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Abstract. Let M be a matroid. When M is 3-connected, Tutte’s
Wheels-and-Whirls Theorem proves that M has a 3-connected proper
minor N with |E(M) − E(N)| = 1 unless M is a wheel or a whirl.
This paper establishes a corresponding result for internally 4-connected
binary matroids. In particular, we prove that if M is such a matroid,
then M has an internally 4-connected proper minor N with |E(M) −
E(N)| ≤ 3 unless M or its dual is the cycle matroid of a planar or
Möbius quartic ladder, or a 16-element variant of such a planar ladder.

1. Introduction

When dealing with matroid connectivity, it is often useful in inductive
arguments to be able to remove a small set of elements from a matroid
M to obtain a minor N that maintains the connectivity of M . Results
that guarantee the existence of such removal sets are referred to as chain
theorems. Tutte [16] proved that, when M is 2-connected, if e ∈ E(M), then
M\e or M/e is 2-connected. More significantly, when M is 3-connected,
Tutte [16] proved the following result, his Wheels-and-Whirls Theorem.

Theorem 1.1. Let M be a 3-connected matroid. Then M has a proper
3-connected minor N such that |E(M)| − |E(N)| = 1 unless r(M) ≥ 3 and
M is a wheel or a whirl.

This result has proved to be such a useful tool for 3-connected matroids
that it is natural to seek a corresponding result for 4-connected matroids.
Since higher connectivity for matroids may be unfamiliar, we now define
it. Let M be a matroid with ground set E and rank function r. The
connectivity function λM of M is defined on all subsets X of E by λM (X) =
r(X)+ r(E−X)− r(M). For a positive integer k, a subset X or a partition
(X,E −X) of E is k-separating if λM (X) ≤ k− 1. A k-separating partition
(X,E − X) is a k-separation if |X|, |E − X| ≥ k. A matroid having no
k-separations for all k < n is n-connected.

In an n × n grid graph with n large, identify the top and bottom sides
and the left and right sides of the grid to get a 4-connected graph embedded
on the torus in which every face is a 4-cycle and every vertex has degree 4.
Using this graph, it is not difficult to see that, for all positive integers m,
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there is a 4-connected matroid M having no proper 4-connected minor N
with |E(M)|− |E(N)| ≤ m. Nevertheless, chain theorems have been proved
for certain classes of 3-connected matroids which are partially 4-connected.
More precisely, instead of eliminating all 3-separations as one does in a
4-connected matroid, one can allow certain constrained 3-separations. Let
k be an integer exceeding one. A matroid M is (4, k)-connected if M is 3-
connected and, whenever (X,Y ) is a 3-separating partition of E(M), either
|X| ≤ k or |Y | ≤ k. Hall [6] called such a matroid 4-connected up to sepa-
rators of size k. She proved a chain theorem for (4, 5)-connected matroids.
Matroids that are (4, 4)-connected have also been called weakly 4-connected.
The next result is a chain theorem for such matroids proved by Geelen
and Zhou [4]. It identifies certain exceptional matroids. For n ≥ 3, a pla-
nar cubic ladder is a graph with vertex set {u1, v1, u2, v2, . . . , un, vn}
that consists of two disjoint cycles, {u1u2, u2u3, . . . , unu1} and
{v1v2, v2v3, . . . , vnv1}, and a matching {u1v1, u2v2, . . . , unvn}; a Möbius
cubic ladder has the same vertex set and consists of a Hamiltonian cycle
{u1u2, u2u3, . . . , un−1un, unv1, v1v2, v2v3, . . . , vn−1vn, vnu1} and a matching
{u1v1, u2v2, . . . , unvn}. In particular, the planar cubic ladder with n = 4
coincides with the graph of the cube. Note that the planar dual of the cube
is the octahedron, K2,2,2. A trident is a 12-element rank-6 matroid whose
ground set is the union of three disjoint 4-element 3-separating sets of rank
3. We remark that this is quite different from what is defined as a ‘trident’
in Oxley, Semple, and Whittle [13].

Theorem 1.2. Let M be a weakly 4-connected matroid with |E(M)| ≥ 7.
Then M has a weakly 4-connected proper minor N with |E(M)|−|E(N)| ≤ 2
unless M is the cycle matroid of a planar or Möbius cubic ladder, or M is
a trident.

