ′ − {f1, f2}, G′}
is a covering family of M ′, violating 6.13.1. We conclude that GN is equal,
up to reversing, to (g1, g2, g3, g4).

Now (e3, e2, g1, g3, g2, g4) = (e3, e2, e1, e4, g2, g4) is a fan in M ′, so
(e1, e2, e3, e4, g2, g4) is a fan in M0, and some ordering of {e1, e4, g2, g4} is
in FN . By Lemma 6.12, (e1, e4, g2, g4) = (g1, g3, g2, g4) or its reversal is in
FN . This shows that FN contains two distinct fans that are non-disjoint.
We have a contradiction that completes the proof of the lemma. �

Now we have some control over the ways in which we may permute the
element labels on M . The next result shows a consequence of this: we can
assume that there is an element in M whose removal is 3-connected with N
as a minor.

Lemma 6.14. There exists a matroid M0, isomorphic to M , such that N
is a minor of M0, but M0 is not a fan-extension of N . Moreover, M0 has a
3-connected single-element deletion or contraction that has N as a minor.

Proof. We will assume that the lemma is false, so that no such matroid M0

exists. Let e be an element in E(M) − E(N). We use Proposition 6.8.
By possibly replacing M , N , and M with their duals, we can assume that
(e1, . . . , en) is a fan of M such that N is a minor of M/ei\ei+1 for some rim
element ei, where i ∈ {2, . . . , n − 2}. Moreover, M/ei\ei+1 is 3-connected.
We assume that amongst all such fans, (e1, . . . , en) has been chosen so that
n is as large as possible.

6.14.1. If e1 is a spoke element of (e1, . . . , en), then M\e1 is 3-connected,
and if e1 is a rim element, then M/e1 is 3-connected.

Proof. Assume e1 is a rim element. Then n > 4, for otherwise i = 2, and
both e1 and e2 are rim elements. If M/e1 is not 3-connected, then e1 is in a
triangle. It follows from Proposition 5.6 that this triangle is not contained
in {e1, . . . , en}. Let z /∈ {e1, . . . , en} be an element in a triangle with e1.
Orthogonality with {e1, e2, e3} and {e3, e4, e5} shows {e1, e2, z} is a triangle,
and (z, e1, . . . , en) is a fan. This contradicts the maximality of n. Similarly,
if e1 is a spoke element and M\e1 is not 3-connected, then e1 is in a triad
with an element z /∈ {e1, . . . , en}, and either (z, e1, . . . , en) is a fan, or n = 4,
and {e1, e3, z} is a triad. In the first case we have a contradiction to the
maximality of n. In the latter case, n = 4 and i = 2, so N is a minor of
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M/e2\e3, but {e1, e3, z} is a triad that contains the parallel pair {e1, e3} in
M/e2, contradicting Proposition 6.2. �

Define M (0) to be M . We obtain M (1) from M (0) by swapping labels
on ei−1 and ei+1. Then M (1)/ei\ei+1 = M (0)/ei\ei+1, and by applying

Lemma 6.13 to (ei−1, ei, ei+1, ei+2) we see that M (1) is not a fan-extension

of N . Let M (2) be obtained from M (1) by swapping the labels on ei−2 and
ei. Then M (2)/ei\ei+1 = M (1)/ei\ei+1, and the dual of Lemma 6.13 implies

M (2) is not a fan-extension of N . In general, when j ∈ {1, . . . , i − 1}, we

obtain M (j) from M (j−1) by swapping labels on ei−j and ei+1 if j is odd,
and on ei−j and ei if j is even. An obvious inductive argument establishes
the following statement.

6.14.2. For every j ∈ {0, 1, . . . , i − 1}, M (j)/ei\ei+1 = M/ei\ei+1, so

M (j)/ei\ei+1 has N as a minor. Moreover, M (j) is not a fan-extension
of N .

Note that M (i−1) is obtained from M by relabeling (e1, . . . , en) as{
(ei, ei+1, e1, . . . , ei−1, ei+2, . . . , en) if i is odd

(ei+1, ei, e1, . . . , ei−1, ei+2, . . . , en) if i is even.

Assume i is odd, so e1 is a rim element of (e1, . . . , en) in M . There is an

isomorphism from M to M (i−1) that relabels e1 as ei. Therefore M (i−1)/ei
is 3-connected, by 6.14.1. Similarly, if i is even, then e1 is a spoke element
and M (i−1)\ei+1 is 3-connected. In either case, M (i−1) is isomorphic to M ,

and has N as a minor, but is not a fan-extension of N . Since M (i−1) has a
3-connected single-element deletion or contraction that has N as a minor,
the lemma is proved. �

Now we can assume M has a 3-connected single-element deletion or con-
traction with N as a minor. Lemma 6.13 considered swapping labels on
elements that belonged to a fan of M . In the next lemma we swap labels on
elements that belong to a fan in a 3-connected single-element deletion.

Lemma 6.15. Let M0 be isomorphic to M , and assume that M0 has N as
a minor, but is not a fan-extension of N . Assume M0\e is 3-connected and
has (e1, e2, e3, e4) as a fan. Moreover, assume that either:

(i) e2 is a rim element and N is a minor of M0\e/e2\e3, or
(ii) e2 is a spoke element, and N is a minor of M0\e\e2/e3.

Let M ′ be obtained from M0 by swapping the labels on e1 and e3. Then M ′

has N as a minor, but is not a fan-extension of N .

Proof. Note that in case (i), M ′\e/e2\e3 = M0\e/e2\e3, and in case
(ii), M ′\e\e2/e3 = M0\e\e2/e3, so M ′ certainly has N as a minor. If
(e1, e2, e3, e4) is a fan of M0, then we could apply Lemma 6.13 or its dual
to (e1, e2, e3, e4), and deduce that M ′ is not a fan-extension of N . In this
case there is nothing left to prove, so we assume that (e1, e2, e3, e4) is not
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a fan of M0. Thus, if statement (i) holds, {e, e2, e3, e4} is a cocircuit of
M0. In this case we set (x1, x2, x3, x4) to be (e1, e2, e3, e4). If statement (ii)
holds, {e, e1, e2, e3} is a cocircuit, and in this case we set (x1, x2, x3, x4) to
be (e4, e3, e2, e1). In either case, (x1, x2, x3, x4) is a fan of M0\e with x1 as a
spoke element, N is a minor of M0\e/x2\x3, and {e, x2, x3, x4} is a cocircuit
of M0.

6.15.1. M0\e/x2\x3 is 3-connected.

Proof. This follows by applying Proposition 6.4 to M0\e. �

6.15.2. M0\x3 is 3-connected.

Proof. Assume otherwise. Then x3 is contained in a triad, T ∗, of M0. As
M0\e is 3-connected, T ∗ is also a triad in M0\e. Proposition 6.2 and or-
thogonality with {x1, x2, x3} shows that T ∗ contains exactly one of x1 or x2.
If x1 is in T ∗, then T ∗ is a dependent triad in M0/x2. Since N is a minor
of M0/x2 this contradicts Proposition 6.2. Therefore x2, x3 ∈ T ∗. Note
T ∗ 6= {x2, x3, x4}, as {e, x2, x3, x4} is a cocircuit of M0. Therefore T ∗ ∪ x4
is a U2,4-corestriction in M0\e that intersects the triangle {x1, x2, x3}. This
contradiction to the dual of Corollary 6.3 completes the proof. �

We will assume for a contradiction that M ′ is a fan-extension of N . Then
there is a covering family of M ′ containing a fan, Fe, that contains e. As
M ′\e is 3-connected (since it is isomorphic to M0\e) and Fe contains at
least four elements, it follows that e is a terminal spoke element of a fan in
M0 that has at least four elements. Let Te be the triangle in this fan that
contains e. Orthogonality with {e, x2, x3, x4} shows that Te contains x2, x3,
or x4. As Te−e is contained in a triad of M0, it follows from 6.15.2 that x3 is
not in Te. Assume that x2 is in Te. Orthogonality between {x1, x2, x3} and
the triad containing Te−e shows that x1 is contained in the triad. However,
x1 is not in Te, for that would imply Te ∪ x3 is a U2,4-restriction of M0 that
intersects a triad, a contradiction. Now we can swap the labels on x1 and
x3, and delete x3. The resulting matroid has N as a minor, since x1 and x3
are parallel in M0/x2, and contains the codependent triangle Te. Because
this is a contradiction, we conclude that x2 is not in Te, so x4 ∈ Te. Let z
be the third element of Te, so that {e, x4, z} is a triangle in M0, and {x4, z}
is contained in a triad, {x4, z, z′}, of M0.

6.15.3. The elements in {e, x1, x2, x3, x4, z, z′} are pairwise distinct.

Proof. By the hypotheses of the lemma, e, x1, x2, x3, and x4 are pairwise
distinct. Also, e, x4, z, and z′ are distinct members of a fan. If z = x1, then
orthogonality between {x1, x2, x3} and {x4, z, z′} shows that z′ ∈ {x2, x3}.
Then {x4, z, z′} and {x2, x3, x4} are distinct triads of M0\e that intersect in
two elements. Hence M0\e has a U2,4-corestriction intersecting a triangle, a
contradiction. If z = x2, then {e, x2, x4} is a triangle and a triad in M0\x3,
which is impossible by 6.15.2. Finally, if z = x3, then M0\x3 contains the
series pair {x4, z′}, contradicting 6.15.2. This shows that e, x1, x2, x3,
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x4, and z are pairwise distinct. If z′ ∈ {x1, x2, x3}, then we contradict
orthogonality with {x4, z, z′}. This completes the proof. �

Now we subdivide into two cases.
Case 1. Statement (i) holds, so M ′ is obtained from M0 by swapping the

labels on x1 and x3. Since M ′ is a fan-extension of N , there is a covering fam-
ily, F ′, of M ′ containing a fan, F2, that contains x2. Let F2 = (f1, . . . , fm)
Note that m ≥ 4.

Assume that x2 is contained in a triangle, T2, that is contained in F2.
Suppose x3 is not in T2. From 6.15.1 we see that M ′\e/x2\x3 contains
no parallel pair, so e is in T2. This means m ≥ 5, as F2 contains e, x2,
and at least three elements of E(N). Because M ′\e is 3-connected, e is
contained in no triad of M ′. Therefore we can assume that e = f1, and
f1 is a spoke element of F2. Thus T2 = {f1, f2, f3}. As N is a minor of
M ′/x2\e, Proposition 6.7 implies e and x2 are consecutive in F2, so x2 = f2.
Proposition 6.4 applied to (fm, . . . , f1) implies that M ′/f2\f1 = M ′/x2\e is
3-connected. This is impossible, as this matroid contains the parallel pair
{x1, x3}. Therefore we conclude that x3 is in T2.

If x1 is not in T2, then T2∪x1 is a U2,4-restriction of M ′\e, and {x2, x1, x4}
is a triad. This contradiction shows that T2 = {x1, x2, x3}. Now {x1, x2, x3}
form a set of three consecutive elements in F2, by Proposition 5.6. Let F ′2
be the fan obtained from F2 by swapping x1 and x3. As x2 and x3 are not in
E(N), it is clear that (F ′−{F2})∪{F ′2} is a covering family of M0. This is
a contradiction to Lemma 6.11, so we have to conclude that x2 is contained
in no triangle in F2. Therefore we can assume that x2 = f1, and this is a
rim element of F2.

