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Abstract. We construct an infinite family of highly connected sixth-
root-of-unity matroids that are not near-regular. This family is an ob-
stacle to any decomposition theorem for sixth-root-of-unity matroids in
terms of near-regular matroids.

1. Introduction

Seymour’s decomposition theorem for matroids representable over the
regular partial field [8] is one of the classical results of matroid theory. It
shows that an internally 4-connected regular matroid is graphic, cographic,
or sporadic.

It is only natural to hope that there may be similar decomposition results
for matroids representable over other partial fields. However, internal 4-con-
nectivity is not quite the right notion to use when considering non-regular
matroids. We would like a notion of connectivity that captures when a con-
nected matroid cannot be decomposed via a generalised parallel connection
along a point or line. This notion should still allow the matroid to have long
lines, unlike internal 4-connectivity. We also want our notion of connectivity
to be closed under duality, so we make the following definition.

Definition 1.1. A matroid is fused if it is 3-connected and whenever (U, V )
is a 3-separation, either min{r(U), r(V )} ≤ 2, or min{r∗(U), r∗(V )} ≤ 2.

Note that if M is 3-connected, and either M or M∗ is vertically 4-con-
nected, then M is fused. The converse does not hold: if a matroid contains
both triangles and triads, then neither it, nor its dual, is vertically 4-con-
nected, but it may still be fused. Every internally 4-connected matroid is
fused, and a binary matroid is fused if and only if it is internally 4-connected.

We would very much like to obtain decomposition results giving us control
over the fused matroids representable over certain partial fields. Some recent
evidence shows that this may be a forlorn hope in the case of near-regular
matroids [4] and dyadic matroids [5]. The current paper provides similarly
negative evidence against a decomposition theorem for sixth-root-of-unity
matroids in terms of near-regular matroids.
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The authors of [1, 2] conjectured the existence of a decomposition theorem
showing that any fused sixth-root-of-unity matroid that fails to be near-
regular is isomorphic to a restriction of AG(2, 3) (up to duality and ∆-Y
operations). Unfortunately, the matroid N , illustrated in Figure 1, provides
a counterexample. The matrix representation of N is over the complex
numbers, and ξ is a primitive sixth-root of unity. It can be verified that
every non-zero subdeterminant of this matrix is a power of ξ, so N is a
sixth-root-of-unity matroid. It is easy to see that N/y1\x1 is isomorphic to
AG(2, 3)\e, so N is certainly not near-regular (see [3]). Moreover, the only
3-separating sets in N are triangles and the complements of triangles, so N
is fused.
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Figure 1. Matrix and geometric representations of N .

We might still hope that there are only finitely many fused matroids that
are sixth-root-of-unity without being near-regular. In this case a decom-
position theorem might need to deal with only a finite number of sporadic
matroids. Our main theorem banishes this hope also.

Theorem 1.2. There are infinitely many fused matroids that are sixth-root-
of-unity without being near-regular.

Our proof of Theorem 1.2 is not specific to the sixth-root-of-unity partial
field, so we operate at a slightly higher level of generality:

Theorem 1.3. Let P be a partial field and let M be a P-representable ma-
troid. Assume that E(M) contains distinct elements a, b, c, x0, x1, y0,
and y1, where T0 = {x0, x1, y0}, T1 = {a, x1, y1}, and T2 = {b, c, x0} are
triangles, and {b, x0, x1, y1} is a cocircuit. Assume also that the following
conditions hold:

(i) r(T0 ∪ T1) = 3,
(ii) {b, x0, x1, y1} is independent,
(iii) r(M), r∗(M) > 3,
(iv) M/y1\x1 is 3-connected,
(v) M is fused.

Then there are infinitely many fused P-representable matroids that have M
as a minor.
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The conditions of Theorem 1.3 apply to the sixth-root-of-unity partial
field, and the matroid N described in Figure 1. Therefore Theorem 1.2
follows immediately from Theorem 1.3.

2. Preliminaries

Any undefined notation or terminology is in Oxley [6]. Our general refer-
ence for partial fields is Pendavingh and Van Zwam [7]; proofs of the results
in this section can be found there. A partial field is a pair, (R,G), where
R is a commutative ring with identity, and G is a subgroup of the group of
units. We require −1 ∈ G. In particular, if F is a field, then (F,F − {0})
is a partial field. The regular partial field is (Z, {1,−1}). The near-regular
partial field is (Q(α), {±αi(1 − α)j : i, j ∈ Z}), where Q(α) is the field of
rationals extended by the transcendental α. The sixth-root-of-unity partial
field is (C, {z : z6 = 1}).

Let A be a matrix with entries from the ring R, and assume that the rows
of A are labeled by the set X and the columns are labeled by the set Y . If
X ′ ⊆ X and Y ′ ⊆ Y , then we use the notation A[X ′, Y ′] to stand for the
submatrix of A with rows and columns labeled by X ′ and Y ′. If Z ⊆ X ∪Y ,
then A − Z = A[X − Z, Y − Z]. As usual, we omit the set brackets about
singleton sets. We treat a 1× 1 matrix as a member of R.

