OBSTACLES TO DECOMPOSITION THEOREMS FOR SIXTH-ROOT-OF-UNITY MATROIDS

CAROLYN CHUN, DILLON MAYHEW, AND MIKE NEWMAN

ABSTRACT. We construct an infinite family of highly connected sixth-root-of-unity matroids that are not near-regular. This family is an obstacle to any decomposition theorem for sixth-root-of-unity matroids in terms of near-regular matroids.

1. Introduction

Seymour's decomposition theorem for matroids representable over the regular partial field [8] is one of the classical results of matroid theory. It shows that an internally 4-connected regular matroid is graphic, cographic, or sporadic.

It is only natural to hope that there may be similar decomposition results for matroids representable over other partial fields. However, internal 4-connectivity is not quite the right notion to use when considering non-regular matroids. We would like a notion of connectivity that captures when a connected matroid cannot be decomposed via a generalised parallel connection along a point or line. This notion should still allow the matroid to have long lines, unlike internal 4-connectivity. We also want our notion of connectivity to be closed under duality, so we make the following definition.

Definition 1.1. A matroid is fused if it is 3-connected and whenever (U, V) is a 3-separation, either $\min\{r(U), r(V)\} \leq 2$, or $\min\{r^*(U), r^*(V)\} \leq 2$.

Note that if M is 3-connected, and either M or M^* is vertically 4-connected, then M is fused. The converse does not hold: if a matroid contains both triangles and triads, then neither it, nor its dual, is vertically 4-connected, but it may still be fused. Every internally 4-connected matroid is fused, and a binary matroid is fused if and only if it is internally 4-connected.

We would very much like to obtain decomposition results giving us control over the fused matroids representable over certain partial fields. Some recent evidence shows that this may be a forlorn hope in the case of near-regular matroids [4] and dyadic matroids [5]. The current paper provides similarly negative evidence against a decomposition theorem for sixth-root-of-unity matroids in terms of near-regular matroids.

Date: December 29, 2013.

The authors of [1, 2] conjectured the existence of a decomposition theorem showing that any fused sixth-root-of-unity matroid that fails to be near-regular is isomorphic to a restriction of AG(2,3) (up to duality and Δ -Y operations). Unfortunately, the matroid N, illustrated in Figure 1, provides a counterexample. The matrix representation of N is over the complex numbers, and ξ is a primitive sixth-root of unity. It can be verified that every non-zero subdeterminant of this matrix is a power of ξ , so N is a sixth-root-of-unity matroid. It is easy to see that $N/y_1 \backslash x_1$ is isomorphic to AG(2,3)\\\\epsilon_e, so N is certainly not near-regular (see [3]). Moreover, the only 3-separating sets in N are triangles and the complements of triangles, so N is fused.

_	u	v	w	b	y_0	y_1	
c	1	1	1	1	0	0	
a	$\bar{\xi}$	0	1	0	0	1	
x_0	1	ξ	ξ	1	1	0	
x_1	$ \begin{array}{c} u \\ \underline{1} \\ \bar{\xi} \\ 1 \\ 1 \end{array} $	ξ	ξ	0	1	1	_

Figure 1. Matrix and geometric representations of N.

We might still hope that there are only finitely many fused matroids that are sixth-root-of-unity without being near-regular. In this case a decomposition theorem might need to deal with only a finite number of sporadic matroids. Our main theorem banishes this hope also.

Theorem 1.2. There are infinitely many fused matroids that are sixth-root-of-unity without being near-regular.

Our proof of Theorem 1.2 is not specific to the sixth-root-of-unity partial field, so we operate at a slightly higher level of generality:

Theorem 1.3. Let \mathbb{P} be a partial field and let M be a \mathbb{P} -representable matroid. Assume that E(M) contains distinct elements a, b, c, x_0 , x_1 , y_0 , and y_1 , where $T_0 = \{x_0, x_1, y_0\}$, $T_1 = \{a, x_1, y_1\}$, and $T_2 = \{b, c, x_0\}$ are triangles, and $\{b, x_0, x_1, y_1\}$ is a cocircuit. Assume also that the following conditions hold:

- (i) $r(T_0 \cup T_1) = 3$,
- (ii) $\{b, x_0, x_1, y_1\}$ is independent,
- (iii) $r(M), r^*(M) > 3$,
- (iv) $M/y_1 \setminus x_1$ is 3-connected,
- (v) M is fused.

Then there are infinitely many fused \mathbb{P} -representable matroids that have M as a minor.

The conditions of Theorem 1.3 apply to the sixth-root-of-unity partial field, and the matroid N described in Figure 1. Therefore Theorem 1.2 follows immediately from Theorem 1.3.

2. Preliminaries

Any undefined notation or terminology is in Oxley [6]. Our general reference for partial fields is Pendavingh and Van Zwam [7]; proofs of the results in this section can be found there. A partial field is a pair, (R, G), where R is a commutative ring with identity, and G is a subgroup of the group of units. We require $-1 \in G$. In particular, if \mathbb{F} is a field, then $(\mathbb{F}, \mathbb{F} - \{0\})$ is a partial field. The regular partial field is $(\mathbb{Z}, \{1, -1\})$. The near-regular partial field is $(\mathbb{Q}(\alpha), \{\pm \alpha^i (1-\alpha)^j : i, j \in \mathbb{Z}\})$, where $\mathbb{Q}(\alpha)$ is the field of rationals extended by the transcendental α . The sixth-root-of-unity partial field is $(\mathbb{C}, \{z : z^6 = 1\})$.

Let A be a matrix with entries from the ring R, and assume that the rows of A are labeled by the set X and the columns are labeled by the set Y. If $X' \subseteq X$ and $Y' \subseteq Y$, then we use the notation A[X',Y'] to stand for the submatrix of A with rows and columns labeled by X' and Y'. If $Z \subseteq X \cup Y$, then A - Z = A[X - Z, Y - Z]. As usual, we omit the set brackets about singleton sets. We treat a 1×1 matrix as a member of R.