By orthogonality with {x1, x2, x3}, and the fact that M ′\x1 is 3-connected
(by 6.15.2), we see that {f1, f2, f3} contains x3, so m ≥ 5. The dual of
Proposition 6.7 shows that x2 and x3 are consecutive elements in F2, so
x3 = f2. If x1 is in F2, then we can apply Proposition 5.6 to deduce that
x1 = f3. This implies {f1, f2, f3} is simultaneously a triad and a triangle of
M ′, which is impossible. Hence x1 is not in F2. Let (F2 + x1)

′ be the fan
of M0 obtained by appending x1 to the end of F2 and then swapping the
locations of x1 and x3. Since (F ′ − {F2}) ∪ (F2 + x1)

′ cannot be a covering
family in M0, it follows that x1 is in another fan, F1, belonging to F ′.
Orthogonality with {x1, x2, x3} shows that x1 is a terminal spoke element in
F1. Because (F ′ − {F1, F2}) ∪ {F1 − x1, (F2 + x1)

′} is not a covering family
of M0, we deduce that x1 is in the fan of FN that is consistent with F1.

Let T1 be the triangle in F1 that contains x1. Orthogonality with
{e, x2, x1, x4}, implies that T1 contains e or x4. If e ∈ T1, then |F1| ≥ 4, as
e is not in E(N). In this case, e is in a triad that is contained in F1, which
is a contradiction, as M ′\e is 3-connected. Therefore T1 contains x4. Recall
that {e, x4, z} is a triangle and {x4, z, z′} is a triad of M0, and hence of M ′,
for some element z′. Assume T1 contains z. This implies that {e, x1, x4, z}
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is a U2,4-restriction of M ′ that meets the triad {x4, z, z′}, which is impossi-
ble. Therefore T1 contains z′. By swapping labels on x1 and x3 in M ′, we
see that {x3, x4, z′} is a triangle of M0. Let M1 be the matroid obtained
from M0 by swapping labels on x2 and x4. As {x2, x4} is a series pair in
M0\e\x3, it follows that M1\e\x3/x2 = M0\e\x3/x2, so M1\e\x3/x2 has N
as a minor. Now {x3, x2, z′} is a triangle of M1, so {x3, z′} is a parallel pair
in M1/x2. We let M2 be the matroid obtained from M1 by swapping labels
on x3 and z′. Then M2/x2\x3\e = M1/x2\x3\e, and hence M2/x2\x3\e has
N as a minor. However, {e, x2, z} is a triangle in M2\x3, and {x2, z} is a
series pair. This contradiction to Proposition 6.2 competes the analysis of
Case 1.

Case 2. Statement (ii) holds, so M ′ is obtained from M0 by swapping
the labels on x2 and x4. Let F ′ be a covering family of M ′, and let F3 ∈ F ′
be the fan that contains x3. Note that x3 is a terminal spoke element of
F3 as M ′\x3 is 3-connected. Let T3 be the triangle in F3 that contains x3.
Orthogonality with the cocircuit {e, x2, x3, x4} shows that e, x2, or x4 is in
T3. Since M ′\e is 3-connected, and T3 − x3 is contained in a triad, e is not
in T3. Assume x2 is in T3. Since {x2, z, z′} is a triad of M ′, either z or z′ is
in T3. In the former case, {e, x2, x3, z} is a U2,4-restriction that intersects a
triad, which is a contradiction. Hence T3 = {x2, x3, z′}. As M ′/x2 contains
the parallel pair {x3, z′} and N as a minor, we can swap labels on x3 and z′

in M ′ and then delete x3. The resulting matroid contains N as a minor, a
triangle {e, x2, z}, and a series pair {x2, z}. This contradicts Proposition 6.2,
so we deduce that x4 is in T3. Now T3 = {x1, x4, x3}, for otherwise T3 ∪ x1
is a U2,4-restriction of M ′\e that intersects a triad. Let F3 = (f1, . . . , fs).
By reversing, we can assume that fs = x3.

Proposition 5.6 implies that {x1, x4, x3} = {fs−2, fs−1, fs}. Assume that
x4 6= fs−1. If s ≥ 5, then we let F ′3 be the fan of M0 obtained from F3 by
relabeling x4 with x2. As N is a minor of M0/x2\x3, and {x1, x2, x3} ⊆ F ′3,
Proposition 6.7 implies x2 and x3 are consecutive in F ′3, which implies x4
and x3 are consecutive in F3, contrary to assumption. Therefore s = 4,
and F3 = (f1, x4, x1, x3). Thus (f1, x4, x1) or its reversal is in FN . Note
that {f1, x1, x4} is a triad of M ′, so {f1, x1, x2} is a triad of M0, and
(f1, x1, x2, x3, x4) is a fan in M0\e. As M0\e is a fan-extension of N , it
contains a fan that has (f1, x4, x1) as a subsequence. This fan intersects
(f1, x1, x2, x3, x4) in at least three elements, so it contains {f1, x1, x2, x3, x4},
by Lemma 5.8, and therefore contains (f1, x1, x2, x3, x4) as a contiguous
subsequence, by three applications of Proposition 5.6 and its dual. Hence
(f1, x4, x1) is not a subsequence after all. From this contradiction we see
that x4 = fs−1 and (fs−2, fs−1, fs) = (x1, x4, x3).

Let FN be the fan in FN that is consistent with F3. Let F be the family
of fans in M0 that is induced from F ′ by swapping the labels on x2 and x4.
As the fans in F ′ contains all elements in E(M ′) − E(N), it follows that
the fans in F contain all elements in E(M0) − E(N), except possibly for
x2. However, x4 is in F3, so x2 is in a fan of F . Therefore the fans in F
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contain every element in E(M0)−E(N). As x2 does not belong to a fan of
FN , the only way F can fail to be a covering family of M0 is if x4 is in FN .
We deduce this is the case. Then x4 is a terminal element of FN , because
(fs−2, fs−1, fs) = (x1, x4, x3) and x3 /∈ E(N).

We claim that {e, x2, x4} is the unique triad of M0\x3 that contains e.
Suppose T ∗ is another such triad. If x2 is in T ∗, then T ∗ ∪x4 is a U2,4-core-
striction of M0\x3, and {e, x4, z} is a triangle that intersects it. This is
a contradiction, so x2 /∈ T ∗. This means that T ∗ − e is a series pair of
M0\e/x2\x3, contradicting 6.15.1, and proving the claim.

As M0\x3 is 3-connected, it contains a covering family.

6.15.4. There exists a covering family of M0\x3 containing a fan that con-
tains e and x2.

Proof. Let G be an arbitrary covering family of M0\x3, and let G =
(g1, . . . , gt) be the fan in G that contains e. If e is in a triad that is contained
in G, then we are done, as this triad must be {e, x2, x4}, by the earlier claim.
Therefore we assume that e = g1 is a terminal spoke element of G, and x2
is not in G. Orthogonality between {e, x2, x4} and {g1, g2, g3} shows that
x4 ∈ {g2, g3}. If x4 = g3, then t = 4, for otherwise we contradict orthogonal-
ity between {e, x2, x4} and {g3, g4, g5}. In this case (g2, g3, g4) = (g2, x4, g4)
or its reversal is in FN . Recall FN is the fan in FN consistent with F3, and
x4 is in FN . Hence FN is (g2, x4, g4) or its reversal, and this is a contradic-
tion, as we concluded x4 is a terminal element of FN . Therefore x4 = g2,
and G+ x2 = (x2, g1, . . . , gt) is a fan of M0\x3. Let G′ be the fan in G that
contains x2. Then x2 is a terminal rim element of G′, by orthogonality with
{e, x2, x4}. Now (G − {G,G′}) ∪ {G + x2, G

′ − x2} is the desired covering
family of M0\x3. �

Next we claimM0\x3/x2 is 3-connected. Note that (fs−3, fs−2, fs−1, fs) =
(fs−3, x1, x4, x3) is a fan of M ′, so (fs−3, x1, x2, x3) is a fan in M0. Now
Proposition 6.4 tells us that M0\x3/x2 is 3-connected, as desired.

Let G be a covering family of M0\x3, and let G = (g1, . . . , gt) be a fan
in G that contains e and x2. Then t ≥ 5. As M0\x3/x2 is 3-connected, x2
is a terminal rim element of G. We can assume x2 = g1. The only triad of
M0\x3 that contains e is {e, x2, x4}, so if x4 is not in G then e is contained
in no triad in G, implying e = gt is a spoke element. But then {e, x2, x4}
violates orthogonality with {gt−2, gt−1, gt}. Hence G contains e, x2, and x4.
The dual of Proposition 5.6 implies {e, x2, x4} = {g1, g2, g3}. As t ≥ 5, and e
is not contained in the triad {g3, g4, g5}, we see that (g1, g2, g3) = (x2, e, x4).

Since G contains x4 it follows that FN is consistent with G. Now consider
the fans G and (f1, . . . , fs−2, x2) in M0\x3. They both contain x2, and the
elements of FN − x4. Therefore they intersect in at least three elements, so
we can apply Lemma 5.8. This shows that the elements common to both fans
form contiguous subsequences in both. This implies {g1, g2, g3} = {x2, e, x4}
is a triad contained in (f1, . . . , fs−2, x2). Therefore Proposition 5.6 implies
{x2, e, x4} = {x2, fs−2, fs−3} = {x2, x1, fs−3}. This is impossible as e, x1,
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and x4 are distinct elements. We have a contradiction that completes the
proof of Lemma 6.15. �

If M0\e is 3-connected with N as a minor, where M0 is isomorphic to
M and is not a fan-extension, then M0\e must be a fan-extension, by the
minimality of M . This implies M0\e has a covering family. In the next
result, we examine this covering family, and discover that the elements in
E(M0\e)− E(N) are concentrated at the ends of fans.

Lemma 6.16. Let M0 be isomorphic to M . Assume that N is a minor of
M0, but that M0 is not a fan-extension of N . Assume also that M0\e is
3-connected and has N as a minor. Let Fe be a covering family of M0\e,
and let (e1, . . . , em) be a fan in Fe. If 2 < i < m− 1, then ei is in E(N).

Proof. Assume that the lemma fails, so that (e′1, . . . , e
′
m) is a fan in a covering

family of M0\e and e′j is in E(M0\e)− E(N), for some j ∈ {3, . . . ,m− 2}.
Note that m ≥ 5.

We claim that either e′j−1 or e′j+1 is in E(M0\e) − E(N). Assume for a

contradiction that {e′j−1, e′j+1} ⊆ E(N). If e′j is a rim element in (e′1, . . . , e
′
m)

then let M ′ be M0\e and let N ′ be N . Otherwise let M ′ be (M0\e)∗ and
let N ′ be N∗. Thus e′j is a rim element in the fan (e′1, . . . , e

′
m) in M ′. Now

N ′ is a minor of M ′\e′j , for if N ′ is a minor of M ′/e′j , then N ′ contains the

parallel pair {e′j−1, e′j+1}. Therefore m = 5 and j = 3, because otherwise

{e′j−3, e′j−2, e′j−1} or {e′j+1, e
′
j+2, e

′
j+3} is a codependent triangle in M ′\e′j .

