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Abstract. A sufficiently large connected matroid M contains a big
circuit or a big cocircuit. Pou-Lin Wu showed that we can ensure that
M has a big circuit or a big cocircuit containing any chosen element of
M . In this paper, we begin with a fixed connected matroid N and we
take M to be a connected matroid that has N as a minor. Our main
result establishes that ifM is sufficiently large, then, up to duality, either
M has a big connected minor in which N is a spanning restriction and
the deletion of E(N) is a large connected uniform matroid, or M has
as a minor the 2-sum of a big circuit and a connected single-element
extension or coextension of N . In addition, we find a set of unavoidable
minors for the class of graphs that have a cycle and a bond with a big
intersection.

1. Introduction

In this paper, we consider a fixed connected matroid N and look at a
sufficiently large connected matroid M that has N as a minor. By a result
of Lovász, Schrijver, and Seymour (see [5]), M has a big circuit or a big
cocircuit. Hence M itself is a connected matroid that has N as a minor and
also has a big uniform minor. But M may have many other elements that are
not in either of these minors. Our goal is to pack these two minors compactly
into some connected minor of M . Our main theorem proves that this can be
done. Two elements, e and f , of M are clones if the map that interchanges
e and f but fixes every other element of E(M) is an automorphism of M .

Theorem 1.1. Let N be a connected matroid with n elements and let k be a

positive integer. There is a positive integer f1.1(n, k) such that, whenever M
is a connected matroid that has at least f1.1(n, k) elements and has N as a

minor, one of the following holds for some (M0, N0) in {(M,N), (M∗, N∗)}.

(i) M0 has a connected minor M ′
0 with r(M ′

0) = r(N0) and |E(M ′
0) −

E(N0)| ≥ k where M ′
0 has N0 as a restriction, and all the elements
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of E(M ′
0) − E(N0) are clones in M ′

0; in particular, M ′
0\E(N0) is a

connected uniform matroid having at least k elements; or

(ii) for some connected single-element extension or coextension N ′
0 of N0

by an element p, the matroid M0 has, as a minor, the 2-sum with

basepoint p of N ′
0 and a circuit that contains p and has at least k

other elements.

One way to view the last theorem is that if we have a connected matroid
M with a fixed connected minor N and a huge connected uniform minor
U , then, up to duality. we can find a connected minor M0 of M such that
either E(M0) has a partition (X,Y ) such that M0|X = N and M0|Y is a big
connected uniform matroid; or M0 is the 2-sum of a single-element extension
or coextension of N and a big circuit. Thus every element of M0 is in E(N)
or the ground set of a big connected uniform minor of M0. This has some
similarity to intertwining two fixed matroids M1 and M2 where one seeks
a minor-minimal matroid having minors isomorphic to M1 and M2. In our
theorem, we seek to keep one matroid N as a minor but we allow ourselves
to change the other matroid, in this case, so that it remains a big connected
uniform matroid.

We continue with the same theme in Section 7 where we suppose that a
connected matroid M has both a huge circuit and a huge cocircuit and we
try to efficiently pack a big circuit and a big cocircuit into a minor of M .
We show that either M has a big set that is the intersection of a circuit
and a cocircuit, or M has, as a minor, the 2-sum of a big circuit and a big
cocircuit. This leads us to consider what more we can say about M in the
former case. In Section 8, we prove the following result for graphs and pose
a conjecture about the corresponding result for binary matroids.

Theorem 1.2. Let n be an integer exceeding two. There is an integer f1.2(n)
such that if a graph G has a set Z of at least f1.2(n) edges such that Z is

the intersection of a cycle and a bond, then G has, as a minor, one of the

graphs Γ1(n),Γ2(n),Γ3(n), or Γ4(n) shown in Figure 1.

Observe that each of Γ2(n) and Γ3(n) can be formed from n copies of
K4 by a sequence of 2-sums. But, although the cycle matroids of Γ2(2) and
Γ3(2) are isomorphic, when n ≥ 3, the cycle matroids of Γ2(n) and Γ3(n)
are not isomorphic. It is also worth noting that Γ1(n) and Γ4(n) are dual
graphs.

Sections 2–4 of the paper present some preliminary results that will be
used in the proof of Theorem 1.1. In Section 5, we show that if M is
a sufficently large connected matroid having a connected matroid N as a
minor, then either M has a large connected minor that has N as a spanning
restriction, or, up to duality, M has a minor that is the 2-sum of a big circuit
and a single-element circuit or cocircuit of N . The proof of Theorem 1.1 is
given in Section 6.
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Figure 1. The graphs in Theorem 1.2.

2. Preliminaries

The matroid terminology used here will follow Oxley [6]. Let M be a
matroid. For subsets X and Y of E(M), the local connectivity ⊓(X,Y )
between X and Y is defined by ⊓(X,Y ) = r(X) + r(Y )− r(X ∪ Y ).

The following elementary property of matroids (see, for example, [6, Ex-
ercise 1.1.5]) will be used repeatedly throughout the paper.

Lemma 2.1. In a matroid M , let C be a circuit and e be a non-loop element

of E(M)−C. If M has a circuit D that contains e and is contained in C∪e,
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then M has a circuit that contains (C−D)∪ e and is contained in C ∪ e. In
particular, if e is in the closure of C, then M has distinct circuits C1 and

C2 both of which contain e such that C1 ∪ C2 = C ∪ e.

For a set I, let A be a family (Ai : i ∈ I) of subsets of a set S. If there is
a subset K of S such that Aj ∩Ak = K for all distinct j and k in I, then A
is a sunflower with kernel K. The following result, which is sometimes called
the sunflower lemma, was proved by Erdős and Rado [2] .

Lemma 2.2. Let h and k be positive integers and I be a set. Let A be a

family (Ai : i ∈ I) of subsets of a set S. If |I| ≥ k!hk+1 and |Ai| ≤ k for

all i in I, then I contains a subset J with more than h members such that

(Ai : i ∈ J) is a sunflower.

Let (X,Y ) be a partition of the ground set of a matroid M . An X-arc

is a minimal non-empty subset A of Y such that M has a circuit C with
C−X = A and C∩X 6= ∅. This terminology is due to Seymour [8]. It should
be noted that Geelen and Whittle [3] call an X-arc a Y -strand. Clearly all
X-arcs are non-empty independent sets in M . Moreover, no X-arc is a
proper subset of another X-arc.

Seymour [8, (3.1), (3.3)] proved the first two parts of the following result.
The third part is a straightforward consequence of the second.

Lemma 2.3. Let X be a set in a matroid M .

(i) If C is a circuit of M that meets X, then C −X is expressible as a

union of X-arcs.

(ii) If x and y are distinct elements of an X-arc A, then {x, y} is a

cocircuit of M |(X ∪A).
(iii) If A is an X-arc, then M |(X ∪A) is the 2-sum, with basepoint p, of

an extension M1 of M |X by p and of a circuit with ground set A∪p.
Moreover, r(M1) = r(M |X).

Proof. Let A be an X-arc. An immediate consequence of (ii) is that

r(X ∪A) = r(X) + |A| − 1.