Assume A[x,y] is non-zero, and let A^{xy} be the matrix obtained from A by pivoting on (x,y). This means that the labels x and y are swapped, so that the rows of A^{xy} are labeled by $(X-x) \cup y$, and the columns are labeled by $(Y-y) \cup x$. For any u labeling a row of A^{xy} , and any v labeling a column, we have:

$$A^{xy}[u,v] = \begin{cases} A[x,y]^{-1} & \text{if } (u,v) = (y,x) \\ A[x,y]^{-1}A[x,v] & \text{if } u = y, \ v \neq x \\ -A[x,y]^{-1}A[u,y] & \text{if } u \neq y, \ v = x \\ A[u,v] - A[x,y]^{-1}A[u,y]A[x,v] & \text{otherwise} \end{cases}$$

Pictorially, this means that if A has the following form

$$x \begin{bmatrix} D & \mathbf{d} \\ \mathbf{c}^T & \alpha \end{bmatrix}$$

then A^{xy} is

$$y \left[\begin{array}{c|c} x & x \\ \hline D - \alpha^{-1} \mathbf{d} \mathbf{c}^T & -\alpha^{-1} \mathbf{d} \\ \hline \alpha^{-1} \mathbf{c}^T & \alpha^{-1} \end{array} \right]$$

Note that if we pivot on (y, x) in the matrix A^{xy} , then we recover A. If A is a square matrix, then

(1)
$$\det(A) = \pm A[x, y] \det(A^{xy} - \{x, y\}).$$

If $\mathbb{P} = (R, G)$ is a partial field, then a \mathbb{P} -matrix is a matrix with entries from R, such that the determinant of any square submatrix is in $G \cup \{0\}$. If X and Y label the rows and columns of a \mathbb{P} -matrix, A, then

$$\{X\} \cup \{Z \subseteq X \cup Y : |Z| = |X|, \det(A[X - Z, Y \cap Z]) \neq 0\}$$

is the collection of bases of a matroid. We denote this matroid M[I|A]. If x labels a row, then M[I|A]/x = M[I|A-x], and if y labels a column, then $M[I|A]\backslash y = M[I|A-y]$. We say that M[I|A] is \mathbb{P} -representable. A matroid that is representable over the near-regular (respectively sixth-root-of-unity) partial field is said to be near-regular (sixth-root-of-unity). Modifying a \mathbb{P} -matrix by scaling a row or column with an element in G or by pivoting on a non-zero entry produces another \mathbb{P} -matrix, and these two matrices represent the same matroid.

3. Proof of Theorem 1.3

Henceforth we let $\mathbb{P}=(R,G)$ and M be as described in the statement of Theorem 1.3. Let H be the complementary hyperplane to $\{b,x_0,x_1,y_1\}$. Note that $r(\{a,y_0\})=2$, or else $r(T_0\cup T_1)=2$. We observe that $\mathrm{cl}(\{x_0,x_1,y_1\})$ contains y_0 and a, because of the triangles T_0 and T_1 . If $r(\{a,y_0,c\})=2$, then $\mathrm{cl}(\{x_0,x_1,y_1\})$ also contains c, and hence b, because of the triangle $\{x_0,b,c\}$. But this contradicts the fact that $\{b,x_0,x_1,y_1\}$ is independent. Therefore $r(\{a,y_0,c\})=3$. Let B' be a basis of H that contains $\{a,y_0,c\}$. Now $B'\cup x_1$ is a basis of M. The fundamental circuit of x_0 with respect to this basis is $T_0=\{x_0,x_1,y_0\}$. This means that $B=(B'-y_0)\cup\{x_0,x_1\}$ is a basis of M. The fundamental circuit of y_0 relative to B is $\{y_0,x_0,x_1\}$, and the fundamental circuit of y_1 is $\{y_1,a,x_1\}$. Furthermore, the fundamental circuit of b, relative to B, is $\{b,c,x_0\}$.

We will consider a \mathbb{P} -matrix, A_1 , such that $M = M[I|A_1]$. By performing pivots as necessary, we can assume that B labels the rows of A_1 . The previous paragraph shows that the column labeled by b is non-zero only in the rows labeled by c and x_0 . Also, $A_1[B,y_1]$ is non-zero only in the rows labeled by a and a, and a and a is non-zero only in the rows labeled by a and a is non-zero only in the rows labeled by a and a is non-zero only in the rows labeled by a and a is non-zero only in the rows labeled by a and a is non-zero only in the rows labeled by a and a is non-zero only in the rows labeled by a and a is non-zero only in the rows labeled by a and a in an an are row labeled by a and a in an are identical, except possibly in the columns labeled by a and a are identical, except possibly in the columns labeled by a and a are identical, except possibly in the columns labeled by a and a are identical, except possibly in the columns labeled by a and a is non-zero only in the rows labeled by a and a is non-zero only in the rows labeled by a in the row labeled by a in the row labeled by a in the row labeled by a and a is non-zero only in the row labeled by a in the row labeled l

Next we scale columns b and y_1 so that $A_1[x_0, b]$ and $A_1[x_1, y_1]$ are equal to one. Finally, we scale row a so that $A_1[a, y_1]$ is equal to one. Thus we can assume that M is equal to $M[I|A_1]$, where A_1 is a \mathbb{P} -matrix with the following form.

Here **b** and **0** are $(r(M) - 3) \times 1$ vectors where all the entries of **0** are zero, while **a** and **x** are $(|E(M)| - r(M) - 3) \times 1$ vectors.

We define A_0 to be the following matrix.

$$\begin{bmatrix}
 b & y_0 \\
 \hline
 & \mathbf{b} & \mathbf{0} \\
 \hline
 & \mathbf{x}^T - \mathbf{a}^T & 0 & 1 \\
 & \mathbf{x}^T & 1 & 1
\end{bmatrix}$$

Note that A_0 is the matrix we obtain from A_1 if we pivot on (x_1, y_1) , then multiply the row labeled by a with the scalar -1, and finally, delete the row labeled y_1 and the column labeled x_1 . Therefore A_0 is a \mathbb{P} -matrix.

For each positive integer i > 1, we define a derived matrix A_i . If i is odd, then A_i is the following matrix.