Assume A[x, y] is non-zero, and let Axy be the matrix obtained from A by
pivoting on (x, y). This means that the labels x and y are swapped, so that
the rows of Axy are labeled by (X − x) ∪ y, and the columns are labeled by
(Y − y) ∪ x. For any u labeling a row of Axy, and any v labeling a column,
we have:

Axy[u, v] =


A[x, y]−1 if (u, v) = (y, x)

A[x, y]−1A[x, v] if u = y, v 6= x

−A[x, y]−1A[u, y] if u 6= y, v = x

A[u, v]−A[x, y]−1A[u, y]A[x, v] otherwise

Pictorially, this means that if A has the following form

D

cT
d

αx

y

then Axy is

D − α−1dcT

α−1cT
−α−1d

α−1y

x

Note that if we pivot on (y, x) in the matrix Axy, then we recover A. If A
is a square matrix, then

(1) det(A) = ±A[x, y] det(Axy − {x, y}).
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If P = (R,G) is a partial field, then a P-matrix is a matrix with entries
from R, such that the determinant of any square submatrix is in G ∪ {0}.
If X and Y label the rows and columns of a P-matrix, A, then

{X} ∪ {Z ⊆ X ∪ Y : |Z| = |X|, det(A[X − Z, Y ∩ Z]) 6= 0}

is the collection of bases of a matroid. We denote this matroid M [I|A]. If x
labels a row, then M [I|A]/x = M [I|A − x], and if y labels a column, then
M [I|A]\y = M [I|A− y]. We say that M [I|A] is P-representable. A matroid
that is representable over the near-regular (respectively sixth-root-of-unity)
partial field is said to be near-regular (sixth-root-of-unity). Modifying a
P-matrix by scaling a row or column with an element in G or by pivoting
on a non-zero entry produces another P-matrix, and these two matrices
represent the same matroid.

3. Proof of Theorem 1.3

Henceforth we let P = (R,G) and M be as described in the statement of
Theorem 1.3. Let H be the complementary hyperplane to {b, x0, x1, y1}.
Note that r({a, y0}) = 2, or else r(T0 ∪ T1) = 2. We observe that
cl({x0, x1, y1}) contains y0 and a, because of the triangles T0 and T1. If
r({a, y0, c}) = 2, then cl({x0, x1, y1}) also contains c, and hence b, because
of the triangle {x0, b, c}. But this contradicts the fact that {b, x0, x1, y1}
is independent. Therefore r({a, y0, c}) = 3. Let B′ be a basis of H that
contains {a, y0, c}. Now B′ ∪ x1 is a basis of M . The fundamental cir-
cuit of x0 with respect to this basis is T0 = {x0, x1, y0}. This means that
B = (B′ − y0) ∪ {x0, x1} is a basis of M . The fundamental circuit of y0
relative to B is {y0, x0, x1}, and the fundamental circuit of y1 is {y1, a, x1}.
Furthermore, the fundamental circuit of b, relative to B, is {b, c, x0}.

We will consider a P-matrix, A1, such that M = M [I|A1]. By performing
pivots as necessary, we can assume that B labels the rows of A1. The
previous paragraph shows that the column labeled by b is non-zero only in
the rows labeled by c and x0. Also, A1[B, y1] is non-zero only in the rows
labeled by a and x1, and A1[B, y0] is non-zero only in the rows labeled by
x0 and x1. By scaling these two rows, we will assume that A1[x0, y0] =
A1[x1, y0] = 1. Any basis must intersect the cocircuit {b, x0, x1, y1}. This
implies that any 2×2 submatrix with rows labeled by x0 and x1 and columns
labeled by y0 and some other column that is not b or y1 must have a zero
determinant. As A1[x0, y0] = A1[x1, y0], we deduce that the rows labeled by
x0 and x1 are identical, except possibly in the columns labeled by b and y1.

Next we scale columns b and y1 so that A1[x0, b] and A1[x1, y1] are equal
to one. Finally, we scale row a so that A1[a, y1] is equal to one. Thus we
can assume that M is equal to M [I|A1], where A1 is a P-matrix with the
following form.
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D

aT

xT

xT

b 0 0

0 0 1

1 1 0

0 1 1

a

x0

x1

b y0 y1

Here b and 0 are (r(M)− 3)× 1 vectors where all the entries of 0 are zero,
while a and x are (|E(M)| − r(M)− 3)× 1 vectors.

We define A0 to be the following matrix.

D

xT − aT

xT

b 0

0 1

1 1

a

x0

b y0

Note that A0 is the matrix we obtain from A1 if we pivot on (x1, y1), then
multiply the row labeled by a with the scalar −1, and finally, delete the row
labeled y1 and the column labeled x1. Therefore A0 is a P-matrix.