As A is an independent set in M , it follows that ⊓(X,A) = 1. The proof of
(iii) is contained in the proof of Theorem 8.3.1 of [6]. �

The next two lemmas establish certain properties of X-arcs that will be
used in the proof of Theorem 1.1.

Lemma 2.4. Let X be a set in a matroid M and C be a circuit of M that

meets X. Let A1 and A2 be disjoint X-arcs contained in C−X. If a1 ∈ A1,

then A2 contains an X-arc in M/(A1 − a1).

Proof. We argue by induction on |A1| noting that the result is immediate if
|A1| = 1. Assume the result is true if |A1| = k and let |A1| = k + 1 ≥ 2.
Take b1 in A1 − a1. Evidently C − b1 is a circuit of M/b1, and A1 − b1 is an
X-arc in M/b1. It suffices to show that A2 contains an X-arc in M/b1.
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Now M has a circuit C2 meeting X such that C2 − X = A2. If C2 is a
circuit of M/b1, then A2 certainly contains an X-arc in M/b1 as desired.
Thus we may assume that C2 is not a circuit of M/b1. By Lemma 2.1, M
has distinct circuits D and D′ such that each contains b1 and their union
is C2 ∪ b1. We may assume that D meets A2. If D ⊆ A2 ∪ b1, then D is
a circuit of M that is properly contained in C; a contradiction. Hence D
meets X and, as desired, we get that A2 contains an X-arc in M/b1. The
lemma follows immediately by induction. �

Lemma 2.5. Let n1 and n2 be positive integers and X be a rank-n1 set in

a matroid M . Let C be a circuit of M that meets both X and E(M) − X
and has at least n2!n

n2

1 elements that are not in X. Then C −X contains

an X-arc with at least n2 elements.

Proof. Let A be the set of X-arcs that are contained in C −X. Then, by
Lemma 2.3(i), every member of C − X is in some member of A. Assume
that the lemma fails. Then every member of A has at most n2−1 elements.
Thus A contains at least (n2 − 1)!nn2

1 members. By Lemma 2.2, there is a
subset A′ of A with at least n1+1 members such that A′ is a sunflower. Let
K be the kernel of this sunflower. Then C −K is a circuit of M/K and A′

contains a set {A1, A2, . . . , An1+1} of disjoint X-arcs in M/K, each of which
is contained in C −K. We complete the proof of the lemma by establishing
the contradiction that

2.5.1. rM (X) ≥ n1 + 1.

Choose an element a1 of A1 and considerM/K/(A1−a1). In this matroid,
{a1} is anX-arc and C−K−(A1−a1) is a circuit. Thus a1 is in the closure of
X inM/K/(A1−a1). Also, by Lemma 2.4, for each i in {2, 3, . . . , n1+1}, the
set Ai−(A1−a1) contains an X-arc A′

i in M/K/(A1−a1). Thus A
′
2 contains

an element a2 such that {a2} is an X-arc of M/K/(A1 − a1)/(A
′
2 − a2).

Moreover, for each i in {3, 4, . . . , n1 + 1}, the set A′
i − (A′

2 − a2) contains
an X-arc in the last matroid. By repeating this process, we see that C −
X contains disjoint subsets {a1, a2, . . . , an1+1} and Z such that, in M/Z,
the set {a1, a2, . . . , an1+1} is contained in the closure of X. As C − X is
independent inM , it follows that {a1, a2, . . . , an1+1} is independent in M/Z.
Since {a1, a2, . . . , an1+1} ⊆ clM/Z(X), we deduce that rM/Z(X) ≥ n1 + 1.
Thus 2.5.1 holds and the lemma follows. �

3. Ramsey’s theorem

The main theorem of this paper should be seen in the context of Ramsey
theory, which, loosely speaking, asserts that, within a sufficiently large ob-
ject, some structure must emerge. In this section, we first state Ramsey’s
original theorem [7] and then give a straightforward consequence of it that
we shall need. Let X be a finite set and k be a positive integer. We denote
the set of all subsets of X by 2X and write

(X
k

)

for the set of all k-element
subsets of X. The set of all non-empty subsets of X with at most k elements
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will be denoted by
(X
[k]

)

. A mapping from a set Y into a set Z is called a col-

oring. The members of Z are called colors. When |Z| = t, such a mapping
is also called a t-coloring.

Theorem 3.1. Let k, t, and n1, n2, . . . , nt be positive integers. There is a

function f3.1(k;n1, n2, . . . , nt) with the property that, for every set X with at

least f3.1(k;n1, n2, . . . , nt) elements and every coloring of
(X
k

)

by elements of

{1, 2, . . . , t}, there is an element j of {1, 2, . . . , t} and an nj-element subset

Y of X such that every member of
(Y
k

)

receives the color j.

The following is a well-known corollary of this theorem.

Corollary 3.2. Let k, t, and n be positive integers. There is a function

f3.2(k, t, n) with the property that, for every set X with at least f3.2(k, t, n)

elements and every t-coloring of
(X
[k]

)

, there is an n-element subset Y of X

such that, for all i ∈ {1, 2, . . . , k}, all members of the set
(Y
i

)

receive the

same color.

4. Unavoidable minors of big connected matroids

As noted in the introduction, Lovász, Schrijver, and Seymour were the
first to show that, in a connected matroid, by bounding the size of a largest
circuit and a largest cocircuit, we are also bounding the size of the ground
set of the matroid. The following result of Lemos and Oxley [4] gives a
best-possible such bound.

Theorem 4.1. Let M be a connected matroid with at least two elements

having largest circuit with c elements and largest cocircuit with c∗ elements.

Then

|E(M)| ≤ 1
2cc

∗.

In the proof of our main theorem, we shall use the following result of
Pou-Lin Wu [11], which shows that if e is an element of a connected matroid
M , and M has a big circuit, then M has a big circuit containing e.

Theorem 4.2. Let M be a connected matroid with at least two elements

having largest circuit with c elements. Then every element of M is in a

circuit of size at least c
2 + 1.

5. A big spanning restriction or a 2-sum

Given a sufficiently large connected matroid M that has N as a connected
minor, one possibility is that M has a large connected minor of which N is a
spanning restriction. The task of this section is to show that, up to duality,
when this possibility does not arise, M has, as a minor, the 2-sum of a big
circuit and a single-element extension or coextension of N .

Theorem 5.1. Let N be a non-empty connected matroid with n elements

and let k be a positive integer. There is a positive integer f5.1(n, k) such
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that, whenever M is a connected matroid that has at least f5.1(n, k) ele-

ments and has an N -minor, one of the following holds for some (M0, N0)
in {(M,N), (M∗, N∗)}.

(i) M0 has a connected minor M ′
0 having at least n + k elements such

that r(M ′
0) = r(N0), and M ′

0 has N0 as a restriction; or

(ii) for some connected single-element extension or coextension N ′
0 of N0

by an element p, the matroid M0 has, as a minor, the 2-sum with

basepoint p of N ′
0 and a circuit that contains p and has at least k

other elements.

The next lemma contains the core of the proof of this theorem.

Lemma 5.2. Let N be a non-empty connected matroid with n elements and

let k be a positive integer. There is a positive integer f5.2(n, k) such that,

whenever M is a connected matroid that has a circuit with at least f5.2(n, k)
elements and has an N -minor, one of the following holds.