	_	b	y_0	y_1	$\cdots y$	i-2	y_{i-1}	y_i	_
	D	b	0	0		0	0	0	
a	\mathbf{a}^T	0	0	0		0	0	1	
x_0	\mathbf{x}^T	1	1	0		0	0	0	
x_1	\mathbf{x}^T	0	1	1		0	0	0	
:	÷	:			٠			:	
x_{i-2}	\mathbf{x}^T	0	0	0		1	0	0	
x_{i-1}	\mathbf{x}^T	0	0	0		1	1	0	
x_i	\mathbf{x}^T	0	0	0		0	1	1	

		b	y_0	y_1	• • • •	y_{i-2}	y_{i-1}	y_i	
	D	b	0	0		0	0	0	
a	$\mathbf{x}^T - \mathbf{a}^T$	0	0	0		0	0	1	
x_0	\mathbf{x}^T	1	1	0		0	0	0	
x_1	\mathbf{x}^T	0	1	1		0	0	0	
:	÷	:			٠.			:	
x_{i-2}	\mathbf{x}^T	0	0	0		1	0	0	
x_{i-1}	\mathbf{x}^T	0	0	0		1	1	0	
x_i	\mathbf{x}^T	0	0	0		0	1	1	
	_ '	'							•

If i is even, we define A_i as follows.

Lemma 3.1. The matrix A_i is a \mathbb{P} -matrix, for every non-negative integer i

Proof. Let us assume that the lemma fails, and that i is the least non-negative integer such that A_i is not a \mathbb{P} -matrix. Certainly A_1 is a \mathbb{P} -matrix, and we have already argued that A_0 is a \mathbb{P} -matrix, so $i \geq 2$.

If a matrix with entries from R contains a square submatrix with a determinant not in $G \cup \{0\}$, then we will say that this is a bad submatrix. Therefore i is the least non-negative integer such that A_i contains a bad submatrix.

Let A'_i be the matrix obtained from A_i by pivoting on (x_i, y_i) and then multiplying the row labeled by a with the scalar -1. A straightforward calculation shows that A'_i is the following matrix.

Since A_i can be obtained from A'_i by scaling and then pivoting on (y_i, x_i) , it follows that A'_i cannot be a \mathbb{P} -matrix, or else A_i would be a \mathbb{P} -matrix also. Therefore A'_i contains a bad submatrix.

3.1.1. Every bad submatrix of A'_i contains the row labeled y_i and the column labeled x_i .

Proof. Assume for a contradiction that Z is a bad submatrix of A'_i and that Z avoids either row y_i or column x_i . It cannot be the case that Z avoids both, for that would imply that Z is a bad submatrix of A_{i-1} , and this contradicts our inductive assumption. First assume that Z contains column

 x_i , but not row y_i . Then Z is a bad submatrix of $A'_i - y_i$. However, in this matrix, the column labeled by x_i contains only a single non-zero entry. From this we see that there is a bad submatrix that avoids both row y_i and column x_i , contradicting our earlier conclusion. Therefore Z contains row y_i , but not column x_i , so Z is a bad submatrix of the following matrix.

		_	. b	y_0	y_1	į	y_{i-3}	y_{i-2}	y_{i-1}
		D	b	0	0		0	0	0
	a	\mathbf{c}^T	0	0	0		0	0	1
	x_0	\mathbf{x}^T	1	1	0		0	0	0
	x_1	\mathbf{x}^T	0	1	1		0	0	0
$A_i' - x_i =$:	:	:			٠.			:
	x_{i-3}	\mathbf{x}^T	0	0	0		1	0	0
	x_{i-2}	\mathbf{x}^T	0	0	0		1	1	0
	x_{i-1}	\mathbf{x}^T	0	0	0		0	1	1
	y_i	\mathbf{x}^T	0	0	0		0	0	1

Here \mathbf{c}^T is either \mathbf{a}^T or $\mathbf{x}^T - \mathbf{a}^T$ depending on the parity of *i*. Note that $A_i' - \{x_i, y_i\} = A_{i-1}$.

Assume that Z avoids row x_{i-1} . After deleting x_{i-1} , the column labeled y_{i-2} has only a single non-zero entry, so we can assume that Z is a bad submatrix of $A'_i - x_i$ that avoids both x_{i-1} and y_{i-2} . Deleting x_{i-1} and y_{i-2} from $A'_i - x_i$ produces a matrix that is identical to $A_{i-1} - y_{i-2}$. Therefore we have a contradiction to the minimality of i. We conclude that a bad submatrix in $A'_i - x_i$ must contain row x_{i-1} .

Let Z be a bad submatrix of $A'_i - x_i$, and assume that Z avoids column y_{i-2} . In $A'_i - \{x_i, y_{i-2}\}$, the rows labeled by x_{i-1} and y_i are identical, so we can choose Z so that it contains y_i , and not x_{i-1} . This contradicts the conclusion in the previous paragraph, so now any bad submatrix of $A'_i - x_i$ must contain x_{i-1} and y_{i-2} .

By Equation (1), there is a bad submatrix in the matrix, A'', obtained from $A'_i - x_i$ by pivoting on (x_{i-1}, y_{i-2}) , and then deleting row y_{i-2} and column x_{i-1} . This matrix is shown below.

	_	_	b	y_0	y_1	$\cdots y_{i-4}$	y_{i-3}	y_{i-1}
		D	b	0	0	$\cdots \ 0$	0	0
	a	\mathbf{c}^T	0	0	0	0	0	1
	x_0	\mathbf{x}^T	1	1	0	0	0	0
	x_1	\mathbf{x}^T	0	1	1	0	0	0
$A^{\prime\prime} =$:	:	:			··.		:
	x_{i-3}	\mathbf{x}^T	0	0	0	1	1	0
	x_{i-2}	0^T	0	0	0	0	1	-1
	y_i	\mathbf{x}^T	0	0	0	$\cdots 0$	0	1

Let Z be a bad submatrix of A'', and assume that Z avoids column y_{i-1} . After deleting y_{i-1} from A'', the row x_{i-2} contains only a single non-zero entry. Therefore we can assume that Z avoids y_{i-1} and x_{i-2} . After deleting y_{i-1} and x_{i-2} from A'', column y_{i-3} contains only a single non-zero entry, so we can assume that Z avoids y_{i-1} , x_{i-2} , and y_{i-3} . Therefore $A'' - \{y_{i-1}, x_{i-2}, y_{i-3}\}$ contains a bad submatrix. But this matrix is identical to $A_{i-1} - \{y_{i-3}, y_{i-2}, y_{i-1}, x_{i-1}\}$, so A_{i-1} contains a bad submatrix and we have a contradiction. Therefore any bad submatrix of A'' contains column y_{i-1} .