For each positive integer i > 1, we define a derived matrix Ai. If i is odd,
then Ai is the following matrix.

D

aT

xT

xT

b 0 0

0 0 0

1 1 0

0 1 1

a

x0

x1

b y0 y1

· · · 0

0

0
...

0 0 0 1

. . .

0· · ·
· · · yi−2

...

xi−2

...

xT

xi−1 xT 0 0 0 1

0

0

0

0

1

yi−1

0

xTxi 0 0 0 0· · · 1

1

0

0

0

...

0

1

0

yi
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If i is even, we define Ai as follows.

D

xT − aT

xT

xT

b 0 0

0 0 0

1 1 0

0 1 1

a

x0

x1

b y0 y1

· · · 0

0

0
...

0 0 0 1

. . .

0· · ·
· · · yi−2

...

xi−2

...

xT

xi−1 xT 0 0 0 1

0

0

0

0

1

yi−1

0

xTxi 0 0 0 0· · · 1

1

0

0

0

...

0

1

0

yi

Lemma 3.1. The matrix Ai is a P-matrix, for every non-negative integer
i.

Proof. Let us assume that the lemma fails, and that i is the least non-
negative integer such that Ai is not a P-matrix. Certainly A1 is a P-matrix,
and we have already argued that A0 is a P-matrix, so i ≥ 2.

If a matrix with entries from R contains a square submatrix with a de-
terminant not in G ∪ {0}, then we will say that this is a bad submatrix.
Therefore i is the least non-negative integer such that Ai contains a bad
submatrix.

Let A′i be the matrix obtained from Ai by pivoting on (xi, yi) and then
multiplying the row labeled by a with the scalar −1. A straightforward
calculation shows that A′i is the following matrix.

yi xT 0 · · · 10

1

0

0

...

1

xi

0

Ai−1A′i =

Since Ai can be obtained from A′i by scaling and then pivoting on (yi, xi), it
follows that A′i cannot be a P-matrix, or else Ai would be a P-matrix also.
Therefore A′i contains a bad submatrix.

3.1.1. Every bad submatrix of A′i contains the row labeled yi and the column
labeled xi.

Proof. Assume for a contradiction that Z is a bad submatrix of A′i and that
Z avoids either row yi or column xi. It cannot be the case that Z avoids
both, for that would imply that Z is a bad submatrix of Ai−1, and this
contradicts our inductive assumption. First assume that Z contains column
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xi, but not row yi. Then Z is a bad submatrix of A′i − yi. However, in
this matrix, the column labeled by xi contains only a single non-zero entry.
From this we see that there is a bad submatrix that avoids both row yi and
column xi, contradicting our earlier conclusion. Therefore Z contains row
yi, but not column xi, so Z is a bad submatrix of the following matrix.

D

cT

xT

xT

b 0 0

0 0 0

1 1 0

0 1 1

a

x0

x1

b y0 y1

· · · 0

0

0
...

0 0 0 1

. . .

0· · ·
· · · yi−3

...

xi−3

...

xT

xi−2 xT 0 0 0 1

0

0

0

0

1

yi−2

0

xTxi−1 0 0 0 0 1

1

0

0

0

...

0

1

0

yi−1

xT 0 0 0 0· · · 0 1yi

A′
i − xi =

Here cT is either aT or xT − aT depending on the parity of i. Note that
A′i − {xi, yi} = Ai−1.

Assume that Z avoids row xi−1. After deleting xi−1, the column labeled
yi−2 has only a single non-zero entry, so we can assume that Z is a bad
submatrix of A′i−xi that avoids both xi−1 and yi−2. Deleting xi−1 and yi−2
from A′i − xi produces a matrix that is identical to Ai−1 − yi−2. Therefore
we have a contradiction to the minimality of i. We conclude that a bad
submatrix in A′i − xi must contain row xi−1.

Let Z be a bad submatrix of A′i − xi, and assume that Z avoids column
yi−2. In A′i − {xi, yi−2}, the rows labeled by xi−1 and yi are identical, so
we can choose Z so that it contains yi, and not xi−1. This contradicts the
conclusion in the previous paragraph, so now any bad submatrix of A′i − xi
must contain xi−1 and yi−2.

By Equation (1), there is a bad submatrix in the matrix, A′′, obtained
from A′i − xi by pivoting on (xi−1, yi−2), and then deleting row yi−2 and
column xi−1. This matrix is shown below.
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D

cT

xT

xT

b 0 0

0 0 0

1 1 0

0 1 1

a

x0

x1

b y0 y1

· · · 0

0

0
...

. . .

0· · ·
· · · yi−4

...
...

xi−3 xT 0 0 0 1

0

0

0

1

yi−3

0

0Txi−2 0 0 0 0 1

1

0

0
...