(i) M∗ has a connected minor M ′ having at least n + k elements such

that r(M ′) = r(N∗), and M ′ has N∗ as a restriction; or

(ii) for some connected single-element extension or coextension N ′ of N
by an element p, the matroid M has, as a minor, the 2-sum with

basepoint p of N ′ and a circuit that contains p and has at least k
other elements.

Proof. Let M be a connected matroid having a circuit with at least
2(3kk!nk+n+k) elements and having an N -minor. We shall show that (i) or
(ii) holds for M . Let X and Y be subsets of E(M) such that N = M/X\Y
and Y is maximal. Then r∗(M\Y ) = r∗(N). Moreover, sinceN is connected
and Y is maximal, M\Y is connected. If |X| ≥ k, then the lemma holds.
Thus we may assume that |X| < k.

As M has a circuit with at least 2(3kk!nk + n + k) elements, it follows
by Theorem 4.2 that M has a circuit C that meets E(N) and has at least
3kk!nk+n+k elements. Let M1 = M\(Y −C). Then N = M1\(Y ∩C)/X.
SinceN is connected, it follows by the maximality of Y thatM1 is connected.
Let M2 = M1/(X ∩ C). Again, the maximality of Y implies that M2 is
connected. Moreover, C −X is a circuit C2 of M2 meeting E(N) and, since
|X| < k, it follows that

|C2| > 3kk!nk + n.

Let X2 = X −C and let X ′
2 be a maximal subset of X2 such that M2/X

′
2

has C2 as a circuit. Then the maximality of Y means that M2/X
′
2 is con-

nected. Let M3 = M2/X
′
2 and let X3 = X2 −X ′

2. Evidently each element
of X3 is in the closure of C2 in M3.

Next we prove the following.

5.2.1. Either

(i) M3/X3 has a circuit that meets E(N) and has at least
|C2|

3|X| elements;

or
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(ii) for some connected single-element coextension N1 of N by an el-

ement p of X3, the matroid M has, as a minor, the 2-sum with

basepoint p of N1 and a circuit that contains p and has at least
2|C2|

3|X|

other elements.

We prove this by induction on |X3|. The result is immediate if |X3| = 0.
Suppose |X3| ≥ 1 and consider x3 in X3. As x3 ∈ clM3

(C2), Lemma 2.1
implies that M3 has a circuit that contains x3, meets E(N), and is contained
in C2 ∪ x3. Clearly either

(a) M3/x3 has a circuit of size at least |C2|
3 that meets E(N); or

(b) every circuit of M3/x3 that meets E(N) has size less than |C2|
3 .

In the first case, the result follows by induction. Thus, we may assume that
(a) does not hold. Then (b) holds and, by Lemma 2.1, M3 has a circuit D3

that contains x3, that avoids E(N), that is contained in C2 ∪ x3, and that

has more than 2|C2|
3 + 1 elements.

Suppose that M3/x3 is connected. Since this matroid has D3 − x3 as a
circuit, it follows by Theorem 4.2 that M3/x3 has a circuit that meets E(N)

and has at least |C2|
3 elements, which contradicts the fact that (a) does not

hold. We deduce that, for every x3 in X3, we may assume that M3/x3 is
disconnected and that

5.2.2. there is a partition (F3, G3) of C2 such that F3 ∪ x3 and G3 ∪ x3 are

circuits of M3 where C2 ∩ E(N) ⊆ G3 and |G3| ≤
|C2|
3 elements. Moreover,

F3 is a component of M3/x3.

Suppose X3 = {x3}. Then M3\C2 is a connected single-element coexten-
sion N1 of N by the element x3, and M3\(C2−F3) is the parallel extension,
with basepoint x3, of N1 and a circuit with ground set F3 ∪ x3. Thus
M3\(C2 − F3)\x3 is the 2-sum, with basepoint x3, of N1 and the circuit

F3 ∪ x3. Moreover, M3\(C2 −F3)\x3/F3 = N . Since |F3| ≥
2|C2|
3 , the result

follows in this case.
We may now assume that |X3| ≥ 2. Let x3 and x′3 be distinct elements

of X3. Let (F3, G3) and (F ′
3, G

′
3) be corresponding partitions of C2 given by

5.2.2, where |F3|, |F
′
3| ≥

2|C2|
3 .

Suppose F ′
3 ⊆ F3. In M3/x3, we have F3 and G3 contained in separate

components. But x′3 ∈ clM3
(F ′

3) ⊆ clM3
(F3). Hence we can move x′3 from

X into Y contradicting the maximality of the latter. Thus F ′
3 6⊆ F3 and,

by symmetry, F3 6⊆ F ′
3. Hence F ′

3 ∩ G3 and F3 ∩ G′
3 are both non-empty.

Moreover, G3∩G′
3 6= ∅ as G3∩G′

3 ⊇ C2∩E(N). Finally, as |G3|, |G
′
3| ≤

|C2|
3 ,

we see that |G3 ∪G′
3| ≤

2|C2|
3 , so |F3 ∩ F ′

3| ≥
|C2|
3 .

Let P3 be the dual of M3|(C2 ∪ x3 ∪ x′3). Then r(P3) = 3, and P3 has
{x3, x

′
3} as a line. Moreover, P3/x3 has {x′3}, F

′
3, and G′

3 as parallel classes,
while P3/x

′
3 has {x3}, F3, and G3 as parallel classes. In P3, there are exactly

three lines through x3. These lines contain {x3, x
′
3}, F

′
3 ∪ x3, and G′

3 ∪ x3.
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Likewise, the three lines through x′3 contain {x3, x
′
3}, F3 ∪ x′3, and G3 ∪ x′3.

Thus si(P3) is isomorphic to M(K4), and P3 has F3 ∩ F ′
3, F3 ∩ G′

3, G3 ∩
F ′
3, G3 ∩ G′

3, {x3}, and {x′3} as parallel classes. Hence P3 has {x3, x
′
3} ∪

(F3 ∩ F ′
3) ∪ (G3 ∩G′

3) as a cocircuit that meets E(N). Thus M3/x3, x
′
3 has

(F3∩F ′
3)∪ (G3∩G′

3) as a circuit that meets E(N) and that has at least |C2|
3

elements. It now follows, by induction, that 5.2.1 holds.
Now assume that 5.2.1(i) occurs and let C3 be a circuit of M3/X3 that

meets E(N) and has at least |C2|

3|X| elements. Since |X| < k and |C2| >

3kk!nk + n, we see that

|C3| >
3kk!nk + n

3|X|
> k!nk + n.

Then |C3 − E(N)| > k!nk. Since r(N) < |E(N)| ≤ n, it follows by
Lemma 2.5 that C3 contains an E(N)-arc with at least k elements. Hence,
by Lemma 2.3(iii), part (ii) of the lemma holds.