An internally 4-connected matroid is one that is (4, 3)-connected. Gee-
len and Zhou [4, p.539] observed that:“For binary matroids, internal 4-
connectivity is certainly the most natural variant of 4-connectivity and it
would be particularly useful to have an inductive construction for this class.”
In a sequel to this paper, we give such an inductive construction. Most of the
work towards obtaining such a construction appears in the current paper.
Indeed, with a view to this sequel, several results in this paper derive more
structural details than are needed to prove the main results of the current
paper. These results involve quartic ladders. For n ≥ 3, a planar quartic
ladder is obtained from a planar cubic ladder by adding another matching
{u1vn, u2v1, . . . , unvn−1}; a Möbius quartic ladder consists of a Hamilton-
ian cycle {v1v2, v2v3, . . . , v2n−2v2n−1, v2n−1v1} along with the set of edges
{vivi+n−1, vivi+n : 1 ≤ i ≤ n} where all subscripts are interpreted modulo
2n− 1. In particular, for n = 3, the planar and Möbius quartic ladders co-
incide with the octahedron and K5, respectively. A terrahawk is the graph
T that is obtained from the cube by adjoining one new vertex and adding
edges from this vertex to each of the four vertices that bound some fixed



INTERNALLY 4-CONNECTED BINARY MATROIDS 3

Figure 1. A terrahawk.

face of the cube (see Figure 1). Clearly M∗(T ) ∼= M(T ) and T has both
the cube and the octahedron as minors.

Theorem 1.3. Let M be an internally 4-connected binary matroid with
|E(M)| ≥ 7. Then M has a proper internally 4-connected minor N with
|E(M)| − |E(N)| ≤ 3 unless M or its dual is the cycle matroid of a planar
or Möbius quartic ladder, or a terrahawk. In the exceptional cases, either
M has an internally 4-connected minor N with |E(M)|− |E(N)| = 4; or M
is the cycle matroid of an octahedron or a cube.

We observe that, whenM is the cycle matroid of an octahedron or a cube,
M has an M(K4)-minor but has no internally 4-connected proper minor N
with |E(M)| − |E(N)| < 6. Because the proof of Theorem 1.3 is long, we
outline its main steps in Section 3. In the next section, we give some basic
definitions and results that will be needed in this proof.

Although our concern here is for a chain theorem, we should note sig-
nificant related work involving splitter theorems. The aim of the latter
results is to remove a small set of elements while retaining not only the
connectivity but also a copy of some fixed minor. For 3-connected matroids,
Seymour [15] generalized the Wheels-and-Whirls Theorem by proving that
if N is a 3-connected minor of a 3-connected matroid M such that if N is a
wheel or a whirl, it is the largest wheel or whirl minor of M , then there is a
sequence M0,M1, . . . ,Mk of 3-connected matroids such that M0 = M and
Mk

∼= N , while each Mi+1 is a minor of Mi with |E(Mi) − E(Mi+1)| = 1.
Johnson and Thomas [7] considered the problem of trying to find a splitter
theorem for internally 4-connected graphs. There are immediate difficulties
with this since, for example, the cubic planar ladder with 2n vertices is a
minor of the quartic planar ladder with 2n vertices. Both these graphs are
internally 4-connected, but there is no internally 4-connected graph that lies
strictly between them in the minor order. Hence, even for graphic matroids,
we can be forced to remove arbitrarily many elements to recover internal
4-connectivity while maintaining a copy of a specified minor. By controlling
the presence of ladders and double wheels, Johnson and Thomas [7] were
able to prove a theorem of this type for internally 4-connected graphs. In
their result, each intermediate graph is obtained from its predecessor by
removing, via deletion or contraction, at most two edges, and each such in-
termediate graph is (4, 4)-connected satisfying some additional constraints.
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Geelen and Zhou [3, 5] proved two analogues of this theorem for internally
4-connected binary matroids, the second strengthening the first.

The specialization of our main theorem to graphs is also new and we
end this section by stating this corollary. For n ≥ 2, a cubic planar bi-
wheel is a planar graph with vertex set {v1, v2, . . . , v2n, u, w} and edge set
{v1v2, v2, v3, . . . , v2nv1} ∪ {uv2i−1, wv2i : 1 ≤ i ≤ n}. Its dual is a quartic
planar ladder.

Corollary 1.4. Let G be an internally 4-connected graph with |E(G)| ≥ 7.
Then G has a proper internally 4-connected minor H with |E(G)|−|E(H)| ≤
3 unless G is K5, a terrahawk, a planar or Möbius quartic ladder, or a
cubic planar biwheel. In the exceptional cases, either G has an internally
4-connected minor H with |E(G)| − |E(H)| = 4; or G is an octahedron or a
cube.