0

−1

0

yi−1

xT 0 0 0 0· · · 0 1yi

A′′ =

Let Z be a bad submatrix of A′′, and assume that Z avoids column yi−1.
After deleting yi−1 from A′′, the row xi−2 contains only a single non-zero
entry. Therefore we can assume that Z avoids yi−1 and xi−2. After deleting
yi−1 and xi−2 from A′′, column yi−3 contains only a single non-zero entry,
so we can assume that Z avoids yi−1, xi−2, and yi−3. Therefore A′′ −
{yi−1, xi−2, yi−3} contains a bad submatrix. But this matrix is identical to
Ai−1−{yi−3, yi−2, yi−1, xi−1}, so Ai−1 contains a bad submatrix and we have
a contradiction. Therefore any bad submatrix of A′′ contains column yi−1.

It is not difficult to see that A′′ − yi is identical to the matrix obtained
from Ai−1 by pivoting on (xi−1, yi−2) and then deleting row yi−2 and column
xi−1. This matrix does not contain any bad submatrix, so A′′ − yi does not
contain any bad submatrix. Therefore any bad submatrix ofA′′ must contain
column yi−1 and row yi.

Equation (1) tells us that there is a bad submatrix in the matrix obtained
from A′′ by pivoting on (yi, yi−1), multiplying row a by −1, and then deleting
row yi−1 and column yi. But this matrix is identical to Ai−2 − yi−2, so
Ai−2 contains a bad submatrix, and we again have a contradiction to the
minimality of i. Therefore every bad submatrix of A′i contains row yi and
column xi, as desired, and the proof of 3.1.1 is complete. �

By 3.1.1, any bad submatrix of A′i contains row yi and column xi. Hence
there is a bad submatrix in the matrix obtained from A′i by pivoting on
(yi, xi) and then deleting row xi and column yi. But this matrix is identical
(up to scaling) to Ai − {xi, yi}. As the column labeled by yi−1 contains
only a single non-zero entry in Ai − {xi, yi}, there is a bad submatrix in
Ai − {xi, yi, yi−1}.
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D

cT

xT

xT

b 0 0

0 0 0

1 1 0

0 1 1

a

x0

x1

b y0 y1

· · · 0

0

0
...

. . .

0· · ·
· · · yi−3

...
...

xi−3 xT 0 0 0 1

0

0

0

1

yi−2

0

xTxi−2 0 0 0 0 1

0

0

0
...

0

1

0

xT 0 0 0 0· · · 0 1xi−1

Ai − {xi, yi, yi−1}=

yi−4

Let Z be a bad submatrix of Ai − {xi, yi, yi−1}. Let us assume that Z
avoids row xi−1. After deleting xi−1, the column yi−2 has a single non-zero
entry. Therefore we can assume that Z avoids xi−1 and yi−2. However,
deleting xi−1 and yi−2 from Ai − {xi, yi, yi−1} produces a matrix that is
identical to Ai−2 − yi−2. Therefore Ai−2 contains a bad submatrix, and we
have a contradiction to the minimality of i. Therefore any bad submatrix
of Ai − {xi, yi, yi−1} contains row xi−1.

Let Z be a bad submatrix of Ai−{xi, yi, yi−1}, and assume that Z avoids
row xi−2. After deleting xi−2, columns yi−2 and yi−3 contain single non-zero
entries, so we can assume that Z avoids xi−2, yi−2, and yi−3. This shows
there is a bad submatrix that avoids yi−2 and yi−3. However, after deleting
yi−2, and yi−3 from Ai −{xi, yi, yi−1}, the rows xi−1 and xi−2 are identical,
so there is a bad submatrix of Ai−{xi, yi, yi−1} that does not contain xi−1.
This contradicts the conclusion of the previous paragraph. Now we know
that any bad submatrix of Ai − {xi, yi, yi−1} must contain xi−1 and xi−2.

Let Z be a bad submatrix of Ai−{xi, yi, yi−1}, and assume that Z avoids
column yi−3. After deleting yi−3, rows xi−1 and xi−2 are identical, and as Z
must contain both these rows by the previous paragraph, it follows that the
determinant of Z is zero. This contradiction shows that any bad submatrix
of Ai − {xi, yi, yi−1} contains xi−1, xi−2, and yi−3.

We pivot on (xi−2, yi−3), and then delete {yi−3, xi−2}. The previous para-
graph shows that in the resulting matrix, A′, there is a bad submatrix, Z,
that contains row xi−1.
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D

cT

xT

xT

b 0 0

0 0 0

1 1 0

0 1 1

a

x0

x1

b y0 y1

· · · 0

0

0
...

. . .

0· · ·
· · · yi−4

...
...

xi−4 xT 0 0 0 1

0

0

0

1

yi−2

0

0Txi−3 0 0 0 0 1

0

0

0
...