From m = 5 and j = 3, it follows that {e′1, e′2, e′4, e′5} is a union of series
pairs in M ′\e′j , and contains at least three elements of E(N ′). This leads

to a contradiction to the 3-connectivity of N ′. Therefore e′j−1 or e′j+1 is in

E(M0\e)− E(N), as claimed.
By reversing (e′1, . . . , e

′
m) as necessary, we can assume that e′i and e′i+1

are in E(M0\e)− E(N), where 1 < i < m, and e′i is a rim element. Propo-
sition 6.5 tells us that N is a minor of M0\e/e′i\e′i+1.

By applying Lemma 6.15 to the fan (e′i−1, e
′
i, e
′
i+1, e

′
i+2), we see that we

can swap labels on e′i−1 and e′i+1 without any loss of generality. If i− 1 > 1,
we would then be able to apply Lemma 6.15 to the fan (e′i−2, e

′
i+1, e

′
i, e
′
i−1),

and swap labels on e′i−2 and e′i. Deleting e from the resulting matroid reveals
the following fan:

(e1, . . . , e
′
i−3, e

′
i, e
′
i+1, e

′
i−2, e

′
i−1, e

′
i+2, . . . , em).

In fact, by starting from (e′1, . . . , e
′
i, e
′
i+1, . . . , e

′
m), and repeatedly applying

Lemma 6.15, it is possible for us to assume that any sequence of the form

(e′1, . . . , e
′
j , x, y, e

′
j+1, . . . , e

′
i−1, e

′
i+2, . . . , e

′
m) or

(e′1, . . . , e
′
i−1, e

′
i+2, . . . , e

′
j , x, y, e

′
j+1, . . . , e

′
m)

is a fan of M0\e. If we have applied Lemma 6.15 an even number of
times in this process, then (x, y) is (e′i, e

′
i+1), otherwise it is (e′i+1, e

′
i). Note

that this collection of sequences includes (x, y, e′1, . . . , e
′
i−1, e

′
i+2, . . . , e

′
m) and
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(e′1, . . . , e
′
i−1, e

′
i+2, . . . , e

′
m, x, y). We remark that if i had been equal to 1 or

m−1, then Lemma 6.15 would not have been applicable. This is why it was
necessary to show that i lies between 2 and m− 1.

Since there is a fan of FN that is consistent with (e′1, . . . , e
′
m), by re-

peatedly applying Lemma 6.15, we can assume that we have the follow-
ing situation: (e1, . . . , en+2) is a contiguous subsequence of (e′1, . . . , e

′
m),

and is therefore a fan of M0\e. Some fan F ∈ FN is consistent with
(e1, . . . , en) and contains e1 and en. Also, en+1 and en+2 are not in E(N).
Let {x, y} = {en+1, en+2}, where x is a rim element of (e1, . . . , en+2). Then
N is a minor of M0\e/x\y by Proposition 6.5.

6.16.1. Let ei be a rim element of (e1, . . . , en+2), where 1 ≤ i ≤ n. Then
{ei, ei+1, ei+2} is not a triad in M0.

Proof. Assume this is false. By starting from (e′1, . . . , e
′
m), and using

Lemma 6.15 to shift x and y, we can, without losing any generality, as-
sume that (e1, . . . , ei−1, x, y, ei, . . . , en) is a fan of M0\e. Here x is a rim
element and {x, y, ei} is a triad of M0, while N is a minor of M0\e/x\y. By
Proposition 6.4, M0\e/x\y is 3-connected. If M0/x\y is not 3-connected,
there is a triangle of M0 that contains x and e but not y. Orthogonal-
ity with {x, y, ei} shows that {e, x, ei} is a triangle of M0, so {e, x, ei} is
a codependent triangle in M0\y. This contradiction shows that M0/x\y is
3-connected, and is therefore a fan-extension of N .

Let F ′ be the fan in a covering family of M0/x\y such that F is consistent
with F ′. Now (e1, . . . , en) is a fan of M0/x\y\e, by Proposition 5.2, and F
is consistent with (e1, . . . , en) and contains e1 and en. Note that if e is
in F ′, then it is a terminal spoke element, as M0/x\y\e is 3-connected.
Hence F ′ − e is a fan of M0/x\y\e. Because F ′ − e and (e1, . . . , en) have
at least three elements in common, and these elements include e1 and en, it
follows from Lemma 5.8 that the elements in {e1, . . . , en} form a contiguous
subsequence of F ′ − e.

Assume that the elements {e1, . . . , en} do not appear in the order
(e1, . . . , en) in F ′−e. Then it follows easily from Proposition 5.6 that n < 5.
Note that F is consistent with (e1, . . . , en) and with F ′, so the elements of F
appear in F ′ in the same order as they do in (e1, . . . , en). Therefore our as-
sumption means that F is not equal to (e1, . . . , en) or its reversal, although
it contains e1 and en. If n = 3, then F is equal to (e1, e2, e3) or its reversal,
contrary to our conclusion. Therefore n = 4, and F is either (e1, e2, e4)
or (e1, e3, e4), or one of their reversals. Now {e1, e2, e3, e4} is contained in
E(N), or else N contains a series or parallel pair. Therefore (e1, e2, e3, e4)
is a fan of N . As (e1, e2, e4) or (e1, e3, e4) is also a fan of N , we have con-
tradicted Proposition 5.6. Thus (e1, . . . , en) is a contiguous subsequence of
F ′ − e, and hence of F ′.

Let F ′ be (f1, . . . , fj−1, e1, . . . , en, fj , . . . , fp), so this sequence is a fan in
M0/x\y. We will show that

(f1, . . . , fj−1, e1, . . . , ei−1, x, y, ei, . . . , en, fj , . . . , fp)
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is a fan in M0. Let this sequence be labeled (g1, . . . , gk−1, x, y, gk, . . . , gr),
so that (g1, . . . , gr) is a fan in M0/x\y. Note that i ≤ n, so there is at least
one element in {gk, . . . , gr}. By assumption, {x, y, ei} = {x, y, gk} is a triad
of M0.

Assume that r ≥ k+1. If gk+1 = ei+1, then {y, ei, ei+1} = {y, gk, gk+1} is
a triangle of M0, since (e1, . . . , ei−1, x, y, ei, . . . , en) is a fan in M0\e. On the
other hand, if gk+1 = fj , then i = n, and {en−1, en, fj} = {gk−1, gk, gk+1}
is a triangle in M0/x\y. It cannot be a triangle in M0 by orthogonality
with the triad {x, y, gk}. Therefore {gk−1, x, gk, gk+1} is a circuit in M0.
Now {gk−1, x, y} is a triangle of M0\e, and therefore of M0. Strong circuit-
exchange between {gk−1, x, gk, gk+1} and {gk−1, x, y} shows that there is
a circuit in {gk−1, y, gk, gk+1} that contains y. Orthogonality shows that
this circuit cannot contain gk−1, because n ≥ 3, and {en−2, en−1, x} =
{gk−2, gk−1, x} is a triad of M0\e. Therefore {y, gk, gk+1} is a triangle in
M0 in any case.

Next we assume that r ≥ k + 2. Then {gk, gk+1, gk+2} is a triad in
M0/x\y. Assume that it is not a triad in M0, so that {y, gk, gk+1, gk+2}
is a cocircuit. If n ≥ i + 2, then {ei, ei+1, ei+2} = {gk, gk+1, gk+2} is a
triad in M0\e, and {y, gk, gk+1, gk+2} is a union of cocircuits. Therefore
{y, gk, gk+1, gk+2} is a U2,4-corestriction of M0\e. As {y, gk, gk+1} is a tri-
angle this is a contradiction to Corollary 6.3, so n < i + 2, meaning that
i > 1. Now {ei−1, x, y} = {gk−1, x, y} is a triangle of M0\e that violates
orthogonality with {y, gk, gk+1, gk+2}. Hence {gk, gk+1, gk+2} is a triad in
M0.

Now we consider all the sets comprising three consecutive elements in
(gk+1, . . . , gr). If such a set is a triangle in M0/x\y, then it is a trian-
gle in M0, by orthogonality with the triad {x, y, gk}. If such a set is a
triad in M0/x\y, then it is a triad in M0 by orthogonality with the triangle
{y, gk, gk+1}. We have shown that (x, y, gk, . . . , gr) is a fan in M0.

Assume that k > 1. If gk−1 = ei−1, then {gk−1, x, y} is a triangle in M0,
since (e1, . . . , ei−1, x, y, ei, . . . , en) is a fan of M0\e. Therefore we assume
that gk−1 = fj−1. This means that i = 1, which implies that {gk, . . . , gr}
contains at least three elements. Note {fj−1, e1, e2} = {gk−1, gk, gk+1} is a
triangle in M0/x\y, but not in M0, by orthogonality with the triad {x, y, gk}.
Therefore {gk−1, x, gk, gk+1} is a circuit in M0. We perform strong circuit-
exchange on {gk−1, x, gk, gk+1} and the triangle {y, gk, gk+1} to obtain a
circuit of M0 contained in {gk−1, x, y, gk+1} that contains y. Orthogonality
with the triad {gk, gk+1, gk+2} shows that this circuit cannot contain gk+1.
Therefore {gk−1, x, y} is a triangle of M0 in any case.

Next we assume that k > 2. We wish to show that {gk−2, gk−1, x} is a
triad in M0. Now {gk−2, gk−1, gk} is a triad in M0/x\y. It is not a triad
in M0, by orthogonality with the triangle {gk−1, x, y}, so {gk−2, gk−1, y, gk}
is a cocircuit of M0. By strong cocircuit-exchange with {x, y, gk}, we find
a cocircuit, C∗, of M0 contained in {gk−2, gk−1, x, gk} that contains x. If
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C∗ does not contain gk, then {gk−2, gk−1, x} is a triad, as desired. There-
fore we assume that gk ∈ C∗. Orthogonality with the triangle {gk−1, x, y}
shows that gk−1 ∈ C∗. Because {x, y, gk} is a triad of M0, it follows that if
C∗ = {gk−1, x, gk}, then C∗ ∪ y is a U2,4-corestriction of M0. As {gk−1, x, y}
is a triangle, this contradicts Corollary 6.3. Hence C∗ = {gk−2, gk−1, x, gk}.
It follows that r = k, for otherwise C∗ and {y, gk, gk+1} violate orthogo-
nality. From r = k, we deduce that i = n, and as n ≥ 3, it follows that
(gk−2, gk−1) = (en−2, en−1), so {gk−2, gk−1, x} is a triad in M0\e. Now C∗

is a union of cocircuits in M0\e that contains the triad {gk−2, gk−1, x}, so
C∗ is a U2,4-corestriction in M0\e. Since {gk−1, x, y} is a triangle, this is
impossible. Therefore {gk−2, gk−1, x} is a triad in M0, as we claimed.

Finally, we observe that any set of three consecutive elements from
(g1, . . . , gk−1) that is a triangle in M0/x\y is a triangle in M0, since {x, y, gk}
is a triad. Any such set that is a triad in M0/x\y is a triad in M0, as
{gk−1, x, y} is a triangle.