Finally, assume that 5.2.1(ii) holds. Then, as 2|C2|
3 ≥ k, we again get that

(ii) of the lemma holds. �

Proof of Theorem 5.1. Let M be a connected matroid having at least
[f5.2(n, k)]

2 elements and having an N -minor. Then, by Theorem 4.1, M
has a circuit or a cocircuit with at least f5.2(n, k) elements. By switching
to the dual if necessary, we may assume the former. The theorem is now an
immediate consequence of Lemma 5.2. �

6. Large matroids of bounded rank

When we begin with a positive integer k and a sufficiently large connected
matroid M having some connected minor N as a minor, Theorem 5.1 tells
us that one possibility is that M has, as a minor, a connected extension M ′

of N such that r(M ′) = r(N) and |E(M ′)|− |E(N)| ≥ k. In this section, we
show that, when k is sufficiently large, M ′ has a connected restriction M ′′

such that all the elements of E(M ′′) − E(N) are clones. This result gives
us the final piece we need to prove the main theorem of the paper, and that
proof appears at the end of the section.

Theorem 6.1. Let N be a matroid with n elements and let k be a positive

integer. There is a positive integer f6.1(n, k) such that, whenever M is a

matroid with at least f6.1(n, k) elements such that M has N as a spanning

restriction, M has a restriction M ′ with at least n+k elements such that N
is a spanning restriction of M ′ and all the elements of E(M ′) − E(N) are

clones in M ′. In particular, M ′\E(N) is uniform.

Proof. Let M be a matroid with at least f3.2(1 + r(N), 21+2n , n) elements
and suppose thatM has N as a spanning restriction. LetX = E(M)−E(N)
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and let d = 1 + r(N). For every A ∈
(X
[d]

)

, let

c1(A) =

{

1 if A is a circuit of M ;

0 if A is not a circuit of M ;

and let

c2(A) = {D ∈ 2E(N) : D ∪A is a circuit of M}.

Finally, let c0 = c1×c2. Then c0 is a 21+2n-coloring of
(X
[d]

)

. By Corollary 3.2,

X contains a subset Y such that, for all i in {1, 2, . . . , 1+r(N)}, all members

of
(Y
i

)

receive the same color. Let M ′ = M |(Y ∪ E(N)). Then all the
elements of Y are clones in M ′ and the theorem holds. �

In the last theorem, there are potentially many different ways for all of
the elements of E(M ′)−E(N) to be clones. For example, all these elements
could be parallel, or they could all be added freely to N . In addition, we
could take a parallel connection of N and a line with ground set E(M ′) −
E(N) and then truncate this matroid. In general, if r(M ′ − E(N)) = t,
then M ′ can be obtained by extending N by some independent set Z of t
elements to give a matroid M ′′ in which all the elements of Z are clones.
We then freely add the elements of E(M ′)−E(M ′′) to the flat of M ′′ that is
spanned by Z. It is straightforward to check that, in the resulting matroid,
all the elements of E(M ′)− E(N) are clones.

Applying the last theorem to connected matroids, we immediately obtain
the following result.

Corollary 6.2. Suppose N is a connected matroid with n elements and non-

zero rank, and let k be a positive integer. There is a positive integer f6.2(n, k)
such that, whenever M is a connected matroid with at least f6.2(n, k) ele-

ments such that M has N as a spanning restriction, M has a connected

restriction M ′ with at least n + k elements such that N is a spanning re-

striction of M ′ and all the elements of E(M ′)−E(N) are clones in M ′. In

particular, M ′\E(N) is a connected uniform matroid.

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Let M be a connected matroid having at least
f5.1(n, f6.2(n, k)) elements and having an N -minor. It is immediate from
Theorem 5.1 and Corollary 6.2 that

f5.1(n, k) ≥ n+ k and f6.2(n, k) ≥ n+ k.

Suppose that (M0, N0) is a member of {(M,N), (M∗, N∗)} for which (i) or
(ii) of Theorem 5.1 holds. In the latter case, for some connected single-
element extension or coextension N ′

0 of N0 by an element p, the matroid
M0 has, as a minor, the 2-sum with basepoint p of N ′

0 and a circuit that
contains p and has at least f6.2(n, k) other elements. Since f6.2(n, k) ≥ n+k,
it follows that part (ii) of the theorem holds.
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We may now assume that (i) of Theorem 5.1 holds. Then M0 has a
connected minorM ′

0 having at least n+f6.2(n, k) elements such that r(M ′
0) =

r(N0), and M ′
0 has N0 as a restriction. Thus, by Corollary 6.2, M ′

0 has a
connected restriction M ′′

0 with at least n + k elements such that N0 is a
spanning restriction of M ′′

0 , and M ′′
0 \E(N0) is a connected uniform matroid

with at least k elements, so part (i) of the theorem holds. �

7. A big circuit and a big cocircuit

By Theorem 4.1, a sufficiently large connected matroid has a big circuit
or a big cocircuit. In this section, we consider what can be said about a
connected matroid that has both a big circuit and a big cocircuit. The
next lemma is well known (see, for example, [6, Exercise 3.3.11]). It and
the subsequent lemma will be used in the proof of the main result of this
section.

Lemma 7.1. Suppose that, in a matroid M , a non-empty set Z is the

intersection of a circuit and a cocircuit. Then M has a minor M0 in which

Z is a spanning circuit of both M0 and M∗
0 .

Lemma 7.2. Let M be a connected matroid and D be a set of clones in M
with r(D) = t ≥ 1 and |D| = t + d. Assume that M has a circuit C with

|C| ≥ 2t(s + 2) − 2 for some positive integer s. Then M has, as a minor,

the parallel connection of a circuit of size at least s + 1 and a cocircuit of

size at least d+ 1.

Proof. Since C is a circuit, it follows by Theorem 4.2 that M has a circuit
C1 of size at least 2

t−1(s+2)−1 that meets D. We argue by induction on t.
If t = 1, then the result follows immediately. Now assume the result holds
when t < m and let t = m ≥ 2. Take e in D ∩ C1. Then C1 − e is a circuit
of M/e and D− e is a set of clones in M/e. Evidently |D− e| = (t− 1) + d
and |C1 − e| ≥ 2t−1(s+ 2) − 2. We may assume that D − e and C1 − e are
in different components of M/e, otherwise the result follows by induction.
Thus D ∩ C1 = {e}. Hence M is the parallel connection, with basepoint
e, of a connected matroid that contains D and a connected matroid that
contains C1. It follows that the elements of D− e are all parallel to e in M .
We conclude, by induction, that the required result holds. �

Theorem 7.3. Let n be a positive integer. There is a positive integer f7.3(n)
such that, whenever M is a connected matroid having both a circuit and a

cocircuit with at least f7.3(n) elements, M has as a minor either

(i) the 2-sum of an (n + 1)-element circuit and an (n + 1)-element co-

circuit; or

(ii) a matroid M0 that contains a set with at least n elements that is a

spanning circuit in both M0 and M∗
0 .

Proof. It is immediate from Lemma 5.2 and Theorem 6.1 that

f5.2(n, k) ≥ n+ k and f6.1(n, k) ≥ n+ k.
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Let m = 2n(n + 2) and let M be a connected matroid having both a cir-
cuit C and a cocircuit with at least 2f5.2(m, f6.1(m, 2m) elements. Then,
by Theorem 4.2, M has a cocircuit C∗ that meets C and has at least
f5.2(m, f6.1(m, 2m) elements.