0

−1

0

xT 0 0 0 0· · · 0 1xi−1

A′ =

yi−5

Assume Z avoids yi−2. After deleting yi−2, the row xi−3 contains a single
non-zero entry. Therefore we can assume that Z avoids yi−2 and xi−3. After
deleting yi−2 and xi−3 from A′, the column yi−4 contains only a single non-
zero entry. Therefore we can assume that Z contains xi−1, but avoids yi−2,
xi−3, and yi−4. It is not too difficult to see that deleting yi−2, xi−3, and yi−4
from A′ produces a matrix that is identical to Ai−2−{yi−2, yi−3, yi−4, xi−2}.
Therefore Ai−2 contains a bad submatrix, and we have a contradiction. It
follows that Z, the bad submatrix of A′ that contains xi−1, also contains
yi−2.

Now we know there is a bad submatrix in the matrix obtained from A′

by pivoting on (xi−1, yi−2), and then deleting {yi−2, xi−1}. But this matrix
is identical to Ai−2 − {yi−2, yi−3, xi−2}, so we have a final contradiction to
the minimality of i that completes the proof of Lemma 3.1. �

For any non-negative integer i, we let Mi = M [I|Ai], so that M1 is the
matroid M from the statement of Theorem 1.3. By pivoting on (xi, yi), and
deleting row yi and column xi from the resulting matrix, we discover the
following relation.

Proposition 3.2. If i > 1, then Mi/yi\xi = Mi−1.

A 4-fan of a matroid is a sequence, (α, β, γ, δ), of distinct elements such
that {α, β, γ} is a triangle and {β, γ, δ} is a triad.

Proposition 3.3. M1 contains no 4-fan.

Proof. Assume that (α, β, γ, δ) is a 4-fan. Note that {α, β, γ, δ} has
rank/corank at least two, and at most equal to three. If the rank or
corank of {α, β, γ, δ} is two, then λM1({α, β, γ, δ}) ≤ 1, and the fact that
M1 is 3-connected means that M1 contains at most five elements, con-
tradicting statement (iii) in the hypotheses of Theorem 1.3. Therefore
rM1({α, β, γ, δ}) = r∗M1

({α, β, γ, δ}) = 3, and λM1({α, β, γ, δ}) = 2.
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Let C be the complement of {α, β, γ, δ} in M1. Because M1 is fused it
follows that C has rank or corank at most two. As

r(M1) = rM1(C) + |{α, β, γ, δ}| − r∗M1
({α, β, γ, δ}) and

r∗(M1) = r∗M1
(C) + |{α, β, γ, δ}| − rM1({α, β, γ, δ})

this means that M1 has rank or corank at most three. In either case we
have a contradiction to the hypotheses of Theorem 1.3. �

Corollary 3.4. Both aT and xT contain non-zero entries.

Proof. If aT is everywhere zero, then {a, y1} is a series pair in M1, contra-
dicting 3-connectivity. If xT is everywhere zero, then (a, y1, x1, y0) is a 4-fan
of M1, contradicting Proposition 3.3. �

Let d be a column label of A1 such that d is not equal to b, y0, or y1, and
A1[x0, d] is non-zero. Such a d exists by Corollary 3.4.

Lemma 3.5. If i is a non-negative integer, then Mi is 3-connected.

Proof. Assume the lemma fails, and that i is the least non-negative integer
such that Mi is not 3-connected. The hypotheses of Theorem 1.3 imply that
i ≥ 2.

The choice of i means that Mi−1 = Mi/yi\xi is 3-connected. Assume that
Mi\xi is not 3-connected. Then yi is either a coloop in Mi\xi, or is contained
in a series pair [6, Proposition 8.2.7]. Now Mi\xi = M [I|Axiyi

i − xi], and

Axiyi
i −xi is obtained from Ai−1 by scaling, and adding the row [xT 0 · · · 0 1].

The new row is labeled yi, and as this row contains a non-zero entry, yi is
not a coloop in Mi\xi. Therefore yi is contained in a series pair.

Corollary 3.4 implies that the row labeled by yi contains at least two
non-zero entries in Axiyi

i − xi. This means that yi is not in a series pair
of Mi\xi with any element that labels a column of Axiyi

i − xi, so yi is in a
series pair with an element that labels a row. Let z be this element. By
examining Axiyi

i −xi, we see that {a, xi−1, yi−1, yi} is a circuit of Mi\xi. Now
orthogonality with the series pair {yi, z} implies that z is in {a, xi−1, yi−1}.
As z labels a row, it is equal to either a or xi−1. If {yi, xi−1} is a series pair in
Mi\xi, then we contradict orthogonality with the circuit {xi−2, xi−1, yi−2}.
Therefore {yi, a} is a series pair of Mi\xi. This means that we can scale
so that the rows labeled by yi and a are identical. If i − 1 is odd, then we
deduce that aT = xT , which implies that {a, y0} is a series pair in M0. If
i− 1 is even, then xT −aT = xT , contradicting Corollary 3.4. In either case
we have a contradiction, so we conclude that Mi\xi is 3-connected.