We have shown that

(g1, . . . , gk−1, x, y, gk, . . . , gr) =

(f1, . . . , fj−1, e1, . . . , ei−1, x, y, ei, . . . , en, fj , . . . , fp)

is a fan of M0. Now M0/x\y has a covering family containing F ′ =
(f1, . . . , fj−1, e1, . . . , en, fj , . . . , fp), and M0 is obtained from M0/x\y by a
fan-lengthening move on this fan. Hence M0 is a fan-extension of N . This
contradiction completes the proof of 6.16.1. �

6.16.2. If ei is a rim element of (e1, . . . , en+2), and there is a triad of M0\e
contained in {e1, . . . , en+2} that does not contain ei, then there is a triangle
of M0 containing {e, ei}.
Proof. Assume that the claim fails. We will start from (e′1, . . . , e

′
m), and

then use Lemma 6.15 to shift x and y appropriately. By then possibly
reversing, we can assume that (e1, . . . , ei−1, x, y, ei, . . . , en) is a fan of M0\e,
where x is a rim element and M0\e/x\y has N as a minor; moreover, we
assume there is no triangle of M0 containing {e, x}, and {ej , ej+1, ej+2} is
a triad of M0\e, for some j ∈ {i, . . . , n − 2}. Proposition 6.4 implies that
M0\e/x\y is 3-connected. Because there is no triangle containing e and x
in M0, it follows that M0/x\y is 3-connected, and hence a fan-extension
of N . Let F ′ be the fan in a covering family of M0/x\y such that F is
consistent with F ′. If F ′ contains e, then e is a terminal element because
M0/x\y\e is 3-connected, so F ′ − e is a fan of M0/x\y\e. Now F is also
consistent with (e1, . . . , en), which is a fan of M0/x\y\e. Since (e1, . . . , en)
and F ′ − e have at least three elements in common, including e1 and en, it
follows from Lemma 5.8 that the elements in {e1, . . . , en} form a contiguous
subsequence of F ′ − e. As {ej , ej+1, ej+2} is a triad in M0/x\y\e, it is a
set of three consecutive elements in F ′ by the dual of Proposition 5.6. It
cannot be a triangle in M0/x\y, for then it would be a triad and a triangle
in M0/x\y\e. Therefore {ej , ej+1, ej+2} is a triad in M0/x\y, but not in M0
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by 6.16.1. This shows that y is in the coclosure of {ei, . . . , en} in M0, and
hence in M0\e. It is in the closure of the same set because {y, ei, ei+1} is a
triangle. Thus {y, ei, . . . , en} is 2-separating in M0\e, so the complement of
{y, ei, . . . , en} contains at most one element. Proposition 5.4 implies M0\e
is a wheel or a whirl. This contradiction completes the proof of 6.16.2. �

6.16.3. n ≤ 5, and if n = 5, then e1 is a spoke element of (e1, . . . , en+2).

Proof. If this statement is false, then, by starting from (e′1, . . . , e
′
m),

and applying Lemma 6.15 to shift x and y as necessary, we can let
(x1, . . . , x5, y, x) be either (e1, . . . , e5, y, x) or (e2, . . . , e6, y, x), and assume
that (x1, . . . , x5, y, x) is a fan of M0\e, where N is a minor of M0\e/x\y,
and x1 is a rim element of (x1, . . . , x5, y, x). Since {x1, x2, x3}, {x3, x4, x5},
and {x5, y, x} are triads in M0\e, we apply 6.16.1 and 6.16.2 and see that
{e, x1, x2, x3}, {e, x3, x4, x5}, and {e, x5, y, x} are cocircuits in M0, and that
{e, x1}, {e, x3}, {e, x5}, and {e, x} are all contained in triangles of M0. Now
it is easy to see, using orthogonality, that {e, x1, x5} and {e, x3, x} are trian-
gles of M0. This implies that x ∈ clM0\e({x1, . . . , x5, y}). Since x is also in
cl∗M0\e({x1, . . . , x5, y}), we see that {x1, . . . , x5, y, x} is 2-separating in M0\e,
and it follows that M0\e is a wheel or a whirl. This contradiction completes
the proof. �

6.16.4. n ≤ 4.

Proof. If n > 4, then by 6.16.3, n = 5, and e1 is a spoke element. Therefore
(e1, . . . , e5, x, y) is a fan of M0\e, where N is a minor of M0\e/x\y. As
{e2, e3, e4} and {e4, e5, x} are triads of M0\e, 6.16.1 and 6.16.2 imply that
{e, e2, e3, e4} and {e, e4, e5, x} are cocircuits of M0, and {e, e2} and {e, x}
are contained in triangles of M0. Assume {e, e2, x} is not a triangle. Then
orthogonality requires that {e, e2} is in a triangle with e4 or e5, and that
{e, x} is in a triangle with e3 or e4. This implies that x is in the closure
and the coclosure of {e1, . . . , e5} in M0\e, and we arrive at the contradiction
that M0\e is a wheel or a whirl. Therefore {e, e2, x} is a triangle.

Assume M0\y is not 3-connected. Then there is a triad of M0 that con-
tains y. By orthogonality with {e5, x, y}, {e3, e4, e5}, and {e, e2, x}, we see
that y is in the coclosure and closure of {e1, . . . , e5, x} in M0, and also in
M0\e. This leads to a contradiction as before, so M0\y is 3-connected, and
therefore a fan-extension of N . This implies there is a fan, F ′, of M0\y such
that F is consistent with F ′ and e1 and e5 are terminal elements of F ′.

Proposition 6.4 implies that M0\y\e/x is 3-connected. If neither e nor
x is an internal element of F ′, then F ′ − {e, x} is a fan of M0\y\e/x by
the fact that M0\y\e/x is 3-connected. Assume either e or x is an internal
element in F ′. By applying Proposition 6.6 to M ′ = M0\y, we see that e
and x are consecutive in F ′, and x is a rim element. Then Proposition 5.2
implies F ′−{e, x} is a fan of M0\y\e/x, so this is true in any case. We note
that (e1, . . . , e5) is also a fan in M0\y\e/x. As F ′ − {e, x} and (e1, . . . , e5)
have at least three elements in common, including e1 and e5, Lemma 5.8
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shows that {e1, . . . , e5} is contained in F ′−{e, x}. Applying Proposition 5.6
three times shows that (e1, . . . , e5) is a contiguous subsequence of F ′−{e, x}.
Assume (e2, e3, e4) is a contiguous subsequence of F ′. Since {e2, e3, e4} is a
triad in M0\y\e/x, it cannot be a triangle in M0\y. Hence it is a triad in
M0\y, but not in M0. This means y is in the coclosure and the closure of
{e1, . . . , e5, x} in M0\e. This leads to a contradiction, so (e2, e3, e4) is not a
contiguous subsequence of F ′. This means that the elements {e, x, e3} are
consecutive in F ′, so {e, x, e3} is a triad or a triangle in M0\y. The former
case is impossible, by orthogonality with {e3, e4, e5}. Therefore {e, x, e3} is
a triangle of M0\y. Since {e, x, e2} is also a triangle, we see that {e, x, e2, e3}
is a U2,4-restriction of M0\y that is contained in the fan F ′. Therefore it
intersects a triad, and this contradiction to Corollary 6.3 shows that n ≤
4. �

6.16.5. n = 3.

Proof. If n > 3, then by 6.16.4, n = 4. If e1 is a rim element, we
let (x1, x2, x3, x4, x, y) be (e1, . . . , e6). Otherwise, we shift x and y using
Lemma 6.15 so that (y, x, e1, e2, e3, e4) is a fan of M0\e, and now we let
(x1, x2, x3, x4, x, y) be (e4, e3, e2, e1, x, y). In either case (x1, x2, x3, x4, x, y)
is a fan of M0\e with x1 as a rim element, and N is a minor of M0/x\y.
Since {x1, x2, x3} and {x3, x4, x} are triads of M0\e, we deduce from 6.16.1
and 6.16.2 that {e, x1, x2, x3} and {e, x3, x4, x} are cocircuits of M0, and
that {e, x1} and {e, x} are contained in triangles. If {e, x1, x} is not a trian-
gle, then x is contained in the closure and the coclosure of {x1, x2, x3, x4} in
M0\e, exactly as in the proof of 6.16.4. Because this leads to a contradiction,
{e, x1, x} is a triangle of M0.

If M0\y is not 3-connected, then there is a triad of M0 containing y, and
y is in the coclosure and the closure of {x1, x2, x3, x4, x} in M0\e, as in the
proof of 6.16.4. This gives a contradiction, so M0\y is 3-connected, and
hence a fan-extension of N . There is a fan, F ′, in M0\y such that F is
consistent with F ′, and x1 and x4 are terminal elements of F ′. If neither e
nor x is an internal element of F ′, then F ′ − {e, x} is a fan of M0\y\e/x.
If either e or x is an internal element, then Propositions 5.2 and 6.6 show
F ′−{e, x} is a fan of M0\y\e/x. As (x1, x2, x3, x4) is also a fan in M0\y\e/x,
the elements {x1, x2, x3, x4} form a contiguous subsequence of F ′ − {e, x}.

Assume (x1, x2, x3, x4) is not a contiguous subsequence of F ′−{e, x}. As
F is consistent with F ′ − {e, x}, it follows that, up to reversing, F is either
(x1, x2, x4) or (x1, x3, x4). In this case {x1, x2, x3, x4} ⊆ E(N), for otherwise
N contains a series or parallel pair. But then (x1, x2, x3, x4) is a fan of N ,
and so is either (x1, x2, x4) or (x1, x3, x4), contradicting Proposition 5.6.
Therefore (x1, x2, x3, x4) is a contiguous subsequence of F ′−{e, x}. Assume
(x1, x2, x3) is a contiguous subsequence of F ′. Then {x1, x2, x3} is a triad of
M0\y but not of M0, so y is in the coclosure and closure of {x1, x2, x3, x4, x}
in M0\e. This leads to a contradiction, so (x1, x2, x3) is not a contiguous
subsequence, and thus e, x, and x2 are consecutive in F ′. By orthogonality
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with {x2, x3, x4}, {e, x, x2} is not a triad in M0\y, so {e, x, x2} is a triangle
of M0\y. Thus {e, x1, x2, x} is a U2,4-restriction of M0\y that intersects a
triad contained in F ′. This contradiction completes the proof. �

6.16.6. e1 is a spoke element.

Proof. Assume that e1 is a rim element. Then (e1, e2, e3, y, x) is a fan of
M0\e, and F is equal to (e1, e2, e3) or its reversal. As before, we see that
{e, e1, e2, e3} and {e, e3, y, x} are cocircuits in M0, and {e, e1, x} is a triangle.

Assume M0\y is not 3-connected, so that y is contained in a triad, T ∗, of
M0. Note T ∗ is a triad of M0\e but T ∗ 6= {e3, y, x}. If T ∗∩{e3, x} 6= ∅, then
T ∗∪{e3, x} is a U2,4-corestriction in M0\e, and {e2, e3, y} is a triangle. This
contradiction to Corollary 6.3 shows that T ∗ ∩ {e3, x} = ∅. Orthogonality
with {e2, e3, y} now shows that e2 is in T ∗. Assume that we swap labels on
e3 and x in M0, and then contract x. The resulting matroid has N as a
minor, as {e3, x} is a series pair in M0\e\y. It also has the triad T ∗, which
contains the parallel pair {e2, y}. This contradiction shows that M0\y is
3-connected, and therefore a fan-extension of N .