It is not difficult to see that $A'' - y_i$ is identical to the matrix obtained from A_{i-1} by pivoting on (x_{i-1}, y_{i-2}) and then deleting row y_{i-2} and column x_{i-1} . This matrix does not contain any bad submatrix, so $A'' - y_i$ does not contain any bad submatrix. Therefore any bad submatrix of A'' must contain column y_{i-1} and row y_i .

Equation (1) tells us that there is a bad submatrix in the matrix obtained from A'' by pivoting on (y_i, y_{i-1}) , multiplying row a by -1, and then deleting row y_{i-1} and column y_i . But this matrix is identical to $A_{i-2} - y_{i-2}$, so A_{i-2} contains a bad submatrix, and we again have a contradiction to the minimality of i. Therefore every bad submatrix of A'_i contains row y_i and column x_i , as desired, and the proof of 3.1.1 is complete.

By 3.1.1, any bad submatrix of A'_i contains row y_i and column x_i . Hence there is a bad submatrix in the matrix obtained from A'_i by pivoting on (y_i, x_i) and then deleting row x_i and column y_i . But this matrix is identical (up to scaling) to $A_i - \{x_i, y_i\}$. As the column labeled by y_{i-1} contains only a single non-zero entry in $A_i - \{x_i, y_i\}$, there is a bad submatrix in $A_i - \{x_i, y_i, y_{i-1}\}$.

$$A_{i} - \{x_{i}, y_{i}, y_{i-1}\} = \begin{bmatrix} b & y_{0} & y_{1} & \cdots & y_{i-4} & y_{i-3} & y_{i-2} \\ \hline D & \mathbf{b} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{c}^{T} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \mathbf{x}^{T} & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{x}^{T} & \mathbf{x}^{T} & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \ddots & & \vdots & \vdots \\ x_{i-3} & \mathbf{x}^{T} & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ \mathbf{x}^{T} & \mathbf{x}^{T} & 0 & 0 & 0 & 0 & 1 & 1 \\ \mathbf{x}^{T} & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix}$$

Let Z be a bad submatrix of $A_i - \{x_i, y_i, y_{i-1}\}$. Let us assume that Z avoids row x_{i-1} . After deleting x_{i-1} , the column y_{i-2} has a single non-zero entry. Therefore we can assume that Z avoids x_{i-1} and y_{i-2} . However, deleting x_{i-1} and y_{i-2} from $A_i - \{x_i, y_i, y_{i-1}\}$ produces a matrix that is identical to $A_{i-2} - y_{i-2}$. Therefore A_{i-2} contains a bad submatrix, and we have a contradiction to the minimality of i. Therefore any bad submatrix of $A_i - \{x_i, y_i, y_{i-1}\}$ contains row x_{i-1} .

Let Z be a bad submatrix of $A_i - \{x_i, y_i, y_{i-1}\}$, and assume that Z avoids row x_{i-2} . After deleting x_{i-2} , columns y_{i-2} and y_{i-3} contain single non-zero entries, so we can assume that Z avoids x_{i-2} , y_{i-2} , and y_{i-3} . This shows there is a bad submatrix that avoids y_{i-2} and y_{i-3} . However, after deleting y_{i-2} , and y_{i-3} from $A_i - \{x_i, y_i, y_{i-1}\}$, the rows x_{i-1} and x_{i-2} are identical, so there is a bad submatrix of $A_i - \{x_i, y_i, y_{i-1}\}$ that does not contain x_{i-1} . This contradicts the conclusion of the previous paragraph. Now we know that any bad submatrix of $A_i - \{x_i, y_i, y_{i-1}\}$ must contain x_{i-1} and x_{i-2} .

Let Z be a bad submatrix of $A_i - \{x_i, y_i, y_{i-1}\}$, and assume that Z avoids column y_{i-3} . After deleting y_{i-3} , rows x_{i-1} and x_{i-2} are identical, and as Z must contain both these rows by the previous paragraph, it follows that the determinant of Z is zero. This contradiction shows that any bad submatrix of $A_i - \{x_i, y_i, y_{i-1}\}$ contains x_{i-1}, x_{i-2} , and y_{i-3} .

We pivot on (x_{i-2}, y_{i-3}) , and then delete $\{y_{i-3}, x_{i-2}\}$. The previous paragraph shows that in the resulting matrix, A', there is a bad submatrix, Z, that contains row x_{i-1} .

			_	b	y_0	y_1	į	y_{i-5}	y_{i-4}	y_{i-2}
			D	b	0	0		0	0	0
		a	\mathbf{c}^T \mathbf{x}^T	0	0	0		0	0	0
		x_0	\mathbf{x}^T	1	1	0		0	0	0
		x_1	\mathbf{x}^T	0	1	1		0	0	0
A'	=	:	:	:			٠.			:
		x_{i-4}	\mathbf{x}^T	0	0	0		1	1	0
		x_{i-3}	0^T	0	0	0		0	1	-1
		x_{i-1}	\mathbf{x}^T	0	0	0		0	0	1

Assume Z avoids y_{i-2} . After deleting y_{i-2} , the row x_{i-3} contains a single non-zero entry. Therefore we can assume that Z avoids y_{i-2} and x_{i-3} . After deleting y_{i-2} and x_{i-3} from A', the column y_{i-4} contains only a single non-zero entry. Therefore we can assume that Z contains x_{i-1} , but avoids y_{i-2} , x_{i-3} , and y_{i-4} . It is not too difficult to see that deleting y_{i-2} , x_{i-3} , and y_{i-4} from A' produces a matrix that is identical to $A_{i-2} - \{y_{i-2}, y_{i-3}, y_{i-4}, x_{i-2}\}$. Therefore A_{i-2} contains a bad submatrix, and we have a contradiction. It follows that Z, the bad submatrix of A' that contains x_{i-1} , also contains y_{i-2} .