Since Mi is not 3-connected, it follows that xi is either a loop, or is in a
parallel pair in Mi. The former is impossible, as xi labels a row in Ai. Hence
there is a column of Ai that contains a non-zero entry only in row xi. This
column cannot be in {b, y0, . . . , yi}, and now we have a contradiction, since
if the column is non-zero in row xi, then it is also non-zero in row xi−1. �

We complete the proof of Theorem 1.3 by establishing the next lemma.
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Lemma 3.6. If i ≥ 1 is an odd integer, then Mi is fused.

Before we begin the proof of Lemma 3.6, we note that Mi may not be
fused when i is even, even if M0 and M1 are both fused. For example, if A1

is the following matrix over GF(7):

3 0 0

0 0 1

1 1 0

0 1 1

a

x0

x1

b y0 y1u v

c 1 2

1 1

0 1

0 1

then we can verify that M0 and M1 are fused, but
({a, c, u, x2, y2}, {x0, x1, v, b, y0, y1}) is a 3-separation certifying that
M2 is not fused.

Proof of Lemma 3.6. Assume the lemma fails. Let i ≥ 1 be the least odd
integer such that Mi is not fused. By hypothesis M1 is fused, so i ≥ 3.

Note that {a, xi} is a parallel pair in Mi/yi. Since Mi/yi\xi = Mi−1 is
3-connected by Lemma 3.5, it follows that the only 2-separation of Mi/yi
consists of {a, xi} and its complement.

3.6.1. If (U, V ) is a 3-separation of Mi/yi, then either

min{rMi/yi(U), rMi/yi(V )} ≤ 2 or min{r∗Mi/yi
(U), r∗Mi/yi

(V )} ≤ 2.

Proof. We assume (U, V ) is a 3-separation of Mi/yi that does not satisfy the
conditions of 3.6.1. First we claim that we can assume that either U or V
contains {a, xi}. Without loss of generality we assume that xi is in U . If a
is in U , then we are done, so assume a ∈ V .

Assume that |V | = 3. Then |U | > 3, so (U − xi, V ) is a 3-separation of
the 3-connected matroid Mi/yi\xi. Therefore V is a triangle or a triad in
Mi/yi\xi. If V is a triangle, then rMi/yi(V ) ≤ 2, contrary to hypothesis.
Therefore V is a triad in Mi/yi\xi. It is not a triad in Mi/yi, or else
r∗Mi/yi

(V ) ≤ 2. Therefore V ∪ xi is a cocircuit of Mi/yi, so xi ∈ cl∗Mi/yi
(V ).

Then xi is also in cl∗Mi/yi
(U −xi), or else (U −xi, V ∪xi) is a 2-separation in

M/yi, and this is impossible as neither U −xi nor V ∪xi is equal to {a, xi}.
However, xi cannot be in cl∗Mi/yi

(U − xi), or else we violate orthogonality

with the circuit {a, xi}. This contradiction implies that |V | > 3.
Now |V − a| ≥ 3, so (U ∪ a, V − a) is a 3-separation of M/yi. If both

sides of this separation have rank and corank at least equal to three, then
our claim is justified, so we assume this is not the case. Therefore V −a has
rank or corank at most equal to two. In fact, a cannot be contained in a
cocircuit that is contained in V , by orthogonality with {a, xi}. This means
that r∗Mi/yi

(V − a) < r∗Mi/yi
(V ). It cannot be the case that rMi/yi(V − a) <

rMi/yi(V ), for that would imply that (U∪a, V −a) is a 2-separation of Mi/yi.
Since neither side of (U∪a, V −a) is equal to {a, xi}, this is impossible. From
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this we conclude that r∗Mi/yi
(V ) = 3, and r∗Mi/yi

(V −a) = 2. However, we can

apply symmetric arguments to U , and deduce that r∗Mi/yi
(U) = 3. Because

(U, V ) is a 3-separation of Mi/yi, this means that 4 = r∗(Mi/yi) = r∗(Mi).
As r∗(M1) > 3 and r∗(Mi) = r∗(Mi−1) + 1 for every i, we see that i = 1,
contradicting the earlier statement that i ≥ 3.

Now we can assume, as we claimed, that (U, V ) is a 3-separation of Mi/yi
that fails the conditions of 3.6.1, and that a and xi are in U . Because
Mi−1 = Mi/yi\xi is fused, it follows that

min{rMi/yi\xi
(U − xi), rMi/yi\xi

(V )} ≤ 2 or

min{r∗Mi/yi\xi
(U − xi), r∗Mi/yi\xi

(V )} ≤ 2.

Certainly the rank of V in Mi/yi\xi is identical to its rank in Mi/yi. More-
over, there can be no cocircuit of Mi/yi contained in V ∪xi that contains xi,
by orthogonality with {a, xi}. This means that the corank of V in Mi/yi\xi
is identical to its corank in Mi/yi. The parallel pair {a, xi} tells us that
rMi/yi\xi

(U − xi) = rMi/yi(U). Therefore we conclude that r∗Mi/yi
(U) = 3

and r∗Mi/yi\xi
(U − xi) = 2.