We may assume that |C ∩ C∗| < n otherwise it follows, by Lemma 7.1,
that (ii) holds. Let J be a subset of C∗ − C such that |C∗ − J | = m. Let
C∗
1 be C∗ − J . Then M\J has a component M1 in which C∗

1 and C are in
the same component. Let N = M1.C

∗
1 . Then N is an m-element cocircuit.

Since M1 has C as a circuit with at least f5.2(m, f6.1(m, 2m) elements, it
follows by Lemma 5.2 that either

(i) M∗
1 has a connected minorM ′ with at least m+f6.1(m, 2m) elements

such that r(M ′) = r(N∗) and M ′ has N∗ as a restriction; or
(ii) for some connected single-element extension or coextension N1 of N

by an element p, the matroid M1 has, as a minor, the 2-sum with
basepoint p of N1 and a circuit that contains p and has at least
f6.1(m, 2m) other elements.

Suppose that (ii) holds. If N1 is an extension of N , then N1 is also a
cocircuit and (i) of the theorem holds. If N1 is a coextension of N , then p
is in a cocircuit of N1 with at least 1

2f6.1(m, 2m) other elements and again
(i) of the theorem holds.

We may now assume that (i) holds. Then, since |E(N)| = m, it follows, by
Corollary 6.2, that M ′ has a connected restriction M ′′ with at least m+2m
elements such that N∗ is a spanning restriction of M ′′, and the set D of
elements of E(M ′′)−E(N∗) is a set of clones in M ′′. Clearly |D| ≥ 2m. As
M ′′ is spanned by E(N∗), it follows that r(D) ≤ r(N∗) ≤ m. If r(D) ≥ n,
then, since |D| ≥ 2m, we see that M ′′, and hence M , has a minor M0 that
contains a set with at least n elements that is a spanning circuit in both
M0 and M∗

0 , that is, (ii) of the lemma holds. We may now assume that
r(D) = t < n. Clearly |D| ≥ t+m, and M ′′ has E(N∗) as a cocircuit with
m elements. But m = 2n(n+2). Thus, by Lemma 7.2, M ′′ has, as a minor,
the parallel connection of a circuit of size at least n + 2 and a cocircuit of
size at least m+ 1. Since m ≥ n, we conclude that (i) of the theorem holds
in this case, so the proof is complete. �

8. Graphs with a cycle and bond having a big intersection

By Theorem 7.3, one of the possibilities for a connected matroid M that
has both a big circuit and a big cocircuit is that M has a minor that contains
a big set that is the intersection of a circuit and a cocircuit. The number
of matroids like this seems large. We had hoped to be able to identify a
family of unavoidable minors for the class of such matroids. But we were
unable to solve this problem even when we restrict to the binary case. In
the latter case, we have a potential list of unavoidable minors, but we are
unsure that this list is complete. The list is given at the end of the section.
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The main result of this section solves the problem when we restrict to the
class of graphic matroids by proving Theorem 1.2.

Let G be a graph with vertex set V . For any subset X of V , let G[X] =
G− (V −X), and let δG(X) denote the set of edges of G that have one end
in each of X and V −X. When X 6∈ {V, ∅} and both G[X] and G[V −X] are
connected, δG(X) is a bond in G or, equivalently, it is a cocircuit in M(G).

Our proof of Theorem 1.2 will require some preliminary results.

Lemma 8.1. Let d and l be non-negative integers. There is an integer

f8.1(d, l) such that if G is a connected graph with at least f8.1(d, l) vertices

and v is a vertex of G, then either G has a vertex of degree exceeding d, or
G has a path that has v as an end and has length exceeding l.

Proof. Let n = 1 + d + d(d − 1) + d(d − 1)2 + · · · + d(d − 1)l−1. Suppose
G is a connected graph with |V (G)| ≥ max{3, 1 + n}, and let v be a vertex
of G. Since |V (G)| ≥ 3, G has a path of length two. It follows that the
lemma holds if d ≤ 1 or l ≤ 1. Hence we may assume that d > 1 and
l > 1. We may also assume that every vertex of G has degree at most d. It
follows that G has at most n vertices that are distance at most l away from
v. Since |V (G)| ≥ 1 + n, we deduce that G has a path that has v as an end
and has length exceeding l. We conclude that the lemma holds if we take
f8.1(d, l) = max{3, 1 + n}. �

For a positive integer m, we shall denote by mK2 the disjoint union of m
copies of K2, that is, mK2 is a matching with m edges.

Lemma 8.2. Let m, s, and t be positive integers. There exists an integer

f8.2(m, s, t) such that every simple graph with at least f8.2(m, s, t) edges has

one of mK2, K1,s, or Kt as an induced subgraph.

Proof. Let G be a simple graph with vertex set {1, 2, . . . , n} having at least
f3.1(2; s, t, t, t, 2s,m) edges. For any two distinct edges uv and xy of G,
where u < v and x < y, we let Z = {u, v, x, y} and define

c(uv, xy) =







































1 if |Z| = 3 and |E(G[Z])| = 2;

2 if |Z| = 3 and |E(G[Z])| = 3;

3 if |Z| = 4 and vy ∈ E(G);

4 if |Z| = 4 and vy 6∈ E, but ux ∈ E;

5 if |Z| = 4 and {vy, ux} ∩ E = ∅, and |E(G[Z])| ≥ 3;

6 if |Z| = 4 and {vy, ux} ∩ E = ∅, and |E(G[Z])| = 2.

The six situations arising above are illustrated in Figure 2, where {e, f} =
{uv, xy} and, in the fifth case, vx may be present instead of uy.

Clearly c is a 6-coloring of
(E
2

)

. By Theorem 3.1, for some j in

{1, 2, 3, 4, 5, 6} and some nj-element subset F of E, all pairs in
(F
2

)

have
the same color j, where (n1, n2, n3, n4, n5, n6) = (s, t, t, t, 2s,m). Let F =
{x1y1, x2y2, . . . , xnj

ynj
}, where xi < yi for all i. Let X = {x1, x2, . . . , xnj

}
and Y = {y1, y2, . . . , ynj

}.
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Figure 2. Dashed lines represent non-edges of G; unlinked
vertices may or may not be adjacent in G.

If j is 1 or 6, then F forms an induced subgraph of G isomorphic to K1,s

or mK2, respectively. If j = 2, then G[X ∪ Y ] is Kt+1, unless t = 3 when
G[X ∪ Y ] ∈ {K3,K4}. If j is 3 or 4, then G[Y ] or G[X], respectively, is
Kt. Finally, if j = 5, then, for all i in {2, 3, . . . , n5}, at least one of x1yi
and y1xi is an edge of G. It follows that at least one of G[{x1} ∪ Y ] and
G[{y1}∪X] contains an induced subgraph isomorphic to K1,s. We conclude
that the lemma holds if we take f8.2(m, s, t) = f3.1(2; s, t, t, t, 2s,m). �

Lemma 8.3. Let t1, t2, t3, and t4 be positive integers. There is an in-

teger f8.3(t1, t2, t3, t4) such that if G is a simple graph with vertex set

{1, 2, . . . , n} and G has at least f8.3(t1, t2, t3, t4) edges, then G has distinct

edges x1y1, x2y2, . . . , xtyt such that at least one of the following holds:

(i) t = t1 and x1 = x2 = · · · ,= xt;
(ii) t = t2 and x1 < y1 < x2 < y2 < · · · < xt < yt;
(iii) t = t3 and x1 < x2 < · · · < xt < y1 < y2 < · · · < yt;
(iv) t = t4 and x1 < x2 < · · · < xt < yt < yt−1 < · · · < y1.