Let F ′ be a fan of M0\y such that (e1, e2, e3) is consistent with F ′, and e1
and e3 are terminal elements. Now M0\y\e/x is 3-connected, and contains
the triad {e1, e2, e3}. As before, F ′−{e, x} is a fan of M0\y\e/x. It follows
that (e1, e2, e3) is a contiguous subsequence of F ′ − {e, x}. If (e1, e2, e3) is
a contiguous subsequence of F ′, then {e1, e2, e3} is a triad of M0\y, since it
cannot be a triangle and a triad inM0\y\e/x. Therefore {e1, e2, e3} is a triad
in M0\y but not in M0. This means {e1, e2, e3, y} is 2-separating in M0\e,
leading to the contradiction that M0\e is a wheel or a whirl. Therefore
(e1, e2, e3) is not a contiguous subsequence of F ′, so {e, x, e2} is a set of
consecutive elements in F ′. If {e, x, e2} is a triad in M0\y, then {e, x, e2, y}
is a cocircuit in M0, by orthogonality with {e2, e3, y}. Therefore {e2, y, x}
and {e3, y, x} are both triads in M0\e, so M0\e has a U2,4-corestriction that
intersects a triangle, a contradiction. This shows that {e, x, e2} is a triangle
in M0\y, so {e, x, e1, e2} is a U2,4-restriction of M0\y that intersects a triad
contained in F ′, a contradiction. �

Now we know that e1 is a spoke element and (e1, e2, e3) or its reversal
is in FN . By shifting x and y, we can assume that (e1, e2, y, x, e3) is a
fan in M0\e with e1 as a spoke element, and N is a minor of M0\e/x\y.
It follows from 6.16.1 that {e, e2, y, x} is a cocircuit in M0. Assume that
y is in a triad, T ∗, of M0. Then T ∗ 6= {e2, y, x}, and T ∗ is a triad of
M0\e. If T ∗ ∩ {e2, x} 6= ∅, then T ∗ ∪ {e2, x} is a U2,4-corestriction of M0\e
that intersects a triangle, which is impossible. Therefore T ∗ ∩ {e2, x} = ∅.
Orthogonality shows that T ∗ = {e1, y, e3}. This means M0/x contains a
dependent triad, so we have a contradiction. We conclude that y is in no
triad in M0, so M0\y is 3-connected, and is therefore a fan-extension of N .

Let F ′ be a fan of M0\y such that (e1, e2, e3) is a subsequence of F ′ and
e1 and e3 are terminal elements. As {e1, e2, e3} is a triangle in M0\y\e/x,
we conclude as before that F ′−{e, x} = (e1, e2, e3). If F ′ = (e1, e2, e3), then
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{e1, e2, e3} is a triangle in M0\y. As {e1, e2, y} is a triangle in M0\e, we see
that {e1, e2, e3, y} is a U2,4-restriction in M0\e, and {e2, y, x} is a triad, so
we have a contradiction. Now it follows that F ′ 6= (e1, e2, e3), so e and x are
internal elements of F ′. By Proposition 6.6, x is a rim element of F ′, and
x and e are consecutive. As {e1, e2, e3} is a triangle in M0\y\e/x, it follows
from Proposition 5.2 that e1 is a spoke element of F ′. It follows that F ′ is
either (e1, e2, e, x, e3) or (e1, x, e, e2, e3). In the first case, {e1, e2, e, y} and
{e3, e, x, y} are U2,4-restrictions of M0. If rM0({e, x, y, e1, e2, e3}) > 2, then
submodularity implies that rM0({e, y}) ≤ 1, which contradicts 3-connectiv-
ity. Therefore rM0\e({x, y, e1, e2, e3}) = 2, which quickly leads to a contra-
diction. We conclude that F ′ = (e1, x, e, e2, e3), so {e1, x, e} and {e, e2, e3}
are triangles of M0.

Because {e, e1} and {e3, y} are parallel pairs in M0/x, we will swap the
labels on e and e1, and on e3 and y. Let M ′ be the resulting matroid, so N is
a minor of M ′\e/x\y, and M ′ has triangles {e, e2, e3}, {e3, x, y}, {e, e1, x},
and {e1, e2, y}, as well as the cocircuit {e1, e2, e3, x}. Assume that e is in a
triad, T ∗, of M ′. Orthogonality implies that T ∗ contains an element from
each of {e2, e3} and {e1, x}. By orthogonality with {e1, e2, y} and {e3, x, y},
and the fact that {e1, e2} is not a series pair in N (and therefore not in
M ′\e), we see that T ∗ = {e, e3, x}. Therefore {e3, x, y} is a codependent
triangle in M ′\e. This contradiction shows that M ′\e is 3-connected, and
is therefore a fan-extension of N .

Let F ′ be a fan in M ′\e that contains (e1, e2, e3) as a subsequence, and
that has e1 and e3 as terminal elements. By the same arguments as before,
we see that F ′−{x, y} is a fan inM ′\e/x\y. However, {e1, e2, e3} is a triangle
in M ′\e/x\y, so F ′−{x, y} = (e1, e2, e3). Assume F ′ = (e1, e2, e3). Because
{e3, x, y} is a triangle in M ′\e, orthogonality shows that {e1, e2, e3} is also
a triangle. Because {e, e2, e3}, {e1, e2, y}, and {e, e1, x} are also triangles in
M ′, it follows that rM ′({e1, e2, e3, e, x, y}) = 2. This means that {e1, e2, e3}
is a parallel class in M ′/x, so we have a contradiction. Therefore F ′ is not
(e1, e2, e3), so {x, y, e2} is a consecutive set in F ′. If {x, y, e2} is a triangle
in M ′\e, then exactly as before, we see that rM ′({e1, e2, e3, e, x, y}) = 2.
Therefore {x, y, e2} is a triad of M ′\e, and {e, e2, x, y} is a cocircuit of M ′,
by orthogonality with {e, e2, e3}. Because {e1, e2, e3, x} is also a cocircuit,
we see that {e, e2, e3, x} cospans {e1, e2, e3, e, x, y} in M ′. As {e, e3, y} spans
the same set, it follows that λM ′({e1, e2, e3, e, x, y}) ≤ 1. This means that
|E(M ′\e)| ≤ 6, and as |F ′| = 5, it follows from Proposition 5.4 that M ′\e is a
wheel or a whirl. This contradiction completes the proof of Lemma 6.16. �

In fact, we can strengthen Lemma 6.16 further, and show that elements
in E(M0\e)− E(N) are terminal elements of fans in a covering family.

Lemma 6.17. Let M0 be isomorphic to M . Assume that N is a minor of
M0, but that M0 is not a fan-extension of N . Assume also that M0\e is
3-connected and has N as a minor. Let Fe be a covering family of M0\e,
and let (e1, . . . , em) be a fan in Fe. If 1 < i < m, then ei is in E(N).
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Proof. Assume that the lemma fails. By applying Lemma 6.16 and reversing
as required, we can assume that (e1, . . . , em) is in Fe, and that e2 is in
E(M0\e)− E(N).

6.17.1. e1 is in E(M0\e)− E(N).

Proof. If e2 is a rim element in (e1, . . . , em), then we let M ′ be M0\e and we
let N ′ be N . Otherwise we let M ′ be (M0\e)∗ and we let N ′ be N∗. Thus M ′

is a fan-extension ofN ′ and Fe is a covering family, while e2 ∈ E(M ′)−E(N ′)
is a rim element in the fan (e1, . . . , em) ∈ Fe of M ′.

Assume for a contradiction that e1 is in E(N ′). If N ′ is a minor of M ′\e2,
then m = 4, for otherwise {e3, e4, e5} is a codependent triangle in M ′\e2,
violating Proposition 6.2. But if m = 4, then {e1, e3, e4} are all contained
in a fan in FN , and {e3, e4} is a series pair in M ′\e2, which leads to a
contradiction to the 3-connectivity of N ′. Therefore N ′ is a minor of M ′/e2.
If m = 4, then {e1, e3, e4} ⊆ E(N ′), and {e1, e3} is a parallel pair in M ′/x2.
This leads to a contradiction, so m ≥ 5, meaning that Lemma 6.16 implies
e3 ∈ E(N ′). Now {e1, e3} is a parallel pair in M ′/e2, and we again obtain a
contradiction to the 3-connectivity of N ′. �

It follows from 6.17.1 that m ≥ 5. If e1 is a rim element of (e1, . . . , em),
then it is easily checked that N is a minor of M0\e/e1\e2. If e1 is a spoke
element, then N is a minor of M0\e\e1/e2. Let M ′ be the matroid obtained
from M0 by swapping the labels on e1 and e3. If e1 is a rim element, then
{e1, e3} is a series pair in M0\e\e2, so M ′\e/e1\e2 = M0\e/e1\e2. If e1 is a
spoke element, then we can similarly show that M ′\e\e1/e2 = M0\e\e1/e2.
Therefore N is a minor of M ′\e/e1\e2 or M ′\e\e1/e2.

Assume that M ′ is not a fan-extension of N . Since e1 and e2 are not in
E(N), it is easy to see that

(Fe − {(e1, . . . , em)}) ∪ {(e3, e2, e1, e4, . . . , em)}
is a covering family of M ′\e. But this contradicts Lemma 6.16, as e1 is not
in E(N). Therefore M ′ is a fan-extension of N . Note that this does not
contradict Lemma 6.15, which would apply if N were a minor of M0\e/e2\e3
or M0\e\e2/e3.

Let FN be the fan in FN that is consistent with (e1, . . . , em).

6.17.2. e3 is in E(N), but not in FN , and therefore e3 is contained in no
fan in FN .

Proof. It follows immediately from Lemma 6.16 that e3 is in E(N). Assume
that 6.17.2 fails, so that e3 is in FN . Because M ′ is a fan-extension of N ,
there is a covering family, F ′, of M ′. Let F ′ be the fan in F ′ such that FN is
consistent with F ′. If e is in F ′, then it is a terminal spoke element, as M ′\e
is isomorphic toM\e, which is 3-connected. Therefore F ′−e is a fan inM ′\e,
and so is (e3, e2, e1, e4, . . . , em). As these fans both contain the elements of
FN , it follows from Lemma 5.8 that the elements they have in common
form a contiguous subsequence in both fans. In particular, this means that
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{e3, e2, e1} is contained in F ′ − e. As this set is either a triad or a triangle
in M ′\e, it forms a set of three consecutive elements in F ′− e, and hence in
F ′. Let F ′′ be the sequence obtained from F ′ by swapping the positions of
e1 and e3. As e1 and e2 are not in E(N), it follows that (F ′−{F ′})∪ {F ′′}
is a covering family of M0. This contradiction to Lemma 6.11 completes the
proof of 6.17.2. �

6.17.3. Let F ′ be a covering family of M ′. Then no fan in F ′ contains e3.

Proof. Assume for a contradiction that e3 is contained in a fan in F ′. Let
F ′′ be the family of fans in M0 obtained from F ′ by swapping the labels on
e1 and e3. Obviously there are |FN | pairwise disjoint fans in F ′′. Since e3 is
not contained in a fan in FN (by 6.17.2), and the same statement applies to
e1, it follows that every fan in FN is consistent with a fan in F ′′. Moreover,
every element in E(M ′)− E(N) is contained in a fan in F ′, and since e3 is
contained in a fan in F ′, and e3 ∈ E(N), we conclude that every element in
E(M0)−E(N) is contained in a fan in F ′′. We have just shown that F ′′ is
a covering family of M0, contradicting Lemma 6.11. �

Let {x, y} = {e1, e2}, where N is a minor of M\e/x\y.