If |U | = 3, then rMi/yi(U) ≤ 2 because of the parallel pair {a, xi}. This is
a contradiction, so |U − xi| ≥ 3. As Mi/yi\xi = Mi−1 is 3-connected, and
r∗Mi/yi\xi

(U − xi) = 2, it follows that a is contained in a triad, T ∗, in Mi−1.
However, a is also contained in the triangle T = {a, xi−1, yi−1}. Now T ∗

and T must intersect in at least two elements, by orthogonality, and they
must intersect in no more than two elements, or else T = T ∗ is 2-separating
in Mi−1. Thus Mi−1 has a 4-fan. As Mi−1 is fused, we can use exactly the
same arguments as in Proposition 3.3 to show that Mi−1 has rank or corank
at most equal to three, and we have a contradiction. �

We let (U, V ) be a 3-separation of Mi such that the rank/corank of U and
V are at least equal to three. We assume that yi is in U .

3.6.2. yi /∈ clMi(V ).

Proof. If yi is in clMi(V ), then (U − yi, V ) is a 2-separation in Mi/yi. From
Lemma 3.5 it follows that either U −yi or V is the parallel pair {a, xi}. But
|V | ≥ 3, so U = {a, xi, yi}, and hence rMi(U) = 2, a contradiction. �

If |U | = 3, then U is a circuit or cocircuit in Mi, which means that it
has rank or corank at most two. This contradiction implies |U | ≥ 4, so
(U − yi, V ) is a 3-separation in Mi/yi. We apply 3.6.1 to this separation.

Evidently r∗Mi/yi
(V ) ≥ 3. From 3.6.2 we see that rMi/yi(V ) ≥ 3. If

r∗Mi/yi
(U − yi) ≤ 2 < r∗Mi

(U),

then yi is not in cl∗Mi
(U − yi). This is equivalent to yi being in clMi(V ),

contradicting 3.6.2. The only remaining possibility is that rMi/yi(U−yi) ≤ 2.
We conclude that rMi(U) = 3.
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As (U, V ) is an exact 3-separation of Mi, it follows that rMi(V ) = r(Mi)−
1. Let C∗ ⊆ U be the cocircuit whose complement is clMi(V ). Then 3.6.2
implies yi is in C∗.

3.6.3. xi /∈ C∗.
Proof. Assume that xi is in C∗. Because {xi, xi−1, yi−1} is a triangle
of Mi, orthogonality requires that xi−1 or yi−1 is in C∗, so C∗, and
hence U , contains either {yi, xi, xi−1} or {yi, xi, yi−1}. Both of these sets
have rank three, and rMi(U) = 3. Therefore U is spanned by either
{yi, xi, xi−1} or {yi, xi, yi−1} in Mi. Inspection of the matrix Ai shows that
clMi({a, xi, xi−1, yi−1}) is {a, xi, xi−1, yi, yi−1}. From this it follows that
{a, xi, xi−1, yi, yi−1} contains U .

Because {xi−1, xi−2, yi−2} is a triangle, orthogonality requires that xi−1
is not in C∗. Therefore C∗ is either {yi, xi, yi−1} or {yi, xi, yi−1, a}. As-
sume that {yi, xi, yi−1} is a cocircuit. Inspection of Ai shows that this
means xT contains only zero entries, contradicting Corollary 3.4. Therefore
{yi, xi, yi−1, a} is a cocircuit. Recall that i is odd. Corollary 3.4 asserts
that aT and xT contain non-zero entries. Because every basis must intersect
{yi, xi, yi−1, a}, every 2 × 2 submatrix with rows labeled by a and xi that
contains neither column yi−1 nor column yi has a zero determinant. It fol-
lows that aT and xT are identical (up to scaling by an element of G). This
implies that {a, x1, y0} is a triad in M1, so (x0, x1, y0, a) is a 4-fan, and we
have a contradiction to Proposition 3.3. �

By applying 3.6.3 and orthogonality with the triangle {a, xi, yi}, we now
see that C∗ contains yi and a.

3.6.4. rMi(C
∗ − yi) = 2.