2. Preliminaries

The matroid terminology used here will follow Oxley [10] except that the
simplification and cosimplification of a matroid M will be denoted by si(M)
and co(M), respectively. A quad in a matroid is a 4-element set that is both
a circuit and a cocircuit. The property that a circuit and a cocircuit in
a matroid cannot have exactly one common element will be referred to as
orthogonality.

In a matroid M , a k-separating set X, or a k-separating partition (X,E−
X), or a k-separation (X,E−X) is exact if λM (X) = k− 1. A k-separation
(X,E −X) is minimal if |X| = k or |E −X| = k. It is well known (see, for
example, [10, Corollary 8.1.11]) that if M is k-connected having (X,E−X)
as a k-separation with |X| = k, then X is a circuit or a cocircuit of M .

A set X in a matroid M is fully closed if it is closed in both M and
M∗, that is, cl(X) = X and cl∗(X) = X. Thus the full closure of X is the
intersection of all fully closed sets that contain X. One way to obtain fcl(X)
is to take cl(X), and then cl∗(cl(X)) and so on until neither the closure nor
coclosure operator adds any new elements of M . The full closure operator
enables one to define a natural equivalence on exactly 3-separating partitions
as follows. Two exactly 3-separating partitions (A1, B1) and (A2, B2) of
a 3-connected matroid M are equivalent, written (A1, B1) ∼= (A2, B2), if
fcl(A1) = fcl(A2) and fcl(B1) = fcl(B2). If fcl(A1) = E(M), then B1 has an
ordering (b1, b2, . . . , bn) such that {b1, b2, . . . , bk} is 3-separating for all k in
{1, 2, . . . , n}. We call such an ordering a sequential ordering of B1 and say
that the set B1 is sequential. Similarly, A1 is sequential if fcl(B1) = E(M).
We say (A1, B1) is sequential if A1 or B1 is sequential. A sequentially 4-
connected matroid is a 3-connected matroid in which every 3-separation is
sequential. A 3-connected matroid M is (4, k, S)-connected if M is both
(4, k)-connected and sequentially 4-connected.

The following elementary lemma [12, Lemma 3.1] will be in repeated use
throughout the paper.
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Lemma 2.1. For a positive integer k, let (A,B) be an exactly k-separating
partition in a matroid M .

(i) For e in E(M), the partition (A ∪ e,B − e) is k-separating if and
only if e ∈ cl(A) or e ∈ cl∗(A).

(ii) For e in B, the partition (A∪ e,B− e) is exactly k-separating if and
only if e is in exactly one of cl(A)∩cl(B−e) and cl∗(A)∩cl∗(B−e).

(iii) The elements of fcl(A)− A can be ordered b1, b2, . . . , bn so that A ∪
{b1, b2, . . . , bi} is k-separating for all i in {1, 2, . . . , n}.

Next we state a well-known lemma that specifies precisely when a single
element z of a matroid M blocks a k-separating partition of M\z from
extending to a k-separating partition of M . This result and its dual underlie
numerous arguments in this paper.

Lemma 2.2. In a matroid M with an element z, let (A,B) be an exactly
k-separating partition of M\z. Then both λM (A ∪ z) and λM (B ∪ z) exceed
k − 1 if and only if z ∈ cl∗(A) ∩ cl∗(B).

A subset S of a 3-connected matroid M is a fan in M if
|S| ≥ 3 and there is an ordering (s1, s2, . . . , sn) of S such that
{s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn} alternate between triangles and
triads beginning with either. We call (s1, s2, . . . , sn) a fan ordering of S. If
n ≥ 4, then s1 and sn, which are the only elements of S that are not in both
a triangle and a triad contained in S, are the ends of the fan.

The following basic property of maximal fans [11, Theorem 1.6] will be
used frequently in the paper without explicit reference.

Lemma 2.3. Let M be a 3-connected matroid other than a wheel or a whirl.
Let F be a maximal fan in M having at least four elements. If x is an end
of F that is in a triangle of M , then M\x is 3-connected.

The connectivity function λM of a matroid M has a number of attractive
properties. For example, λM (X) = λM (E−X). Moreover, the connectivity
functions of M and its dual M∗ are equal. To see this, it suffices to note
the easily verified fact that

λM (X) = r(X) + r∗(X) − |X|.