Now we know there is a bad submatrix in the matrix obtained from A' by pivoting on (x_{i-1}, y_{i-2}) , and then deleting $\{y_{i-2}, x_{i-1}\}$. But this matrix is identical to $A_{i-2} - \{y_{i-2}, y_{i-3}, x_{i-2}\}$, so we have a final contradiction to the minimality of i that completes the proof of Lemma 3.1.

For any non-negative integer i, we let $M_i = M[I|A_i]$, so that M_1 is the matroid M from the statement of Theorem 1.3. By pivoting on (x_i, y_i) , and deleting row y_i and column x_i from the resulting matrix, we discover the following relation.

Proposition 3.2. If i > 1, then $M_i/y_i \setminus x_i = M_{i-1}$.

A 4-fan of a matroid is a sequence, $(\alpha, \beta, \gamma, \delta)$, of distinct elements such that $\{\alpha, \beta, \gamma\}$ is a triangle and $\{\beta, \gamma, \delta\}$ is a triad.

Proposition 3.3. M_1 contains no 4-fan.

Proof. Assume that $(\alpha, \beta, \gamma, \delta)$ is a 4-fan. Note that $\{\alpha, \beta, \gamma, \delta\}$ has rank/corank at least two, and at most equal to three. If the rank or corank of $\{\alpha, \beta, \gamma, \delta\}$ is two, then $\lambda_{M_1}(\{\alpha, \beta, \gamma, \delta\}) \leq 1$, and the fact that M_1 is 3-connected means that M_1 contains at most five elements, contradicting statement (iii) in the hypotheses of Theorem 1.3. Therefore $r_{M_1}(\{\alpha, \beta, \gamma, \delta\}) = r_{M_1}^*(\{\alpha, \beta, \gamma, \delta\}) = 3$, and $\lambda_{M_1}(\{\alpha, \beta, \gamma, \delta\}) = 2$.

Let C be the complement of $\{\alpha, \beta, \gamma, \delta\}$ in M_1 . Because M_1 is fused it follows that C has rank or corank at most two. As

$$r(M_1) = r_{M_1}(C) + |\{\alpha, \beta, \gamma, \delta\}| - r_{M_1}^*(\{\alpha, \beta, \gamma, \delta\}) \quad \text{and}$$

$$r^*(M_1) = r_{M_1}^*(C) + |\{\alpha, \beta, \gamma, \delta\}| - r_{M_1}(\{\alpha, \beta, \gamma, \delta\})$$

this means that M_1 has rank or corank at most three. In either case we have a contradiction to the hypotheses of Theorem 1.3.

Corollary 3.4. Both \mathbf{a}^T and \mathbf{x}^T contain non-zero entries.

Proof. If \mathbf{a}^T is everywhere zero, then $\{a, y_1\}$ is a series pair in M_1 , contradicting 3-connectivity. If \mathbf{x}^T is everywhere zero, then (a, y_1, x_1, y_0) is a 4-fan of M_1 , contradicting Proposition 3.3.

Let d be a column label of A_1 such that d is not equal to b, y_0 , or y_1 , and $A_1[x_0, d]$ is non-zero. Such a d exists by Corollary 3.4.

Lemma 3.5. If i is a non-negative integer, then M_i is 3-connected.

Proof. Assume the lemma fails, and that i is the least non-negative integer such that M_i is not 3-connected. The hypotheses of Theorem 1.3 imply that $i \geq 2$.

The choice of i means that $M_{i-1} = M_i/y_i \setminus x_i$ is 3-connected. Assume that $M_i \setminus x_i$ is not 3-connected. Then y_i is either a coloop in $M_i \setminus x_i$, or is contained in a series pair [6, Proposition 8.2.7]. Now $M_i \setminus x_i = M[I|A_i^{x_iy_i} - x_i]$, and $A_i^{x_iy_i} - x_i$ is obtained from A_{i-1} by scaling, and adding the row [$\mathbf{x}^T \ 0 \cdots 0 \ 1$]. The new row is labeled y_i , and as this row contains a non-zero entry, y_i is not a coloop in $M_i \setminus x_i$. Therefore y_i is contained in a series pair.

Corollary 3.4 implies that the row labeled by y_i contains at least two non-zero entries in $A_i^{x_iy_i} - x_i$. This means that y_i is not in a series pair of $M_i \backslash x_i$ with any element that labels a column of $A_i^{x_iy_i} - x_i$, so y_i is in a series pair with an element that labels a row. Let z be this element. By examining $A_i^{x_iy_i} - x_i$, we see that $\{a, x_{i-1}, y_{i-1}, y_i\}$ is a circuit of $M_i \backslash x_i$. Now orthogonality with the series pair $\{y_i, z\}$ implies that z is in $\{a, x_{i-1}, y_{i-1}\}$. As z labels a row, it is equal to either a or x_{i-1} . If $\{y_i, x_{i-1}\}$ is a series pair in $M_i \backslash x_i$, then we contradict orthogonality with the circuit $\{x_{i-2}, x_{i-1}, y_{i-2}\}$. Therefore $\{y_i, a\}$ is a series pair of $M_i \backslash x_i$. This means that we can scale so that the rows labeled by y_i and a are identical. If i-1 is odd, then we deduce that $\mathbf{a}^T = \mathbf{x}^T$, which implies that $\{a, y_0\}$ is a series pair in M_0 . If i-1 is even, then $\mathbf{x}^T - \mathbf{a}^T = \mathbf{x}^T$, contradicting Corollary 3.4. In either case we have a contradiction, so we conclude that $M_i \backslash x_i$ is 3-connected.

Since M_i is not 3-connected, it follows that x_i is either a loop, or is in a parallel pair in M_i . The former is impossible, as x_i labels a row in A_i . Hence there is a column of A_i that contains a non-zero entry only in row x_i . This column cannot be in $\{b, y_0, \ldots, y_i\}$, and now we have a contradiction, since if the column is non-zero in row x_i , then it is also non-zero in row x_{i-1} . \square

We complete the proof of Theorem 1.3 by establishing the next lemma.

Lemma 3.6. If $i \geq 1$ is an odd integer, then M_i is fused.