6.17.4. Let F ′ be a covering family of M ′. Then there is a fan in F ′ that
contains e1 and e2.

Proof. Let F ′ be a covering family of M ′. Assume that 6.17.4 fails, so that
there are distinct fans, F1 and F2, in F ′ that (respectively) contain e1 and e2.
Note that F1 and F2 contain at least four elements each. If e is contained in
either F1 or F2, then it is a terminal spoke element, as M ′\e is 3-connected.
Therefore F1 − e and F2 − e are fans in M ′\e, and these fans must each
contain at least four elements, as they contain a fan in FN , and an element
in {e1, e2}. Now {e1, e2, e3} is a triangle or a triad in M ′\e, and F1 − e
and F2 − e are fans. Since 6.17.3 asserts that e3 is in neither F1 − e nor
F2− e, orthogonality requires that either e1 and e2 are both terminal spoke
elements of F1 − e and F2 − e, or they are both terminal rim elements. In
this former case, M ′\e/x contains a triad that contains a parallel pair, and
in the latter case, M ′\e\y contains a triangle that contains a series pair. In
either case we have a contradiction, so 6.17.4 must hold. �

Let F ′ be a covering family of M ′, and let F ′ be a fan in F ′ that contains
e1 and e2. Then F ′ contains at least five elements. If e is in F ′, then
it is a terminal spoke element, as M ′\e is 3-connected, so F ′ − e is a fan
in M ′\e. Let F ′ − e be (f1, . . . , fn). Note that n ≥ 5. Now {e1, e2, e3}
is a triangle or a triad in M ′\e that intersects in F ′ − e in exactly the
elements e1 and e2 (by 6.17.3). We apply Proposition 5.3 or its dual. Assume
that statement (iii), (iv), or (v) holds. Then either {e1, e2} = {f1, fn}, or
n = 5 and {e1, e2} = {f2, f4}, and in any case e1 and e2 are both spoke
elements in F ′ − e, or both are rim elements. If both are spoke elements,
M ′\e/x contains a triad that contains a parallel pair, and if both are rim



FAN-EXTENSIONS IN FRAGILE MATROIDS 47

elements, then M ′\e\y contains a triangle that contains a series pair. In
either case we have a contradiction, so statements (iii), (iv), and (v) in
Proposition 5.3 cannot hold. Now, by reversing as necessary, we can assume
that {e1, e2} = {f1, f2}.

6.17.5. F ′ is either (f1, . . . , fn) or (f1, . . . , fn, e).

Proof. If e is not contained in F ′, then F ′ = F ′ − e = (f1, . . . , fn), and
we are done. Therefore assume that e is a terminal spoke element of F ′.
The only way 6.17.5 can fail to be true is if F ′ = (e, f1, . . . , fn), so let us
assume this is the case. Then {e, e1, e2} = {e, f1, f2} is a triangle of M ′.
If {e1, e2, e3} is a triangle of M ′, then {e, e1, e2, e3} is a U2,4-restriction,
which is a contradiction, as {f1, f2, f3} = {e1, e2, f3} is a triad. Similarly,
if {e1, e2, e3} is a triad in M ′, then {e2, e1, e4} is a triangle, so {e, e2, e1, e4}
is a U2,4-restriction. This again leads to a contradiction. Therefore 6.17.5
holds. �

6.17.6. {e, e1, e2, e3} is a cocircuit in M ′.

Proof. Assume that {e1, e2, e3} is a triangle in M ′\e, and hence in M ′. If
{f1, f2, f3} is a triangle in M ′, then {e3, f1, f2, f3} is a U2,4-restriction in
M ′, and {f2, f3, f4} is a triad. As this is a contradiction, it follows that
{f1, f2, f3} is a triad in M ′. Let F ′ + e3 be the sequence obtained from F ′

by appending e3 to the beginning. Then F ′+e3 is a fan in M ′, and it follows
from 6.17.2 and 6.17.3 that (F ′ − {F ′}) ∪ {F ′ + e3} is a covering family of
M ′. But this contradicts 6.17.3, so we conclude that {e1, e2, e3} is a triad
in M ′\e.

To conclude the proof of 6.17.6, assume that {e1, e2, e3} is a triad in M ′. If
{f1, f2, f3} is a triad in M ′, then {e3, f1, f2, f3} is a U2,4-corestriction in M ′,
which is a contradiction as {f2, f3, f4} is a triangle. Therefore {f1, f2, f3} is
a triangle in M ′. We again let F ′ + e3 be obtained from F ′ by appending
e3 to the beginning. This leads to a contradictory covering family, just as
in the previous paragraph. Therefore {e, e1, e2, e3} is a cocircuit in M . �

As e is in E(M ′)−E(N), there is a fan, Fe, in F ′, that contains e. Then
Fe contains at least four elements. As M ′\e is 3-connected, it follows that
e is a terminal spoke element in Fe. Let {e, u, v} be the triangle contained
in Fe that contains e. Orthogonality between the triangle {e, u, v} and the
cocircuit {e, e1, e2, e3} shows that either e1, e2, or e3 is in {u, v}. The last
case is impossible by 6.17.3, so e1 or e2 is in {u, v}. This means that Fe

and F ′ cannot be disjoint fans, so F ′ = (f1, . . . , fn, e), by 6.17.5. However it
now follows that {e1, e2} = {f1, f2}, and {u, v} = {fn−1, fn}. Thus F ′ can
contain at most four elements, which is impossible, as it contains e, e1, e2,
and a fan in FN . This completes the proof of Lemma 6.17. �

Lemma 6.14 supplies us with a matroid M0, which we now relabel as M ,
such that M has N as a minor, but is not a fan-extension of N . By replacing
M , N , and M with their duals as necessary, we can assume that M\e is
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3-connected and has N as a minor. The minimality of M means that M\e
is a fan-extension of N .

Lemma 6.18. Let Fe be a covering family of M\e, and assume that
(e1, . . . , em) is a fan in Fe. Assume also that e1 is not in E(N). If e1
is a spoke element of (e1, . . . , em), then M\e\e1 is 3-connected and has N
as a minor. If e1 is a rim element, then M\e/e1 is 3-connected and has N
as a minor.

Proof. If e1 is a rim element, then let M ′ = M\e and let N ′ = N . Otherwise,
let M ′ = (M\e)∗ and let N ′ = N∗. Thus, in either case, we assume that Fe

is a covering family of M ′ relative to N ′ and FN , that (e1, . . . , em) is a fan in
Fe, and e1 is a rim element that is not in E(N ′). Certainly M ′/e1 has N ′ as
a minor, or else M ′\e1 has N ′ as a minor and {e2, e3, e4} as a codependent
triangle, contradicting Proposition 6.2. Assume M ′/e1 is not 3-connected.
Then e1 is contained in a triangle, T , of M ′. Orthogonality with the triad
{e1, e2, e3} shows that T contains e2 or e3. Note that T * {e1, . . . , em}, for
otherwise Proposition 5.6 implies T = {e1, e2, e3}, and thus T is a triad and
a triangle in M ′. Let x be the element in T − {e1, e2, e3}.

Assume that e2 is in T . Since e2 is in E(N ′) by Lemma 6.17, and {e2, x}
is a parallel pair in M ′/e1, it follows that N ′ is a minor of M ′/e1\x. The
definition of a covering family means there is a fan in Fe that contains x. Let
Fx be this fan. Then Fx contains at least four elements. Orthogonality with
T shows that x is a terminal spoke element of Fx. Since x is not in E(N ′),
it now follows that (Fe − {(e1, . . . , em), Fx}) ∪ {(x, e1, . . . , em), Fx − x} is a
covering family in M ′, and now we have a contradiction to Lemma 6.17 as
x, e1 /∈ E(N ′). Therefore T = {e1, e3, x}.

Because x is not in (e1, . . . , em), we see that m = 4, as otherwise we violate
orthogonality between T and {e3, e4, e5}. Hence (e2, e3, e4) or its reversal
is in FN . Let M ′′ be obtained from M ′ by swapping labels on e3 and x.
Thus (e3, e1, x, e2, e4) is a fan of M ′′. As {e3, x} is a parallel pair in M ′/e1,
we see that M ′′ has N ′ as a minor. Since |E(M ′′)| = |E(M ′)| < |E(M)|,
it follows that M ′′ is a fan-extension of N ′. Therefore there is a fan of M ′′

that contains (e2, e3, e4) as a subsequence. Let this fan be F . By comparing
F with (e3, e1, x, e2, e4) in M ′′ using Lemma 5.8, we see that there is a
contiguous subsequence of F using the elements {e3, e1, x, e2, e4}. We apply
Proposition 5.6 and its dual to {e3, e1, x}, {e1, x, e2}, and {x, e2, e4} and
see that F contains (e3, e1, x, e2, e4) as a contiguous subsequence, which
contradicts the definition of F . Therefore M ′/e1 is 3-connected, and this
completes the proof. �

Lemma 6.19. Let Fe be a covering family of M\e, and assume that
(e1, . . . , em) is a fan in Fe. Assume also that e1 is not in E(N). If e1
is a rim element of (e1, . . . , em), then assume that there is no triangle of M
that contains {e1, e}. Let (es, . . . , et) be a minimal contiguous subsequence of
(e1, . . . , em) such that a fan, FN ∈ FN is consistent with (es, . . . , et). Then
2 ≤ s < s+ 2 ≤ t ≤ m and FN contains es and et. Moreover, FN is equal to



FAN-EXTENSIONS IN FRAGILE MATROIDS 49

(es, . . . , et) or its reversal, and is a fan of M . However, (e1, . . . , et) is not a
fan in M .

Proof. Since (e1, . . . , em) is a fan in a covering family, there is a fan in FN

that is consistent with (e1, . . . , em). Let es be the first element in this fan,
and let et be the last. Then 2 ≤ s < s+2 ≤ t ≤ m because each fan contains
at least three elements, and e1 /∈ E(N). By Lemma 6.17 it follows that every
element in {es, . . . , et} is in E(N). Since N is 3-connected, (es, . . . , et) is a
fan of N . As FN is also a fan of N , we apply Lemma 5.8 and deduce that
FN and (es, . . . , et) use the same set of elements. Since FN is consistent with
(es, . . . , et), this means that FN is equal to (es, . . . , et) or its reversal.

If e1 is a spoke element of (e1, . . . , em), let M ′ be M\e1. In this case,
M ′ is 3-connected, since M ′\e is 3-connected by Lemma 6.18. If e1 is a rim
element, then let M ′ be M/e1. In this case also, M ′\e is 3-connected, and
the hypotheses imply that e is not in a parallel pair in M ′. Therefore M ′ is
3-connected in either case, and M ′ has N as a minor. As |E(M ′)| < |E(M)|,
it follows that M ′ is a fan-extension of N .

Let F be a fan of M ′ such that (es, . . . , et) is consistent with F . If e is
in F , then it is a terminal spoke element, as M ′\e is 3-connected, so in this
case F − e is a fan in M ′\e. In fact, F − e is a fan of M ′\e whether or
not e is in F . Since (es, . . . , et) is also a fan in M ′\e, by Lemma 5.8, there
is a contiguous subsequence of F − e using the elements {es, . . . , et}. Since
(es, . . . , et) is consistent with F − e, this means (es, . . . , et) is a contiguous
subsequence of F − e. Hence (es, . . . , et) is a fan in M ′.