We shall often abbreviate λM as λ.
One of the most useful features of the connectivity function of M is that

it is submodular, that is, for all X,Y ⊆ E(M),

λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ).

This means that if X and Y are k-separating, and one of X ∩ Y or X ∪ Y
is not (k − 1)-separating, then the other must be k-separating. The next
lemma specializes this fact.

Lemma 2.4. Let M be a 3-connected matroid, and let X and Y be 3-
separating subsets of E(M).
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(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.
(ii) If |E(M)− (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

The following elementary property of internally 4-connected matroids will
be used repeatedly. The first two parts are in [13, Lemma 6.1], while the
third part follows immediately from the first two.

Lemma 2.5. Let M be an internally 4-connected matroid with |E(M)| ≥ 8.

(i) If e is an element of M that is not in a triad, then M\e is 3-
connected.

(ii) Every triad of M avoids every triangle of M .
(iii) If e is an element of M that is in a triangle, then M\e is 3-connected.

Geelen and Whittle [2, Theorem 1.2] proved a chain theorem for sequen-
tially 4-connected matroids. They used the following result [2, Theorem 5.1]
in the proof of that theorem. We shall use it here to prove our main theorem
when M is 4-connected.

Theorem 2.6. Let M be a 4-connected matroid. Then M has an element
x such that M\x or M/x is sequentially 4-connected.

A 3-separation (X,Y ) of a 3-connected matroid M is a (4, 3)-violator if
|X|, |Y | ≥ 4. Evidently M is internally 4-connected if and only if it has no
(4, 3)-violators.

Theorem 2.7. Let M be a binary 4-connected matroid. Then M has an
element x such that M\x or M/x is internally 4-connected.

Proof. By Theorem 2.6 and duality, we may assume that M has an ele-
ment x such that M\x is sequentially 4-connected. If M\x is not inter-
nally 4-connected, then it has a 3-separation (X,Y ) with |X|, |Y | ≥ 4.
Thus |E(M)| ≥ 9. Without loss of generality, X has a sequential order-
ing (x1, x2, . . . , xn). Since M is 4-connected, it has no triangles. Thus
{x1, x2, x3} is a triad of M\x. Since M is binary, {x1, x2, x3, x4} is not a
circuit of M\x and x4 6∈ cl∗M\x({x1, x2, x3}). Thus x4 is in neither the
closure nor the coclosure of {x1, x2, x3} in M\x; a contradiction. �

The next two lemmas establish some basic properties of binary 3-
connected matroids. One well-known such property is that every two distinct
elements in such a matroid are contained in at most one triangle and at most
one triad.

Lemma 2.8. Let z be an element of a binary internally 4-connected matroid
M such that M\z is 3-connected. Let (X,Y ) be a (4, 3)-violator of M\z. If
Y is sequential, then Y contains a 4-element fan of M\z that is the union
of a triangle T and a triad T ∗. Moreover, T is a triangle of M and T ∗ ∪ z
is a cocircuit of M .

Proof. Let (y1, y2, . . . , yn) be a sequential ordering of Y . Then (y1, y2, y3, y4)
is a sequential ordering of a 3-separating set of M\z, so {y1, y2, y3} is a
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triangle or a triad of M\z. Since M is binary, we deduce that {y1, y2, y3, y4}
is a fan of M\z. As M is internally 4-connected, the lemma follows. �

Lemma 2.9. Let (X,Y ) be a 3-separation of a binary 3-connected matroid
M . If X is sequential and |X| ≤ 5, then X is a fan.

Proof. We have r(X) + r∗(X) − |X| = 2, so r(X) + r∗(X) ≤ 7. Hence, by
duality, we may assume that r(X) ≤ 3. Thus M |X is a restriction of the
Fano matroid. Since M is sequential, it follows easily that M is a fan. �

In [4], Geelen and Zhou introduced a structure in a matroid that they
call a rotor. In [5], they introduced a slight variant on this structure that
is defined as follows. Let M be an internally 4-connected matroid. A quasi
rotor with central triangle {a, b, c} is an 8-tuple (a, b, c, d, e, Ta, Tc, Z) such
that the following hold:

(i) E(M) = {a, b, c, d, e} ∪ Ta ∪ Tc ∪ Z;
(ii) a, b, c, d, and e are distinct, and Ta, Tc, and {a, b, c} are disjoint tri-

angles with d in Ta and e in Tc;
(iii) Ta ∪{b, e} and Tc ∪{b, d} are 3-separating in M\a and M\c, respec-

tively; and
(iv) Ta and Tc are 2-separating in M\a, b and M\b, c, respectively.