Before we begin the proof of Lemma 3.6, we note that M_i may not be fused when i is even, even if M_0 and M_1 are both fused. For example, if A_1 is the following matrix over GF(7):

then we can verify that M_0 and M_1 are fused, but $(\{a,c,u,x_2,y_2\},\{x_0,x_1,v,b,y_0,y_1\})$ is a 3-separation certifying that M_2 is not fused.

Proof of Lemma 3.6. Assume the lemma fails. Let $i \geq 1$ be the least odd integer such that M_i is not fused. By hypothesis M_1 is fused, so $i \geq 3$.

Note that $\{a, x_i\}$ is a parallel pair in M_i/y_i . Since $M_i/y_i \setminus x_i = M_{i-1}$ is 3-connected by Lemma 3.5, it follows that the only 2-separation of M_i/y_i consists of $\{a, x_i\}$ and its complement.

3.6.1. If (U, V) is a 3-separation of M_i/y_i , then either

$$\min\{r_{M_i/y_i}(U), r_{M_i/y_i}(V)\} \le 2 \quad or \quad \min\{r_{M_i/y_i}^*(U), r_{M_i/y_i}^*(V)\} \le 2.$$

Proof. We assume (U, V) is a 3-separation of M_i/y_i that does not satisfy the conditions of 3.6.1. First we claim that we can assume that either U or V contains $\{a, x_i\}$. Without loss of generality we assume that x_i is in U. If a is in U, then we are done, so assume $a \in V$.

Assume that |V|=3. Then |U|>3, so $(U-x_i,V)$ is a 3-separation of the 3-connected matroid $M_i/y_i\backslash x_i$. Therefore V is a triangle or a triad in $M_i/y_i\backslash x_i$. If V is a triangle, then $r_{M_i/y_i}(V)\leq 2$, contrary to hypothesis. Therefore V is a triad in $M_i/y_i\backslash x_i$. It is not a triad in M_i/y_i , or else $r_{M_i/y_i}^*(V)\leq 2$. Therefore $V\cup x_i$ is a cocircuit of M_i/y_i , so $x_i\in \operatorname{cl}_{M_i/y_i}^*(V)$. Then x_i is also in $\operatorname{cl}_{M_i/y_i}^*(U-x_i)$, or else $(U-x_i,V\cup x_i)$ is a 2-separation in M/y_i , and this is impossible as neither $U-x_i$ nor $V\cup x_i$ is equal to $\{a,x_i\}$. However, x_i cannot be in $\operatorname{cl}_{M_i/y_i}^*(U-x_i)$, or else we violate orthogonality with the circuit $\{a,x_i\}$. This contradiction implies that |V|>3.

Now $|V-a| \geq 3$, so $(U \cup a, V-a)$ is a 3-separation of M/y_i . If both sides of this separation have rank and corank at least equal to three, then our claim is justified, so we assume this is not the case. Therefore V-a has rank or corank at most equal to two. In fact, a cannot be contained in a cocircuit that is contained in V, by orthogonality with $\{a, x_i\}$. This means that $r_{M_i/y_i}^*(V-a) < r_{M_i/y_i}^*(V)$. It cannot be the case that $r_{M_i/y_i}(V-a) < r_{M_i/y_i}(V)$, for that would imply that $(U \cup a, V-a)$ is a 2-separation of M_i/y_i . Since neither side of $(U \cup a, V-a)$ is equal to $\{a, x_i\}$, this is impossible. From

this we conclude that $r_{M_i/y_i}^*(V) = 3$, and $r_{M_i/y_i}^*(V-a) = 2$. However, we can apply symmetric arguments to U, and deduce that $r_{M_i/y_i}^*(U) = 3$. Because (U,V) is a 3-separation of M_i/y_i , this means that $4 = r^*(M_i/y_i) = r^*(M_i)$. As $r^*(M_1) > 3$ and $r^*(M_i) = r^*(M_{i-1}) + 1$ for every i, we see that i = 1, contradicting the earlier statement that $i \geq 3$.

Now we can assume, as we claimed, that (U, V) is a 3-separation of M_i/y_i that fails the conditions of 3.6.1, and that a and x_i are in U. Because $M_{i-1} = M_i/y_i \setminus x_i$ is fused, it follows that

$$\min\{r_{M_{i}/y_{i}\setminus x_{i}}(U-x_{i}), r_{M_{i}/y_{i}\setminus x_{i}}(V)\} \leq 2 \quad \text{or} \\ \min\{r_{M_{i}/y_{i}\setminus x_{i}}^{*}(U-x_{i}), r_{M_{i}/y_{i}\setminus x_{i}}^{*}(V)\} \leq 2.$$

Certainly the rank of V in $M_i/y_i \setminus x_i$ is identical to its rank in M_i/y_i . Moreover, there can be no cocircuit of M_i/y_i contained in $V \cup x_i$ that contains x_i , by orthogonality with $\{a,x_i\}$. This means that the corank of V in $M_i/y_i \setminus x_i$ is identical to its corank in M_i/y_i . The parallel pair $\{a,x_i\}$ tells us that $r_{M_i/y_i \setminus x_i}(U-x_i) = r_{M_i/y_i}(U)$. Therefore we conclude that $r_{M_i/y_i}^*(U) = 3$ and $r_{M_i/y_i \setminus x_i}^*(U-x_i) = 2$.

If |U|=3, then $r_{M_i/y_i}(U) \leq 2$ because of the parallel pair $\{a,x_i\}$. This is a contradiction, so $|U-x_i|\geq 3$. As $M_i/y_i\backslash x_i=M_{i-1}$ is 3-connected, and $r_{M_i/y_i\backslash x_i}^*(U-x_i)=2$, it follows that a is contained in a triad, T^* , in M_{i-1} . However, a is also contained in the triangle $T=\{a,x_{i-1},y_{i-1}\}$. Now T^* and T must intersect in at least two elements, by orthogonality, and they must intersect in no more than two elements, or else $T=T^*$ is 2-separating in M_{i-1} . Thus M_{i-1} has a 4-fan. As M_{i-1} is fused, we can use exactly the same arguments as in Proposition 3.3 to show that M_{i-1} has rank or corank at most equal to three, and we have a contradiction.

We let (U, V) be a 3-separation of M_i such that the rank/corank of U and V are at least equal to three. We assume that y_i is in U.