Proof. Let G be a simple graph with vertex set {1, 2, . . . , n} and suppose
that G has at least f3.1(2; t1t4, 2t2 − 1, t3) edges. Let uv and xy be an
arbitrary pair of distinct edges of G with u < v and x < y, where u ≤ x.
Define

c(uv, xy) =











1 if u = x or y ≤ v;

2 if v ≤ x;

3 otherwise, that is, if u < x < v < y.

Then c is a 3-coloring of
(E
2

)

. By Theorem 3.1, there is an element
j in {1, 2, 3} and an nj-element subset F of E such that all pairs in
(F
2

)

have the same color j, where (n1, n2, n3) = (t1t4, 2t2 − 1, t3). Let
F = {x1y1, x2y2, . . . , xnj

ynj
}. If j = 1, then we may assume x1 ≤ x2 ≤

· · · ≤ xnj
≤ ynj

≤ ynj−1 ≤ · · · ≤ y1. In this case, either a subset of F
satisfies (i), or {x1+it1y1+it1 : i ∈ {0, 1, . . . , t4 − 1}} satisfies (iv). If j = 2,
then we may assume x1 < y1 ≤ x2 < y2 ≤ · · · ≤ xnj

< ynj
. In this

case, {x2i−1y2i−1 : i ∈ {1, 2, . . . , t2}} satisfies (ii). Finally, if j = 3, then F
satisfies (iii). �
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From now on, we will call a vertex in a graph universal if it is adjacent
to all other vertices of the graph. In addition, when x and y are vertices of
a path P , we denote by P [x, y] the subpath of P between x and y.

Lemma 8.4. Let n be a positive integer. There exists an integer f8.4(n) with
the following property. If a graph G has a bond δG(V1) that is contained in a

cycle C such that G[V1] has a universal vertex, and |δG(V1)| ≥ f8.4(n), then
G has Γ1(n), Γ3(n), or Γ4(n) as a minor.

Proof. Let l = f8.3(3, n+2, n+1, n+1). We shall show that the lemma holds
with f8.4(n) = 2f8.1(2n− 1, l− 1). Let G be a graph satisfying the specified
conditions, and let D = δG(V1) and u1 be a universal vertex of G[V1]. Let
V2 = V (G) − V1. By contracting edges of C in G[V2], we may assume that
no edge of C is contained in G[V2]. Also, by repeatedly contracting edges
of G[V2] that have at most one end on C, we may assume that V2 ⊆ V (C).
After these reductions, every vertex of V2 meets exactly two edges of C and
so meets exactly two edges of D.

Since |V2| = |D|/2 ≥ f8.1(2n−1, l−1), it follows by Lemma 8.1 that G[V2]
has subgraph T such that T is a star on 2n + 1 vertices or a path on l + 1
vertices. Let us delete all the edges of G[V2] that are not in T . Then each
vertex v in V2 − V (T ) has degree two as it meets two edges in D. For all
such v, contract exactly one of the two edges of D that are incident with v.
Let G′ be the resulting graph, and let C ′ = E(G′)∩C. Then C ′ is a cycle of
G′. Let V ′

2 = V (T ). Then (V1, V
′
2) is a partition of V (G′) and G′[V ′

2 ] = T .
Moreover, u1 is a universal vertex of G′[V1], and δG′(V1) is a bond D′ of G′

that is contained in the cycle C ′. Now we apply the same reductions used
in the first paragraph to G′[V1]. First we contract edges if necessary to get
that no edge of C ′ is contained in G′[V1]. Then further contractions, this
time of edges with at most one end in V (C ′), mean that we may assume that
V1 ⊆ V (C ′). Note that u1 remains a universal vertex of G′[V1] where we
follow the convention that if an edge e that is incident with u1 is contracted,
the composite vertex that results from identifying the ends of e will retain
the label u1.

Suppose that T is a star with center vertex u2. Let P be a u1u2-path
in C ′ with |V (P )| ≥ (|V (C ′)| + 2)/2. Then |V (P )| ≥ |V ′

2 | + 1 = 2n + 2.
Now the vertices of P alternate between V1 and V ′

2 . By contracting all of
the even-numbered edges in P , we get a path with at least n edges in which
every interior vertex is adjacent to both u1 and u2. Thus the union of P , T ,
and the edges between u1 and P contains Γ4(n) as a minor.

We may now suppose that T is an l-edge path P and that its vertices are
1, 2, . . . , l + 1, listed as they appear on the path. Note that C ′ is divided
by these vertices into l + 1 two-edge paths P1, P2, . . . , Pl+1, each having
both ends in P and each vertex in P is an end of exactly two such paths.
Apply Lemma 8.3 to the graph with vertex set V (P ) and edge set {xiyi :
xi, yi are the ends of Pi and i ∈ {1, 2, . . . , l}}, where we assume that Pl+1

contains the universal vertex u1. Recall that l = f8.3(3, n + 2, n + 1, n+ 1).
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Without loss of generality, we may assume that x1y1, x2y2, . . . , xtyt satisfy
one of the outcomes (ii)–(iv) in Lemma 8.3. If (ii) holds, then, as t = t2 =
n+2, the union of P , P1, P2, . . . , Pt, and edges from u1 to each Pi with i in
{1, 2, . . . , t} has Γ3(n) as a minor. If (iii) or (iv) of Lemma 8.3 holds, then,
as t3 = t4 = n + 1, the union of P [x1, xt], P [y1, yt], P1, P2, . . . , Pt, and an
edge from u1 to each of P1 and Pt has Γ1(n) as a minor. �

We are now ready to prove the main result of this section.

Proof of Theorem 1.2. Let d = f8.4(n)/2 and m = f8.3(2, n+2, 2, 3n+3). In
addition, let l2 = f8.2(m, 2n, n+1) and l1 = f8.1(d−2, l2+2). We shall prove
that the theorem holds when we take f1.2(n) = 2f8.1(d− 2, l1). Specifically,
we show that, for a graph G having a set Z with at least 2f8.1(d−2, l1) edges
such that Z is the intersection of a cycle and a bond, G has, as a minor, one
of Γ1(n),Γ2(n),Γ3(n), or Γ4(n).

Suppose Z is the intersection of a cycle C and a bond C∗. By deleting
the edges of C∗ − C, we obtain a minor of G is which C is a cycle and
C ∩C∗ is a bond D. For notational convenience, we shall relabel this minor
of G as G. Let (V1, V2) be a partition of V (G) such that D = δG(V1). As
in the proof of the preceding lemma, we also assume that V1 ⊆ V (C) and
that no edge of C is contained in G[V1]. It follows that every vertex of V1

meets exactly two edges of C and so meets exactly two edges of D. Thus
|V1| = |D|/2 ≥ f8.1(d− 2, l1).