If, in addition to (i)–(iv), there is a proper non-empty subset A of Z such
that Ta ∪ a ∪A is 3-separating in M\b, then (a, b, c, d, e, Ta, Tc, A, Z −A) is
a rotor with central triangle {a, b, c}.

Because we are concerned here exclusively with internally 4-connected bi-
nary matroids, when quasi rotors arise in such matroids, we can be more
explicit about their structure. The next lemma is obtained by a straightfor-
ward specialization of [4, 3.7.1, 3.7.2]

Lemma 2.10. Let (a, b, c, d, e, Ta, Tc, Z) be a quasi rotor with central trian-
gle {a, b, c} in an internally 4-connected binary matroid M . Then

(i) {b, d, e} is a triangle of M ;
(ii) M has a 4-cocircuit containing {a, b, d} and one element of Ta − d;

and
(iii) M has a 4-cocircuit containing {b, c, e} and one element of Tc − e.

Proof. As a is in a triangle of M , Lemma 2.5(iii) implies that M\a is 3-
connected. Since Ta is 2-separating in M\a, b, the set Ta ∪ b is 3-separating
in M\a; so too is Ta ∪ {b, e}. Thus e ∈ clM\a(Ta ∪ b) or e ∈ cl∗M\a(Ta ∪ b).
But e is in the triangle Tc, so e 6∈ cl∗M\a(Ta ∪ b). Hence e ∈ clM\a(Ta ∪ b).
As M is binary, e 6∈ clM\a(Ta). Thus b ∈ clM\a(Ta ∪ e). By symmetry,
b ∈ clM\a(Tc ∪ d). Thus Ta ∪ {b, e} and Tc ∪ {b, d} both have rank 3. Their
union has rank at least four, so their intersection, {b, d, e}, has rank at most
2. Thus {b, d, e} is a triangle of M .

As M is binary and Ta is 2-separating in M\a, b, there is a 2-cocircuit C∗

of M\a, b contained in Ta. Since M is internally 4-connected, C∗ ∪ {a, b}
is a cocircuit of M . By orthogonality with the triangle {b, d, e} of M , we
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deduce that d ∈ C∗. Hence M has a 4-cocircuit containing {a, b, d} and one
element of Ta − d. By symmetry, M has a 4-cocircuit containing {b, c, e}
and one element of Tc − e. �

The last lemma established that we can associate an additional triangle
and two 4-cocircuits with a quasi rotor. The next lemma shows that, if
we have four triangles and two 4-cocircuits as in a quasi rotor, then we do
indeed have a quasi rotor.

Lemma 2.11. Let M be an internally 4-connected binary matroid.
Let {1, 2, . . . , 9} be a set of distinct elements of M such that
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and {3, 5, 7} are triangles, while {2, 3, 4, 5}
and {5, 6, 7, 8} are cocircuits. Then (4, 5, 6, 3, 7, {1, 2, 3}, {7, 8, 9}, E(M) −
{1, 2, . . . , 9}) is a quasi rotor in M .

Proof. In M\4, the set {1, 2, 3, 5, 7} is a 5-element fan, so it is 3-separating.
By symmetry, {7, 8, 9, 5, 3} is 3-separating in M\6. Also M\4, 5 has
{2, 3} as a cocircuit and so has {1, 2, 3} as a 2-separating set. By
symmetry, M\5, 6 has {7, 8, 9} as a 2-separating set. Thus (4, 5, 6, 3, 7,
{1, 2, 3}, {7, 8, 9}, E(M) − {1, 2, . . . , 9}) is, indeed, a quasi rotor in M . �

In view of the last two lemmas, we shall modify Geelen and Zhou’s termi-
nology slightly. From now on, in an internally 4-connected binary matroid
M , we shall call ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7})
a quasi rotor with central triangle {4, 5, 6} if {1, 2, 3}, {4, 5, 6}, and {7, 8, 9}
are disjoint triangles in M such that {2, 3, 4, 5} and {5, 6, 7, 8} are cocircuits
and {3, 5, 7} is a triangle.