3.6.2.
$$y_i \notin \text{cl}_{M_i}(V)$$
.

Proof. If y_i is in $\operatorname{cl}_{M_i}(V)$, then $(U - y_i, V)$ is a 2-separation in M_i/y_i . From Lemma 3.5 it follows that either $U - y_i$ or V is the parallel pair $\{a, x_i\}$. But $|V| \geq 3$, so $U = \{a, x_i, y_i\}$, and hence $r_{M_i}(U) = 2$, a contradiction.

If |U|=3, then U is a circuit or cocircuit in M_i , which means that it has rank or corank at most two. This contradiction implies $|U|\geq 4$, so $(U-y_i,V)$ is a 3-separation in M_i/y_i . We apply 3.6.1 to this separation.

Evidently $r_{M_i/y_i}^*(V) \geq 3$. From 3.6.2 we see that $r_{M_i/y_i}(V) \geq 3$. If

$$r_{M_i/y_i}^*(U - y_i) \le 2 < r_{M_i}^*(U),$$

then y_i is not in $\operatorname{cl}_{M_i}^*(U-y_i)$. This is equivalent to y_i being in $\operatorname{cl}_{M_i}(V)$, contradicting 3.6.2. The only remaining possibility is that $r_{M_i/y_i}(U-y_i) \leq 2$. We conclude that $r_{M_i}(U) = 3$.

As (U, V) is an exact 3-separation of M_i , it follows that $r_{M_i}(V) = r(M_i) - 1$. Let $C^* \subseteq U$ be the cocircuit whose complement is $\operatorname{cl}_{M_i}(V)$. Then 3.6.2 implies y_i is in C^* .

3.6.3. $x_i \notin C^*$.

Proof. Assume that x_i is in C^* . Because $\{x_i, x_{i-1}, y_{i-1}\}$ is a triangle of M_i , orthogonality requires that x_{i-1} or y_{i-1} is in C^* , so C^* , and hence U, contains either $\{y_i, x_i, x_{i-1}\}$ or $\{y_i, x_i, y_{i-1}\}$. Both of these sets have rank three, and $r_{M_i}(U) = 3$. Therefore U is spanned by either $\{y_i, x_i, x_{i-1}\}$ or $\{y_i, x_i, y_{i-1}\}$ in M_i . Inspection of the matrix A_i shows that $cl_{M_i}(\{a, x_i, x_{i-1}, y_{i-1}\})$ is $\{a, x_i, x_{i-1}, y_i, y_{i-1}\}$. From this it follows that $\{a, x_i, x_{i-1}, y_i, y_{i-1}\}$ contains U.

Because $\{x_{i-1}, x_{i-2}, y_{i-2}\}$ is a triangle, orthogonality requires that x_{i-1} is not in C^* . Therefore C^* is either $\{y_i, x_i, y_{i-1}\}$ or $\{y_i, x_i, y_{i-1}, a\}$. Assume that $\{y_i, x_i, y_{i-1}\}$ is a cocircuit. Inspection of A_i shows that this means \mathbf{x}^T contains only zero entries, contradicting Corollary 3.4. Therefore $\{y_i, x_i, y_{i-1}, a\}$ is a cocircuit. Recall that i is odd. Corollary 3.4 asserts that \mathbf{a}^T and \mathbf{x}^T contain non-zero entries. Because every basis must intersect $\{y_i, x_i, y_{i-1}, a\}$, every 2×2 submatrix with rows labeled by a and a that contains neither column a nor column a has a zero determinant. It follows that a and a are identical (up to scaling by an element of a). This implies that a and a are identical in a, so a, so a, so a and a are have a contradiction to Proposition 3.3.

By applying 3.6.3 and orthogonality with the triangle $\{a, x_i, y_i\}$, we now see that C^* contains y_i and a.

3.6.4.
$$r_{M_i}(C^* - y_i) = 2$$
.

Proof. We start by showing that $C^* \cap \{x_i, x_{i-1}, y_{i-2}\} = \emptyset$. We know from 3.6.3 that $x_i \notin C^*$. If C^* contains x_{i-1} , then orthogonality with the triangle $\{x_{i-1}, x_{i-2}, y_{i-2}\}$ means that C^* contains either $\{a, y_i, x_{i-1}, x_{i-2}\}$ or $\{a, y_i, x_{i-1}, y_{i-2}\}$. Both of these sets are independent, so we contradict the fact that $r_{M_i}(C^*) \leq r_{M_i}(U) = 3$. Now assume that y_{i-2} is in C^* . Orthogonality with $\{x_{i-1}, x_{i-2}, y_{i-2}\}$, and the previous paragraph, tells us that x_{i-2} and y_{i-2} are in C^* . But this again leads to the contradiction that $r_{M_i}(C^*) \geq 4$. Therefore $C^* \cap \{x_i, x_{i-1}, y_{i-2}\} = \emptyset$, as claimed.

Certainly the rank of $C^* - y_i$ is at most three, since $C^* \subseteq U$. Because $C^* - y_i$ contains a, its rank is at least one. If $r_{M_i}(C^* - y_i) = 1$, then $C^* = \{y_i, a\}$. But this is a contradiction, as M_i is 3-connected, and therefore has no series pairs. Hence $r_{M_i}(C^* - y_i) \ge 2$. We assume for a contradiction that $r_{M_i}(C^* - y_i) = 3$. Let Z be a basis of $C^* - y_i$. Then Z spans U, so there is a circuit contained in $Z \cup y_i$ that contains y_i . This circuit violates orthogonality with the cocircuit $\{y_i, x_i, x_{i-1}, y_{i-2}\}$.

Now we let z be an arbitrary element in $C^* - \{y_i, a\}$. By 3.6.4, $\{a, z\}$ is a basis of $C^* - y_i$.

First we assume that z is in $\{x_0, \ldots, x_{i-1}\}$. By inspection of the matrix A_i , $\{a, z\}$ is not contained in a triangle that is contained in $C^* - y_i$. Thus $C^* - y_i$ contains no triangle, so 3.6.4 implies $C^* = \{y_i, a, z\}$. By Corollary 3.4, both \mathbf{a}^T and \mathbf{x}^T contain non-zero entries. As row z contains a non-zero entry in a column where row a has a zero entry, we can find a basis of M_i that does not intersect $\{y_i, a, z\}$. This contradiction, and 3.6.3, means that z is not in $\{x_0, \ldots, x_i\}$.