Suppose G[V1] has a vertex u of degree at least d−1. Delete all the edges
of G[V1] that are not incident with u letting G′ be the resulting graph. Let
V0 be u together with its neighbors in V1 and let D0 = δG′(G′[V0]). Then
|V0| ≥ d, so |D0| ≥ 2d. We can now apply Lemma 8.4 to the bond D0 of
G′. As G′[V0] has u as a universal vertex and |D0| ≥ f8.4(n), the theorem
follows in this case. We may now assume that the maximum degree of G[V1]
is at most d − 2. Thus, by Lemma 8.1, G[V1] has a path P1 of length l1.
By deleting all the edges of G[V1] that are not in P1, we obtain a subgraph
G0 of G in which δG0

(V (P1)) is a bond D′ contained in C. Note that
V (P1) ⊆ V (C), that E(C) ∩ E(P1) = ∅, and that P1 is an induced path
in G0. By contracting edges in G0 − V (P1) as in the first paragraph of the
last proof, we can obtain a minor G′ such that D′ forms a cycle C ′ that
spans M(G′) and if (V ′

1 , V
′
2) is the partition of G′ with V ′

1 = V (P1), then
V ′
2 ⊆ V (C ′) and E(C ′) ∩ G′[V ′

2 ] = ∅. As every vertex of each of V ′
1 and V ′

2
meets exactly two edges of D′, it follows that |V ′

1 | = |V ′
2 |. Let u1, v1 be the

ends of P1.
If G′[V ′

2 ] has a vertex of degree at least d − 1, then, as in the previous
paragraph, the theorem holds by Lemma 8.4. Thus we may assume that
the maximum degree of G′[V ′

2 ] is at most d − 2. Let p label u1u2, one of
the two edges in D′ that are incident with u1. Since |V ′

2 | = |V ′
1 | = l1 + 1 >

f8.1(d − 2, l2 + 2), we deduce from Lemma 8.1 that G′[V ′
2 ] has a path P2 of

length l2 +3 having u2 as an end. Let v2 be the other end of this path. Let
G′′ be obtained by deleting all the edges of G′[V ′

2 ] that are not in P2, and,
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for each w in V ′
2 − V (P2), contracting exactly one of the two edges of D′

that are incident with w. Note that, after these contractions, the remaining
edges of C ′ form a cycle C ′′ that spans M(G′′). Let P be the union of P1,
P2, and p. Then P is a path with vertex set V (G′′) and ends v1 and v2.
Moreover, (E(C ′′\p), E(P )) is a partition of E(G′′). We also observe that
no edge of C ′′ has both ends in P2 but C ′′ may have some edges with both
ends in P1.

We shall say that two edges x1x2 and y1y2 of C ′′\p cross if P [x1, x2] and
P [y1, y2] have at least one common edge yet neither is a subpath of the
other.

8.6.1. If w1w2 is an edge e having one end in V (P1)−{u1, v1} and the other

in V (P2)− {u2, v2}, then e crosses some edge of C ′′\p.

Let Q be the component of C ′′\{e, p} that contains v1. Then Q is a path
with ends ui and wj for some i and j in {1, 2}. Note that Q[ui, v1] is a path
from the interior of P [w1, w2] to v1, and it contains neither w1 nor w2. Thus
its last edge leaving P [w1, w2] crosses e. Hence 8.6.1 holds.

Let F be the set of edges joining a vertex in V (P1)− {u1, v1} to a vertex
in V (P2) − {u2, v2}, and let F ′ be the set of edges of C ′′ − p that cross at
least one edge in F . We now construct an auxiliary simple graph H that
has F ∪F ′ as its vertex set. Two vertices in H are adjacent if and only if the
corresponding edges of G′′ cross. By 8.6.1, H has no isolated vertices. Now
each vertex of V (P2)−{u2, v2} meets exactly two edges of C ′′\p. Since each
of these edges has its other end in V (P1) and at most four of these edges have
u1 or v1 as an end, |F | ≥ 2(|V (P2)| − 2)− 4 = 2|V (P2)| − 8. Thus |E(H)| ≥
|V (H)|/2 = |F ∪ F ′|/2 ≥ |F |/2 ≥ |V (P2)| − 4 = l2 = f8.2(m, 2n, n + 1). By
Lemma 8.2, F ∪F ′ has a subset F0 such that H[F0] is mK2, K1,2n, or Kn+1.
In the third case, F0 corresponds to a set of n+ 1 edges of C ′′\p every two
of which cross. Beginning at v1, order the vertices of P as they occur along
the path. Then the edges of F0 can be ordered x1y1, x2y2, . . . , xn+1yn+1 so
that x1 < x2 < · · · < xn+1 < y1 < y2 < · · · < yn+1. Then the union of
P [x1, xn+1], P [yn+1, y1], and the edges of F0 form a subdivided ladder. Since
the path P [xn+1, y1] is internally disjoint from this ladder, when we add this
path to the ladder and suppress the degree-two vertices, we get Γ1(n).

Next suppose that H[F0] is K1,2n. Then, in G′′, the edges of F0 consist of
a 2n-edge matching together with a single edge e that crosses all of the edges
in the matching. If xy and x′y′ are in the matching, then {x, y} ∩ {x′, y′} =
∅. Moreover, either P [x, y] and P [x′, y′] are disjoint, or one of P [x, y] and
P [x′, y′] is a subpath of the other. As e crosses all the edges in the matching,
it follows that the matching contains n edges, x1y1, x2y2, . . . , xnyn, such
that, after interchanging xi and yi where necessary, x1 < x2 < · · · < xn <
yn < yn−1 < · · · < y1. Moreover, we may assume that e = x0y0 where
x0 < x1 and xn < y0 < yn. Then the union of P [x1, xn], P [y1, yn], and
{x1y1, x2y2, . . . , xnyn} is a subdivided ladder. Taking the union of it with
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x0y0, P [xn, y0], P [y0, yn], and P [x0, x1] gives a graph that has Γ1(n) as a
minor.

It remains to consider the case when H[F0] is mK2. In that case, the m
edges of H[F0] correspond to m disjoint pairs {ei, e

′
i} of edges of C ′′\p in G′′

where the edges in each pair cross each other but edges from different pairs
do not cross. Now we apply Lemma 8.3 to the subgraph of G′′ with edge
set {e1, e2, . . . , em}, where their end vertices are ordered as they occur on
P . We know that the edges in {e1, e2, . . . , em} form a matching and no two
of them cross. Since m = f8.3(2, n + 2, 2, 3n + 3), it follows by Lemma 8.3
that either (ii) of the lemma holds with t = n+2, or (iv) of the lemma holds
with t = 3n+ 3.

Consider the first possibility. Then at most one ei has one end in P1

and the other end in P2. Thus, since no ei has both ends in P2, it fol-
lows that n + 1 of the edges, say e1, e2, . . . , en+1, have both ends in P1.
Then each of e1, e2, . . . , en+1 is in F ′. The definition of F ′ guarantees that,
for each i in {1, 2, . . . , n + 1}, there is an edge gi of F that crosses ei.
Then, by contracting P2 to a single vertex, we see that the union of P and
{e1, e2, . . . , en+1, g1, g2, . . . , gn+1} contains Γ3(n) as a minor.