3. Outline

The proof of Theorem 1.3 is long, occupying the rest of the paper. In
this section, we outline the strategy of the proof. Let M be an internally
4-connected binary matroid. In Section 4, we prove the theorem in the
case when |E(M)| ≤ 12. Hence we may assume that |E(M)| ≥ 13. In
Theorem 2.7, we proved that, when M is 4-connected, it has an internally
4-connected minor N with |E(M)| − |E(N)| = 1. Thus we may assume
that M is not 4-connected. Then, by switching to the dual if necessary, we
may assume that M has a triangle T . Theorem 5.1 proves that either T is
the central triangle of a rotor, or T contains an element e such that M\e is
(4, 4, S)-connected.

In Section 6, we prove that, when M contains a quasi rotor, and hence
when M contains a rotor, M has a proper internally 4-connected minor N
with |E(M)| − |E(N)| ≤ 3. This enables us to assume that every triangle
of M contains an element e for which M\e is (4, 4, S)-connected.

In Section 7, we show that if M has a restriction isomorphic to M(K4),
then M has an internally 4-connected proper minor that is obtained by
removing at most two elements from M . This means that, in addition to
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Figure 2. A bowtie.

assuming that M contains no quasi rotor, we may also assume that M has
no M(K4)-restriction.

Next we consider a triangle T in M and an element e of T for which M\e
is (4, 4, S)-connected. Then M\e has a 4-element fan, {a, b, c, d} say, where
{a, b, c} is a triangle and {b, c, d} is a triad. As M has no 4-element fans,
{b, c, d, e} is a cocircuit of M . Moreover, by orthogonality, T − e contains
an element of {b, c, d}. By symmetry, there are two possibilities:

(i) T contains d;
(ii) T contains b.

In the first case, M contains a structure consisting of two disjoint trian-
gles, T1 and T2, and a 4-cocircuit D∗ that is contained in their union. We call
such a structure a bowtie in M . By orthogonality, |T1∩D∗| = 2 = |T2∩D∗|.
Although the matroid M we are dealing with need not be graphic, it will
be convenient to use modified graph diagrams to keep track of some of
the circuits and cocircuits in M . For example, we represent the bowtie
({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as in Figure 2. By convention, the cycles in
the graph correspond to circuits of the matroid while a circled vertex indi-
cates a known cocircuit of M .

In Section 8, we prove some general lemmas that enable us to build up
additional structure surrounding a bowtie or other similar submatroid of M .
In Section 9, we prove the main theorem in case (ii) above by showing that,
in that case, if M has no bowties and has no M(K4)-restriction, then M
has a proper internally 4-connected minor N with |E(M)| − |E(N)| ≤ 2.

The results described above put us into the position where we may as-
sume that M has a bowtie but M contains no quasi rotor and no M(K4)-
restriction. What we attempt to do next is to build up interlocking bowties.
Formally, a string of bowties is a sequence T1,D

∗
1 , T2,D

∗
2 , . . . ,D

∗
n−1, Tn such

that T1, T2, . . . , Tn are pairwise disjoint triangles, each D∗
i is a 4-cocircuit

contained in Ti ∪ Ti+1, and |D∗
j ∩D∗

j+1| = 1 for all j with 1 ≤ j ≤ n− 2.

In Section 10, we prove that if M has a bowtie (T1, T2,D
∗
1) that cannot

be extended to a string T0,D
∗
0 , T1,D

∗
1, T2 of bowties, then M has a proper

internally 4-connected minor N with |E(M)| − |E(N)| ≤ 3 unless M is
isomorphic to the cycle matroid of a terrahawk.

It remains for us to consider the case when M has a bowtie and, from
every bowtie, we can build a string of bowties where we can specify the
direction of this building. In Section 11, we prove, in this case, that M has
a proper internally 4-connected minor N with |E(M)| − |E(N)| ≤ 3 unless
M is the cycle matroid of a planar or Möbius quartic ladder. That result
essentially completes the proof of the main theorem. All that is left to show
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is that, when |E(M)| ≥ 13 and M is the cycle matroid of a terrahawk or a
planar or Möbius quartic ladder, M has an internally 4-connected minor N
with |E(M)| − |E(N)| = 4.

Our initial hope had been to determine all internally 4-connected matroids
M having no internally 4-connected minor N with 1 ≤ |E(M) − E(N)| ≤
2. To solve this problem, we would need to add to the list of exceptional
matroids in Theorem 1.3, the cycle and bond matroids of the planar and
Möbius cubic ladders. In addition, as the next lemma shows, we would need
to add the cycle and bond matroids of the line graphs of these ladders.