Now we assume that z is in $\{b, y_0, \ldots, y_{i-1}\}$. By the previous paragraph, $C^* - \{y_i, a\}$ does not contain any element in $\{x_0, \ldots, x_i\}$. From this, and inspection of A_i , we can easily see that if there is a triangle of M_i containing $\{a, z\}$ that is contained in $C^* - y_i$, then the third element of the triangle labels a column of D. This third element labels a column that is constant in the rows $\{x_0, \ldots, x_i\}$, while z labels a column that is not constant in these rows, unless $z = y_0$ and i = 1. But we have already noted that $i \geq 3$, so this is impossible. Therefore no such triangle exists, so 3.6.4 implies that $C^* = \{a, z, y_i\}$ is a cocircuit. This implies that the row labeled by a is zero everywhere except in the columns labeled by y_i and z. Thus \mathbf{a}^T is everywhere zero, and we have a contradiction to Corollary 3.4. We have shown that the elements in $C^* - \{y_i, a\}$ all label rows and columns in D.

Assume that there is an element, z, in $C^* - \{a, y_i\}$ that labels a row of the matrix D. As $\{a, z\}$ is a basis of $C^* - y_i$, every element in $C^* - \{y_i, a, z\}$ labels a column of D. Any such column is non-zero only in the rows labeled by a and z. Assume that row a is non-zero only in columns labeled by elements of $C^* - \{a, z\}$. Then every basis of M_i intersects $C^* - z$, which contradicts the fact that this is a proper subset of a cocircuit. Therefore row a is non-zero in a column that is not labeled by an element of $C^* - \{a, z\}$. The same statement can be made about row z. As every basis intersects C^* , we see that any 2×2 submatrix with rows labeled by a and a has zero determinant, unless it has a column labeled by an element in a and row a are identical in columns that are not labeled by elements in a and row a are identical in columns that are not labeled by elements in a and row a are identical in columns that are not labeled by elements in a and row a are identical in columns that are not labeled by elements in a and row a are identical in columns that are not labeled by elements in a and row a are identical in columns that are not labeled by elements in a and row a are identical in columns that are not labeled by elements in a and a and a are identical in columns that are not labeled by elements in a and a and a are identical in columns that are not labeled by elements in a and a and a are identical in columns.

Next assume that no element in $C^* - \{a, y_i\}$ labels a row of the matrix D, so that every such element labels a column of D. Then row a is zero everywhere except in columns labeled by elements in $C^* - a$. Therefore $(C^* - y_i) \cup y_1$ is a cocircuit in M_1 . Any two elements in $C^* - \{a, y_i\}$ form a triangle of M_i with a. The columns they label must have non-zero elements other than in row a, or else M_i contains a parallel pair. By scaling, we can assume that any two such columns are identical, except in row a. This implies that $r_{M_1}(C^* - y_i) = 2$. Therefore $(C^* - y_i) \cup y_1$ is a rank-three cocircuit in M_1 in any case.

If $C^* = \{a, z, y_i\}$, then $\{a, z, y_1\}$ is a triad in M_1 , and $\{a, y_1, x_1\}$ is a triangle. This gives us a contradiction to Proposition 3.3, so C^* contains at least four elements. Therefore $(C^* - y_i) \cup y_1$ is a cocircuit of M_1 with rank three and corank at least three, and $\lambda_{M_1}((C^* - y_i) \cup y_1) = 2$. Let

H be the complement of $(C^* - y_i) \cup y_1$ in M_1 . As M_1 is fused, it follows that $r_{M_1}(H) \leq 2$ or $r_{M_1}^*(H) \leq 2$. In the former case, $r(M_1) \leq 3$, since H is a hyperplane in M_1 . Therefore $r_{M_1}^*(H) \leq 2$. As $\{x_0, x_1, y_0\} \subseteq H$, this means that $\{x_0, x_1, y_0\}$ is a triangle and a triad in M_1 , so it is 2-separating. This quickly leads to a contradiction, so we have completed the proof of Lemma 3.6, and hence the proof of Theorem 1.3.

ACKNOWLEDGEMENTS

We thank Geoff Whittle for instigating the project and for helpful conversations, and we thank the referee for a very careful reading.

References

- [1] J. Geelen, J. Oxley, D. Vertigan, and G. Whittle. Weak maps and stabilizers of classes of matroids. *Adv. in Appl. Math.* **21** (1998), no. 2, 305–341.
- [2] J. Geelen, J. Oxley, D. Vertigan, and G. Whittle. Totally free expansions of matroids. J. Combin. Theory Ser. B 84 (2002), no. 1, 130–179.
- [3] R. Hall, D. Mayhew, and S. H. M. van Zwam. The excluded minors for near-regular matroids. *European J. Combin.* **32** (2011), no. 6, 802–830.
- [4] D. Mayhew, G. Whittle, and S. H. M. van Zwam. An obstacle to a decomposition theorem for near-regular matroids. SIAM J. Discrete Math. 25 (2011), no. 1, 271–279.
- [5] D. Slilaty. Personal communication.
- [6] J. Oxley. Matroid theory. Oxford University Press, New York, second edition (2011).
- [7] R. A. Pendavingh and S. H. M. van Zwam. Lifts of matroid representations over partial fields. *J. Combin. Theory Ser. B* **100** (2010), no. 1, 36–67.
- [8] P. D. Seymour. Decomposition of regular matroids. J. Combin. Theory Ser. B 28 (1980), no. 3, 305–359.

SCHOOL OF INFORMATION SYSTEMS, COMPUTING AND MATHEMATICS, BRUNEL UNIVERSITY, UNITED KINGDOM

E-mail address: carolyn.chun@brunel.ac.uk

SCHOOL OF MATHEMATICS, STATISTICS AND OPERATIONS RESEARCH, VICTORIA UNIVERSITY OF WELLINGTON, NEW ZEALAND

E-mail address: dillon.mayhew@msor.vuw.ac.nz

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF OTTAWA, OTTAWA, CANADA

 $E ext{-}mail\ address: mnewman@uottawa.ca}$