Assume (es, . . . , et) is not a fan in M . If e1 is a spoke element in
(e1, . . . , em), then M ′ = M\e1, so there is a rim element, ei, of (es, . . . , et),
such that s ≤ i ≤ t − 2, and {e1, ei, ei+1, ei+2} is a cocircuit of M . But in
this case e1 is in the closure and coclosure of (e2, . . . , em) in M\e. Hence
(e1, . . . , em) is 2-separating in M\e, so Proposition 5.4 implies M\e is a
wheel or a whirl, a contradiction. The argument when e1 is a rim element in
(e1, . . . , em) is similar: In this case M ′ = M/e1, so there is a spoke element,
ei, in (es, . . . , et), such that {e1, ei, ei+1, ei+2} is a circuit of M . Thus e1 is in
the closure and coclosure of (e2, . . . , em) in M\e, so we can deduce that M\e
is a wheel or a whirl, contradicting Proposition 6.1. From this contradiction
we see that (es, . . . , et) is a fan of M .

To complete the proof, we will assume that (e1, . . . , et) is a fan of M , and
deduce a contradiction. This assumption means that (e2, . . . , et) is a fan in
M ′.

6.19.1. There is a covering family of M ′ containing a fan that has
(e2, . . . , et) as a contiguous subsequence.

Proof. Let F be a covering family of M ′. Then F contains a fan, F , such
that (es, . . . , et) is consistent with F . As (es, . . . , et) is a fan in M ′, we
can use Lemma 5.8 to show that (es, . . . , et) is a contiguous subsequence
of F . Assume that F contains (ei, . . . , et) as a contiguous subsequence,
where 2 ≤ i ≤ s, and F and F have been chosen so that i is as small as
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possible. If i = 2, then 6.19.1 is already proved, so we assume 2 < i. Let
F = (f1, . . . , fn), where (ei, . . . , et) = (fj , . . . , fj+t−i).

Assume j > 1. Then fj−1 6= ei−1, for otherwise (ei−1, . . . , et) is a con-
tiguous subsequence of F , and the minimality of i is contradicted. Since
{fj , fj+1, fj+2} = {ei, ei+1, ei+2} is not a triad and a triangle, fj = ei is a
spoke element in both F and (e2, . . . , em), or a rim element in both. Now
{fj−1, fj , fj+1} and {ei−1, ei, ei+1} are distinct triads or distinct triangles
that intersect in two elements, and their union is a U2,4-corestriction or re-
striction of M ′ that intersects a triangle or triad. This contradiction shows
that j = 1.

Now (ei−1, f1, . . . , fn) is a fan of M ′. Let F ′ be this fan. Note that because
i− 1 < s, the element ei−1 is not contained in the fan (es, . . . , et), and since
it is contained in (e1, . . . , em) ∈ Fe, the definition of a covering family tells
us that ei−1 is contained in no fan in FN . If ei−1 is in no fan in F , then
(F − {F}) ∪ {F ′} is a covering family in M ′. If ei−1 is in a fan, F ′′ ∈ F ,
then it is a terminal element of F ′′ by orthogonality with {ei−1, ei, ei+1}, so
(F −{F, F ′′})∪{F ′, F ′′− ei−1} is a covering family of M ′. In either case we
have constructed a covering family of M ′ that contains the fan F ′, so the
minimality of i is contradicted. This completes the proof of 6.19.1. �

Now we assume F is a covering family of M ′, and F contains a fan, F ,
that has (e2, . . . , et) as a contiguous subsequence. Let F = (f1, . . . , fn),
where (e2, . . . , et) = (fj , . . . , fj+t−2). Assume j > 1. If e1 is a rim element
of (e1, . . . , em), then {e2, e3, e4} is a triangle in M , and hence in M ′ = M/e1.
Therefore e2 is a spoke element in (fj , . . . , fj+t−2), so {fj−1, fj , fj+1} is a
triad of M ′ and therefore in M . Now {e1, fj−1, fj , fj+1} is a U2,4-corestric-
tion of M that intersects a triangle. If e1 is a spoke element, we reach a
similar contradiction. Therefore j = 1. But this means (e1, f1, . . . , fn) is
a fan of M , and M is obtained from M ′ by a fan-lengthening move on F .
This implies M is a fan-extension of N , so we have a contradiction that
completes the proof of Lemma 6.19. �

Now we fix Fe to be a covering family of M\e. Since we have assumed
|E(M)| − |E(N)| > 2, it follows that M\e 6= N . Any element in E(M\e)−
E(N) is a terminal element of a fan in Fe, by Lemma 6.17.

Lemma 6.20. If (e1, . . . , em) is a fan in Fe with the property that e1 /∈
E(N), then e1 is a rim element, and {e1, e} is contained in a triangle of M .

Proof. If the lemma fails, then there is a fan (e1, . . . , em) in Fe such that e1
is not in E(N), and either e1 is a spoke element, or e1 is a rim element of
(e1, . . . , em) and there is no triangle of M containing {e1, e}.

There are indices p and q such that 2 ≤ p < p + 2 ≤ q ≤ m, and there
is a fan in FN consistent with (ep, . . . , eq) that contains ep and eq. Now
Lemma 6.19 applies, so (ep, . . . , eq) or its reversal is in FN , and is a fan of
M . However, (e1, . . . , eq) is not a fan of M . Since it is a fan in M\e, there
is some j ∈ {1, . . . , p− 1} such that {e, ej , ej+1, ej+2} is a cocircuit of M .
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Let M ′ be M\e1 if e1 is a spoke element, and let it be M/e1 otherwise.
Lemma 6.18 implies that M ′\e is 3-connected with N as a minor. Because
the hypotheses imply M ′ has no parallel pair containing e, we now see that
M ′ is 3-connected. Therefore M ′ is a fan-extension of N .

As |E(M)|− |E(N)| > 2, we can let u be an element in E(M ′\e)−E(N).
Either u belongs to a fan in Fe that is distinct, and hence disjoint, from
(e1, . . . , em), or, by Lemma 6.17, u = em. The analyses in the two cases
are similar, so we combine them. If necessary we can reverse the fan that
contains u, and assume that we are in one of the following situations.

(I) (x1, . . . , xn) is a fan in Fe that is disjoint from (e1, . . . , em), and x1
is not in E(N).

(II) em is not in E(N). In this case we let (x1, . . . , xn) be (em, . . . , e2).

Note that in either of these cases, (x1, . . . , xn) is a fan in M\e and in M ′\e,
and x1 is not in E(N). By taking a minimal contiguous subsequence of
(x1, . . . , xn) such that a fan in FN is consistent with the subsequence, we
see there are integers s and t such that 2 ≤ s < s+ 2 ≤ t ≤ n and such that
some fan in FN contains xs and xt and is consistent with (xs, . . . , xt).

6.20.1. Either (xs, . . . , xt) or its reversal is in FN . Moreover, (xs, . . . , xt)
is a fan in M , but (x1, . . . , xt) is not.

Proof. We first show that (xs, . . . , xt) is a fan in M . In Case (II), (xs, . . . , xt)
is equal to (eq, . . . , ep), and we have already noted this is a fan in M . There-
fore we assume Case (I) holds. We can apply Lemma 6.19 to (x1, . . . , xn),
unless x1 is a rim element and {x1, e} is contained in a triangle of M . If
Lemma 6.19 does apply, then it tells us that (xs, . . . , xt) is a fan of M . There-
fore we assume that x1 is a rim element, and {x1, e} is contained in a triangle.
Orthogonality with the cocircuit {e, ej , ej+1, ej+2} shows that {x1, e, ek} is
a triangle of M for some k ∈ {j, j + 1, j + 2}. Because (xs, . . . , xt) is a fan
in M\e, it follows that if it is not a fan of M , then there is a cocircuit of
M that contains e and three consecutive elements from (xs, . . . , xt). This
violates orthogonality with {x1, e, ek} as s ≥ 2. Hence (xs, . . . , xt) is a fan
of M in any case.

Next we show that (xs, . . . , xt) or its reversal is in FN . Since xs and
xt are in E(N), Lemma 6.17 implies {xs, . . . , xt} ⊆ E(N). It follows that
(xs, . . . , xt) is a fan of N . Some fan in FN is consistent with (xs, . . . , xt) and
contains xs and xt. It follows easily from Lemma 5.8 that this fan must be
either (xs, . . . , xt) or its reversal.

Finally we show that (x1, . . . , xt) is not a fan of M . We can apply
Lemma 6.19, unless x1 is a rim element of (x1, . . . , xn) and {x1, e} is con-
tained in a triangle of M . If we can apply Lemma 6.19, then it tells us
that (x1, . . . , xt) is not a fan in M , as desired. Therefore we assume x1 is a
rim element, and {x1, e} is contained in a triangle, T , of M . If {x1, x2, x3}
is not a triad of M , then (x1, . . . , xt) is not a fan of M , so we are done.
Therefore we assume {x1, x2, x3} is a triad of M . Orthogonality shows that
T is {e, x1, x2} or {e, x1, x3}.
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If Case (I) holds, then we have a violation of orthogonality between T and
the cocircuit {e, ej , ej+1, ej+2}. Therefore Case (II) holds, so (x1, x2, x3) =
(em, em−1, em−2). Orthogonality between {e, ej , ej+1, ej+2} and T requires
that j+2 ≥ m−2. Recall that j ≤ p−1. Certainly p+2 ≤ q, as (ep, . . . , eq)
or its reversal is in FN . Because eq is in E(N), but em is not, it follows that
q ≤ m − 1. Putting these together, we see that j + 2 ≤ p + 1 ≤ q − 1 ≤
m − 2, so j + 2 = m − 2, and equality holds throughout this expression.
Again applying orthogonality between {e, ej , ej+1, ej+2} and T , we see that
T = {e, x1, x3} = {e, em, em−2}. As p = m−3 and q = m−1, this shows that
(xs, . . . , xt) = (em−1, em−2, em−3) and (x2, x3, x4) = (em−1, em−2, em−3) or
its reversal is in FN . If (x1, . . . , xt) = (em, em−1, em−2, em−3) is not a fan in
M , then we are done, so we assume it is a fan in M . Therefore (x1, x2, x3, x4)
is a fan in M ′ also.

Because x1 is not in E(N), it follows easily that N is a minor of M ′\e/x1.
Let M ′′ be the matroid obtained from M ′ by swapping labels on e and x3.
Since {e, x3} is a parallel pair in M ′/x1, M

′′ has N as a minor. Moreover
M ′′ is 3-connected since M ′ is, and |E(M ′′)| = |E(M ′)| < |E(M)|, so M ′′

is a fan-extension of N . Let F be a fan of M ′′ such that (x2, x3, x4) is
consistent with F . Because M ′′\x3 is isomorphic to M ′\e, and is therefore
3-connected, x3 is contained in no triad in F . If F contains at least four
elements, then this means that x3 is a terminal element of F , which is
impossible as (x2, x3, x4) is consistent with F . Therefore F contains exactly
three elements, so {x2, x3, x4} is a triangle of M ′′. As {x1, x2, e} is a triad
of M ′′, we have a contradiction to orthogonality. �

Applying 6.20.1, we let C∗x be a cocircuit of M of the form
{e, xk, xk+1, xk+2}, where xk is a rim element of (x1, . . . , xt) in M\e, and
1 ≤ k ≤ s− 1.