Lemma 3.1. Let G be an internally 4-connected cubic graph. Then the line
graph, L(G), of G is internally 4-connected. Moreover, there is no internally
4-connected proper minor N of M(L(G)) with |E(M(L(G))) − E(N)| < 3.

Proof. If G ∼= K4, then L(G) is isomorphic to the octahedron, and the
lemma holds. Thus we may assume that G 6∼= K4. Then |E(G)| ≥ 8 and, as
G is internally 4-connected, it has no triangles. Clearly L(G) is simple and
3-connected. If M(L(G)) is not internally 4-connected, it is straightforward
to show that it has a (4, 3)-violator (X,Y ) such that the subgraphs of L(G)
induced by X and Y are connected and have exactly three common vertices.
The edges of G corresponding to these vertices must form a triad in M(G)
but these edges do not meet at a common vertex of G. This implies that G
is not internally 4-connected; a contradiction. We conclude that M(L(G))
is internally 4-connected.

Corresponding to every edge e of G, there is a bowtie in L(G) induced
by the vertices of L(G) that correspond to e and its incident edges in G.
It follows that every edge f of L(G) is in two bowties that overlap in a
triangle containing f . Now let N be an internally 4-connected proper mi-
nor of M(L(G)). We may assume that N is a minor of M(L(G)))\f for
some edge f , otherwise N is a minor of some M(L(G))/g and the lat-
ter has parallel edges, at least one of which must be deleted to produce
N . Now M(L(G)))\f has two edge-disjoint 4-element fans, and no single-
element deletion or contraction of it will destroy both of these fans. Hence
|E(M(L(G))) − E(N)| ≥ 2. �

The last lemma suggests that determining all the matroids from which
exactly three elements need to be removed to recover internal 4-connectivity
is likely to be complicated.

4. Small Matroids

In this section, we prove the main theorem for matroids with at most
twelve elements.

Theorem 4.1. Let M be an internally 4-connected binary matroid with at
least seven and at most twelve elements. Then M has a proper internally
4-connected minor N with |E(M)| − |E(N)| ≤ 3 unless M or its dual is
the cycle matroid of K5, the cube or the octahedron. If M is isomorphic
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to M(K5) or M∗(K5), then M has an internally 4-connected minor N with
|E(M)|−|E(N)| = 4. If M is the cycle matroid of the cube or the octahedron,
then M has an M(K4)-minor but has no internally 4-connected proper minor
N with |E(M)| − |E(N)| < 6.

The proof of this theorem will use the following result of Qin and Zhou [14,
Theorem 1.3]. We could use results of Zhou [17] to give more details about
the minimum number of elements we need to remove from M to recover
internal 4-connectivity. But, since it is not needed for the proof of the
theorem, we omit these details.

Theorem 4.2. Let M be an internally 4-connected binary matroid with
no minor isomorphic to any of M(K3,3), M∗(K3,3), M(K5), or M∗(K5).
Then either M is isomorphic to the cycle matroid of a planar graph, or M
is isomorphic to F7 or F ∗

7 .

Proof of Theorem 4.1. Suppose first that M has a minor M ′ isomorphic to
one of M(K3,3), M

∗(K3,3), M(K5), or M
∗(K5). If M

′ is a proper minor of
M , then the theorem holds since |E(M)| ≤ 12. If M ′ = M , then M has an
M(K4)-minor and again the theorem holds. We may now assume that M
has no minor isomorphic to any of M(K3,3), M

∗(K3,3), M(K5), or M
∗(K5).

Then, it follows by Theorem 4.2 that we may assume that M is isomorphic
to the cycle matroid of a planar graph G.

Suppose that M has no minor isomorphic to the cycle matroid of the
5-spoked wheel, W5. Then, by a result of Oxley [9, p.297], G is isomorphic
to the octahedron, K2,2,2, or its dual, the cube. The result is easily checked
in these cases. Hence we may assume that M(G) has an M(W5)-minor.
Since G is planar and W5 is isomorphic to its dual, we may, by switching to
the dual if necessary, assume that M(G) has the unique planar 3-connected
single-element extension, M1, of M(W5) as a minor. This extension is not
internally 4-connected, so we may assume that M(G) is a single-element
extension or coextension of M1. But every such extension or coextension
has a 4-element fan and hence is not internally 4-connected. �

5. A Triangle Theorem

In this section, we prove the following result.