Proof. We start by showing that C∗ ∩ {xi, xi−1, yi−2} = ∅. We know from
3.6.3 that xi /∈ C∗. If C∗ contains xi−1, then orthogonality with the tri-
angle {xi−1, xi−2, yi−2} means that C∗ contains either {a, yi, xi−1, xi−2} or
{a, yi, xi−1, yi−2}. Both of these sets are independent, so we contradict the
fact that rMi(C

∗) ≤ rMi(U) = 3. Now assume that yi−2 is in C∗. Orthog-
onality with {xi−1, xi−2, yi−2}, and the previous paragraph, tells us that
xi−2 and yi−2 are in C∗. But this again leads to the contradiction that
rMi(C

∗) ≥ 4. Therefore C∗ ∩ {xi, xi−1, yi−2} = ∅, as claimed.
Certainly the rank of C∗ − yi is at most three, since C∗ ⊆ U . Because

C∗ − yi contains a, its rank is at least one. If rMi(C
∗ − yi) = 1, then

C∗ = {yi, a}. But this is a contradiction, as Mi is 3-connected, and therefore
has no series pairs. Hence rMi(C

∗ − yi) ≥ 2. We assume for a contradiction
that rMi(C

∗ − yi) = 3. Let Z be a basis of C∗ − yi. Then Z spans U , so
there is a circuit contained in Z ∪ yi that contains yi. This circuit violates
orthogonality with the cocircuit {yi, xi, xi−1, yi−2}. �

Now we let z be an arbitrary element in C∗ − {yi, a}. By 3.6.4, {a, z} is
a basis of C∗ − yi.
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First we assume that z is in {x0, . . . , xi−1}. By inspection of the matrixAi,
{a, z} is not contained in a triangle that is contained in C∗−yi. Thus C∗−yi
contains no triangle, so 3.6.4 implies C∗ = {yi, a, z}. By Corollary 3.4, both
aT and xT contain non-zero entries. As row z contains a non-zero entry in
a column where row a has a zero entry, we can find a basis of Mi that does
not intersect {yi, a, z}. This contradiction, and 3.6.3, means that z is not in
{x0, . . . , xi}.

Now we assume that z is in {b, y0, . . . , yi−1}. By the previous paragraph,
C∗ − {yi, a} does not contain any element in {x0, . . . , xi}. From this, and
inspection of Ai, we can easily see that if there is a triangle of Mi containing
{a, z} that is contained in C∗ − yi, then the third element of the triangle
labels a column of D. This third element labels a column that is constant in
the rows {x0, . . . , xi}, while z labels a column that is not constant in these
rows, unless z = y0 and i = 1. But we have already noted that i ≥ 3, so
this is impossible. Therefore no such triangle exists, so 3.6.4 implies that
C∗ = {a, z, yi} is a cocircuit. This implies that the row labeled by a is
zero everywhere except in the columns labeled by yi and z. Thus aT is
everywhere zero, and we have a contradiction to Corollary 3.4. We have
shown that the elements in C∗ − {yi, a} all label rows and columns in D.

Assume that there is an element, z, in C∗ − {a, yi} that labels a row of
the matrix D. As {a, z} is a basis of C∗−yi, every element in C∗−{yi, a, z}
labels a column of D. Any such column is non-zero only in the rows labeled
by a and z. Assume that row a is non-zero only in columns labeled by
elements of C∗ − {a, z}. Then every basis of Mi intersects C∗ − z, which
contradicts the fact that this is a proper subset of a cocircuit. Therefore row
a is non-zero in a column that is not labeled by an element of C∗ − {a, z}.
The same statement can be made about row z. As every basis intersects
C∗, we see that any 2× 2 submatrix with rows labeled by a and z has zero
determinant, unless it has a column labeled by an element in C∗ − {a, z}.
This means that we can scale in such a way that row a and row z are identical
in columns that are not labeled by elements in C∗−{a, z}. Now we can see
that (C∗ − yi) ∪ y1 is a rank-three cocircuit in M1.

Next assume that no element in C∗ − {a, yi} labels a row of the matrix
D, so that every such element labels a column of D. Then row a is zero
everywhere except in columns labeled by elements in C∗ − a. Therefore
(C∗− yi)∪ y1 is a cocircuit in M1. Any two elements in C∗−{a, yi} form a
triangle of Mi with a. The columns they label must have non-zero elements
other than in row a, or else Mi contains a parallel pair. By scaling, we
can assume that any two such columns are identical, except in row a. This
implies that rM1(C∗ − yi) = 2. Therefore (C∗ − yi) ∪ y1 is a rank-three
cocircuit in M1 in any case.

If C∗ = {a, z, yi}, then {a, z, y1} is a triad in M1, and {a, y1, x1} is a
triangle. This gives us a contradiction to Proposition 3.3, so C∗ contains
at least four elements. Therefore (C∗ − yi) ∪ y1 is a cocircuit of M1 with
rank three and corank at least three, and λM1((C∗ − yi) ∪ y1) = 2. Let
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H be the complement of (C∗ − yi) ∪ y1 in M1. As M1 is fused, it follows
that rM1(H) ≤ 2 or r∗M1

(H) ≤ 2. In the former case, r(M1) ≤ 3, since H
is a hyperplane in M1. Therefore r∗M1

(H) ≤ 2. As {x0, x1, y0} ⊆ H, this
means that {x0, x1, y0} is a triangle and a triad in M1, so it is 2-separating.
This quickly leads to a contradiction, so we have completed the proof of
Lemma 3.6, and hence the proof of Theorem 1.3. �
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