6.20.2. C∗x is a cocircuit of M ′.

Proof. Assume Case (I) holds. If M ′ = M/e1, then C∗x is a cocircuit in M ′,
as e1 is not in C∗x. On the other hand, if M ′ = M\e1, then {e1, e2, e3} is a
triangle disjoint from {x1, . . . , xn, e}, so C∗x is a cocircuit of M ′. Now assume
Case (II) holds. Note C∗x − e ⊆ {x1, . . . , xs+1} ⊆ {em, . . . , e3}, so e1 /∈ C∗x.
Therefore, if M ′ = M/e1, then C∗x is a cocircuit of M ′. If M ′ = M\e1, then
C∗x is a cocircuit of M ′, for otherwise e1 is in the coclosure and closure of
{e2, . . . , em} in M\e. This implies {e1, . . . , em} is 2-separating in M\e, so
M\e is a wheel or whirl, a contradiction. �

Recall that M ′ is a fan-extension of N . Let Fe be the fan containing e
in a covering family of M ′. As M ′\e is 3-connected, e is a terminal spoke
element of Fe. Let (e, x, y, z) be the initial four elements of Fe, so {e, x, y}
is a triangle of M ′ and {x, y, z} is a triad.

6.20.3. {x, y, z} ⊆ E(N).

Proof. This follows from Lemma 6.17 if |Fe| > 4, and from the fact that Fe

contains e and a fan in FN otherwise. �
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Now {e, x, y} is a triangle in M ′, and C∗x is a cocircuit, so orthogonality
requires that (C∗x − e) ∩ {x, y} 6= ∅. Thus {x, y, z} is a triad of M ′\e that
intersects the fan (x1, . . . , xn).

As {x, y, z} is contained in E(N) and x1 is not, we see that x1 /∈ {x, y, z}.
Furthermore, any element in C∗x ∩ {x, y} is not equal to xn, since C∗x − e is
contained in {x1, . . . , xs+1} ⊆ {x1, . . . , xn−1}. This means that if {x, y, z}
intersects {x1, . . . , xn} in exactly one element, then it is a triad of M ′\e
that intersects the fan (x1, . . . , xn) in a single, internal, element, violating
orthogonality. Therefore |{x, y, z} ∩ {x1, . . . , xn}| ≥ 2.

6.20.4. |{x, y, z} ∩ {x1, . . . , xn}| 6= 2.

Proof. Assume |{x, y, z} ∩ {x1, . . . , xn}| = 2. We apply the dual of Propo-
sition 5.3 in M ′\e to {x, y, z} and the fan (x1, . . . , xn). Since x1 is not in
{x, y, z}, statement (i) or (iii) in Proposition 5.3 cannot apply. By the same
reasoning, if statement (v) holds, then n = 5. In summary, either {x, y, z}
intersects {x1, . . . , xn} in {xn−1, xn}, or n ≤ 5, x1 is a rim element, and
{x, y, z} intersects {x1, . . . , xn} in {x2, x4}.

Assume {x, y, z} ∩ {x1, . . . , xn} = {xn−1, xn}. Then Proposition 5.3 im-
plies xn is a spoke element in M ′\e. Since C∗x−e = {xk, xk+1, xk+2} contains
x or y, and xk+2 is a rim element, it follows that C∗x−e = {xn−3, xn−2, xn−1}.
This implies s = n − 2, so (xn−2, xn−1, xn) or its reversal is in FN . Since
Fe contains (e, x, y, z) as a contiguous subsequence, it therefore contains
an element of (xn−2, xn−1, xn). As Fe is in a covering family of M ′, this
means that (xn−2, xn−1, xn) is consistent with Fe. However, xn−2 /∈ {x, y, z},
and xn−1 ∈ {x, y} as (C∗x − e) ∩ {x, y} 6= ∅. Since (xn−2, xn−1, xn) is
consistent with Fe, we are forced to the conclusion that x = xn and
y = xn−1. Now {e, xn, xn−1} and {xn, xn−1, xn−2} are triangles in M ′,
and {x, y, z} = {xn, xn−1, z} is a triad, which leads to a contradiction to
Corollary 6.3.

Next we consider the case that n ≤ 5, and {x, y, z} ∩ {x1, . . . , xn} =
{x2, x4}. If s = 2, then (x2, x3, x4) must be consistent with Fe, but (e, x, y, z)
contains x2 and x4 and not x3. If s 6= 2, then s = 3, n = 5, and (x3, x4, x5)
or its reversal is in FN . However, (e, x, y, z) contains x4 and neither x3 nor
x5, so it is impossible for (x3, x4, x5) to be consistent with Fe. �

Now we know that {x, y, z} ⊆ {x1, . . . , xn}. Applying the dual of Propo-
sition 5.6 to {x, y, z} and (x1, . . . , xn) in M ′\e, we see that {x, y, z} =
{xi, xi+1, xi+2}, where xi is a rim element of (x1, . . . , xn), and i ≤ n− 2.

6.20.5. 1 < i < n− 2.

Proof. Since x1 /∈ E(N) and {x, y, z} ⊆ E(N) it follows that x1 /∈ {x, y, z},
so i > 1. Assume that i+ 2 = n. Then {xn−2, xn−1, xn} is a triad in M ′. As
C∗x is a cocircuit in M ′ by 6.20.2, it follows that C∗x − e 6= {xn−2, xn−1, xn}.
As C∗x contains at least one of x or y, we see that C∗x−e = {xn−4, xn−3, xn−2}.
As (xs, . . . , xt) is a fan in M , it follows that s ≥ n − 3, so some three- or
four-element contiguous subsequence of (xn−3, xn−2, xn−1, xn) is in FN (up
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to reversing). If {x, y} = {xn−1, xn}, then the triangle {e, xn−1, xn} vio-
lates orthogonality with C∗x in M ′. Assume that {x, y} = {xn−2, xn−1}.
Now {xn−3, xn−2, xn−1} is a triangle in M\e, and hence in M ′. As {e, x, y}
is also a triangle in M ′, it follows that {e, xn−3, xn−2, xn−1} is a U2,4-re-
striction in M ′ that intersects the triad {x, y, z}. This is a contradic-
tion, so {x, y} = {xn−2, xn}. Therefore (e, x, y, z) is (e, xn−2, xn, xn−1) or
(e, xn, xn−2, xn−1). This means any three- or four-element contiguous sub-
sequence of (xn−3, xn−2, xn−1, xn) contains elements from (e, x, y, z), but
cannot be consistent with Fe, contradicting the fact that Fe is in a covering
family of M ′. �

6.20.6. {x, y} = {xi, xi+2}, and therefore z = xi+1.

Proof. Assume that {x, y} = {xi, xi+1}. Then {e, xi−1, xi, xi+1} is a U2,4-re-
striction in M ′ that intersects the triad {x, y, z}, a contradiction. Next as-
sume that {x, y} = {xi+1, xi+2}. Then {e, xi+1, xi+2} and {xi+1, xi+2, xi+3}
are triangles of M ′. We again find that M ′ has a U2,4-restriction that inter-
sects a triad. �

Note that Fe contains e and a fan in Fe, so it contains at least four
elements.

6.20.7. |Fe| > 4.

Proof. If Fe contains exactly four elements, then (x, y, z) or its reversal is
in FN . However, (x, y, z) is (xi, xi+2, xi+1) or (xi+2, xi, xi+1), implying that
(x, y, z) is not consistent with (x1, . . . , xn), although {x, y, z} ⊆ {x1, . . . , xn}.
This contradicts the fact that either (x1, . . . , xn) or (x1, . . . , xn, e1) =
(em, . . . , e1) is in the covering family Fe (up to reversing). �

Let (e, x, y, z, v) be the first five elements of Fe. If (y, z) = (xi, xi+1),
then v = xi−1, for otherwise {v, xi−1, xi, xi+1} is a U2,4-restriction in
M ′, and {xi, xi+1, xi+2} is a triad. A similar argument shows that if
(y, z) = (xi+2, xi+1), then v = xi+3, since otherwise {v, xi+1, xi+2, xi+3}
is a U2,4-restriction in M ′.

Assume that Fe contains more than five elements. Let (e, x, y, z, v, w)
be the first six elements of Fe. Then {z, v, w} is a triad of M ′\e. The
previous paragraph shows that {z, v, w} cannot be a set of three consecutive
elements in (x1, . . . , xn), so the dual of Lemma 5.8 shows that w is not in
{x1, . . . , xn}. Because z and v are not consecutive in (x1, . . . , xn), it follows
from Proposition 5.3 that n ≤ 5. Now 6.20.5 implies that n = 5, and i = 2,
so z = x3. But now the triad {z, v, w} and the triangle {x1, x2, x3} violate
orthogonality. Hence Fe = (e, x, y, z, v).

Either (e, x, y, z, v) is (e, xi, xi+2, xi+1, xi+3), or it is
(e, xi+2, xi, xi+1, xi−1). Now some three- or four-element subsequence
of (xi, xi+2, xi+1, xi+3) or (xi+2, xi, xi+1, xi−1) is in FN (up to reversing).
But this subsequence must be equal to (xs, . . . , xt) for some values of s and
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t. It is clear that no such subsequence exists, so this completes the proof of
Lemma 6.20. �

By reversing as necessary, we can assume that (e1, . . . , em) is a fan in
Fe and e1 /∈ E(N). Lemma 6.20 tells us that e1 is a rim element, and
{e, e1} is contained in a triangle, Te, of M . By Lemma 6.18, M\e/e1 is
3-connected and has N as a minor. As |E(M)| − |E(N)| > 2, we let x
be an element in E(M\e/e1) − E(N). First we assume that the fan in Fe

that contains x is disjoint from (e1, . . . , em). Let (x1, . . . , xn) be this fan,
where we can reverse as necessary and assume that x = x1. Then x1 is a
rim element of (x1, . . . , xn) and {e, x1} is contained in a triangle, Tx. Note
that N is a minor of M\e/e1/x1, for {x2, x3, x4} is a codependent triangle
in M\e/e1\x1. This means Te 6= Tx, for otherwise e is a loop in M/e1/x1,
and this matroid has N as a minor, so is connected. Let C be a circuit of
M\e contained in (Te ∪ Tx) − e that contains e1. If |C| = 3, then M\e/e1
contains a parallel pair, contradicting its 3-connectivity, so C = (Te∪Tx)−e,
and therefore x1 ∈ C. By orthogonality with {e1, e2, e3} we deduce that C
contains an internal element from (e1, . . . , em) (note m ≥ 4 as (e1, . . . , em)
contains e1 and a fan from FN ), and this element is in E(N) by Lemma 6.17.
By orthogonality with {x1, x2, x3}, we see that C also contains an element
from (x2, . . . , xn) that is in E(N). Thus C − {e1, x1} is a parallel pair in
M\e/e1/x1, and in N , a contradiction.

Now the only elements in E(M\e/e1) − E(N) belong to the same fan
of Fe as e1. By Lemmas 6.17 and 6.20, we can assume (e1, . . . , em) is a
fan in Fe such that e1 and em are rim elements not in E(N), and that
N = M\e/e1/em. Let T1 and Tm be triangles of M such that {e, e1} ⊆ T1
and {e, em} ⊆ Tm. Note that T1 6= Tm, as M/e1/em has N as a minor, and is
therefore connected. Let C be a circuit of M\e contained in (T1∪Tm)−e that
contains e1. Then |C| = 4, or else M\e/e1 contains a parallel pair. Hence
em ∈ C. Therefore C − {e1, em} is a parallel pair in M\e/e1/em = N , a
contradiction. Now we have completed the proof of Theorem 6.10.
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