Now suppose (iv) of Lemma 8.3 occurs. Let ei = xiyi for all i in
{1, 2, . . . , 3n + 3} and suppose that x1 < x2 < · · · < x3n+3 < y3n+3 <
· · · < y2 < y1. For each i in {2, 3, . . . , 3n + 2}, there are three possibilities
for the position of e′i:

(a) both ends of e′i are in P [xi−1, xi+1];
(b) both ends of e′i are in P [yi+1, yi−1];
(c) e′i joins a vertex in P [xi−1, xi+1] to a vertex in P [yi+1, yi−1].

Put e′i into Ia, Ib, or Ic depending on which of (a), (b), or (c) holds. Then
Ia, Ib, and Ic are disjoint sets whose union is {2, 3, . . . , 3n + 2}. Hence one
of Ia, Ib, or Ic has at least n+1 members. If |Ia| ≥ n+1, then the union of
P and the edges eie

′
i with i in Ia contains Γ3(n) as a minor. By symmetry,

when |Ib| ≥ n+ 1, we also get Γ3(n) as a minor. Thus we may assume that
|Ic| ≥ n+1. By relabelling, we may assume that {2, 3, . . . , n+2} ⊆ Ic. Then,
by taking the union of P [x1, xn+3], P [yn+3, y1], and {ei, e

′
i : i ∈ {2, 3, . . . , n+

2}}, we get a graph that contains Γ2(n) as a minor. �

A list of unavoidable minors for the class of binary matroids that contain
a big set that is the intersection of a circuit and a cocircuit must include
the cycle matroids of Γ1(n),Γ2(n),Γ3(n), and Γ4(n). In addition, the list
should include the tipless binary spike of rank n, that is, the vector matroid
of the binary matrix [In|Jn − In], where Jn is the n× n matrix of all ones.
We were unable to prove that this list is complete, nor could we find a
counterexample.

Conjecture 8.7. Let n be an integer exceeding two. There is an integer

f8.7(n) such that if a binary matroid M contains a set that is the intersection

of a circuit and a cocircuit and has at least f8.7(n) elements, then M has,
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as a minor, one of M(Γ1(n)),M(Γ2(n)),M(Γ3(n)),M(Γ4(n)), or the vector

matroid of the binary matrix [In|Jn − In].

The next result shows that if the list in the conjecture is incomplete, any
other matroids on the list can be assumed to be 3-connected.

Theorem 8.8. Let M be a binary matroid that contains a set Z that is the

intersection of a circuit and a cocircuit. For each integer n exceeding two,

there is a positive integer f8.8(n) such that if |Z| ≥ f8.8(n), then

(i) M has a 3-connected minor M ′ that contains a set C ′ that has at

least n elements and is both a spanning circuit and a cospanning

cocircuit; or

(ii) M has M(Γ2(n)) or M(Γ3(n)) as a minor.

Proof. Assume that |Z| ≥ nf8.1(2
n, n2). By Lemma 7.1, M has a minor M0

such that Z is a spanning circuit of both M0 and M∗
0 . For notational con-

venience, we relabel M0 as M . We may assume that M is not 3-connected,
otherwise (i) certainly holds. We now apply a result of Cunningham and
Edmonds (see Cunningham [1]) following the treatment given in [6, Section
8.3]. By that result, M has a canonical tree decomposition. This consists of
a tree T whose vertex set is labelled by a set {M1,M2, . . . ,Mk} of matroids
and whose edge set is {e1, e2, . . . , ek−1}, say, such that

(i) each Mi is a circuit, a cocircuit, or a 3-connected matroid; and no
two adjacent vertices of T are both labelled by circuits, or are both
labelled by cocircuits;

(ii) ifMj1 andMj2 are joined by an edge ei of T , then E(Mj1)∩E(Mj2) =
{ei}, and {ei} is not a component of Mj1 or Mj2 ;

(iii) if Mj1 and Mj2 are non-adjacent, then E(Mj1) ∩ E(Mj2) = ∅;
(iv) E(M) = (E(M1) ∪ E(M2) ∪ · · · ∪ E(Mk)) ∪ {e1, e2, . . . , ek−1};
(v) |E(Mi)| ≥ 3 for all i; and
(vi) M is the matroid that labels the single vertex of T/e1, e2, . . . , ek−1

where, when an edge is contracted, the resulting composite vertex is
labelled by the 2-sum of the two vertices that had labelled its ends.

As M has Z as a spanning circuit, whenever M is written as a 2-sum of
N1 and N2 with respect to the basepoint p, either

(a) Z = (C1−p)∪(C2−p) where Ci is a spanning circuit of Ni containing
p; or

(b) Z is a spanning circuit of one of N1 and N2 avoiding p while the
other Ni has rank one.

Because Z is also a spanning circuit of M∗, the latter cannot occur. Thus
(a) holds. Hence no vertex of the tree T labels a cocircuit otherwise M has
a circuit that is properly contained in Z. Because T is also the canonical
tree decomposition for M∗, where each vertex label Mi is replaced by M∗

i ,
we deduce that no vertex of T labels a circuit. Hence every vertex of T
labels a 3-connected binary matroid, which must have at least six elements.
If some Mi has rank at least n − 1, then the theorem holds. Thus we may
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assume that r(Mi) < n − 1 for all i. But r(M) =
∑k

i=1 r(Mi) − (k − 1).
Hence r(M) < k(n − 1).

We also know that r(M) ≥ |Z|−1 ≥ nf8.1(2
n, n2)−1 ≥ (n−1)f8.1(2

n, n2).
Thus

k(n− 1) > r(M) > (n− 1)f8.1(2
n, n2).

Hence k > f8.1(2
n, n2), that is, T has at least f8.1(2

n, n2) vertices. Therefore,
by Lemma 8.1, either T has a vertex of degree exceeding 2n, or T contains
a path with at least n2 vertices. The first possibility does not arise since a
simple binary matroid with more than 2n elements has rank more than n,
and we know r(Mi) < n− 1 for all i. Thus we may assume that T contains
a path P with vertex set {N1, N2, . . . , Nn2} where E(Ni) ∩ E(Ni+1) = {fi}
for all i in {1, 2, . . . , n2 − 1}. Let f0 be an element of E(N1) − f1, and let
fn2 be an element of E(Nn2)− fn2−1.

Now P is the canonical tree decomposition for a minor N of M . For each
i in {1, 2, . . . , n2}, since Ni is 3-connected and binary, it follows by Tutte’s
Wheels-and-Whirls Theorem [10] that Ni has an M(K4)-minor. Moreover,
by a result of Seymour [9], Ni has an M(K4)-minor N ′

i whose ground set
contains {fi−1, fi}. Thus N has a minor N ′ for which P is the canonical
tree decomposition where we replace the vertex label Ni by N ′

i . We color N ′
i

black if it has a triangle containing {fi−1, fi} and color N ′
i white otherwise.

Since P has at least n2 vertices, it certainly has at least n black vertices or
at least n white vertices. We can eliminate a vertex N ′

i of P by contracting
elements of it until fi−1 and fi are parallel. We then delete the remaining
elements of N ′

i except fi and relabel fi−1 in N ′
i−1 by fi. By this process, we

get a minor of M for which the canonical tree decomposition is an n-vertex
path in which all vertices are the same color. We conclude that M has
M(Γ2(n)) or M(Γ3(n)) as a minor. �
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