Theorem 5.1. Let T be a triangle of an internally 4-connected binary ma-
troid M with |E(M)| ≥ 13. Then either

(i) T is the central triangle of a rotor;
(ii) T contains an element e such that M\e is (4, 4, S)-connected.

Our proof of this theorem will use the following theorem of Geelen and
Zhou [4, Corollary 5.4].

Theorem 5.2. Let T be a triangle of an internally 4-connected binary ma-
troid M with |E(M)| ≥ 13. Then either
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(i) T is the central triangle of a rotor;
(ii) T contains an element e such that M\e is weakly 4-connected.

The proof of Theorem 5.1 has much in common with the proof of [13, The-
orem 6.3]. A 3-separation (X,Y ) of a 3-connected matroid M is a (4, k, S)-
violator if either

(i) |X|, |Y | ≥ k + 1; or
(ii) (X,Y ) is non-sequential.

The next lemma [13, Lemma 2.11] simplifies the task of identifying a
(4, 4, S)-violator.

Lemma 5.3. Let N be a 3-connected matroid. Then (X,Y ) is a (4, 4, S)-
violator if and only if

(i) |X|, |Y | ≥ 5; or
(ii) X and Y are non-sequential and at least one is a quad.

Proof of Theorem 5.1. Let T = {x, y, z} and assume the theorem fails. If
f ∈ T and (F1, F2) is a (4, 4, S)-violator forM\f , then, as neither (F1∪f, F2)
nor (F1, F2∪f) is a 3-separation ofM , we must have that T∩F1 6= ∅ 6= T∩F2.
Let (Xy,Xz), (Yx, Yz), and (Zx, Zy) be (4, 4, S)-violators for M\x, M\y,
and M\z, respectively. Then we may assume that y ∈ Xy and z ∈ Xz, that
x ∈ Yx and z ∈ Yz, and that x ∈ Zx and y ∈ Zy.

Lemma 5.4. If (Xy,Xz) ∼= (Xy∪f,Xz−f) for some element f of Xz, then
(Xy ∪ f,Xz − f) is a (4, 3, S)-violator of M\x.

Proof. If (Xy,Xz) is non-sequential, then so is (Xy ∪ f,Xz − f). If (Xy ,Xz)
is sequential, then |Xy|, |Xz | ≥ 5, so |Xy ∪ f |, |Xz − f | ≥ 4. �

Lemma 5.5. The element y is in cl(Xy − y).

Proof. Suppose y 6∈ cl(Xy − y). Then y is a coloop of (M\x)|Xy , so (Xy −
y,Xz ∪y) ∼= (Xy,Xz). But Xz ∪y contains {y, z}, so (Xy−y,Xz ∪y∪x) is a
3-separation of M . By Lemma 5.4, (Xy − y,Xz ∪ y) is a (4, 3, S)-violator of
M\x so |Xy−y|, |Xz ∪y| ≥ 4. Thus (Xy−y,Xz∪y∪x) is a (4, 3, S)-violator
of M ; a contradiction. �

Lemma 5.6. Xz ∩ Yx 6= ∅

Proof. Suppose that Xz ∩ Yx = ∅. By Lemma 5.5 and symmetry, x ∈
cl(Yx − x). But Yx − x ⊆ Xy, so x ∈ cl(Xy); a contradiction. �

Lemma 5.7. The element x is not in cl(Zy).

Proof. As y ∈ Zy, if x ∈ cl(Zy), then z ∈ cl(Zy); a contradiction. �

Lemma 5.8. Either

(i) |Xz ∩ Yx| ≥ 2; or
(ii) Yx is a 5-element fan of M\y and Xy ∩ Yx is a triangle.
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Proof. Assume that |Xz ∩ Yx| < 2. Then, by Lemma 5.6, Xz ∩ Yx = {e}
for some element e. Suppose first that e ∈ cl(Xz ∩ Yz). Then e ∈ cl(Yz),
so (Yx, Yz) ∼= (Yx − e, Yz ∪ e). By Lemma 5.4, (Yx − e, Yz ∪ e) is a (4, 3, S)-
violator for M\y. Thus |Yx− e| ≥ 4. If x is not a coloop of M |(Yx− e), then
x ∈ cl(Yx − e − x). But Yx − e − x ⊆ Xy, so x ∈ cl(Xy); a contradiction.
Hence x is a coloop of M |(Yx− e). Thus (Yx, Yz) and (Yx− e−x, Yz ∪ e∪x)
are equivalent 3-separations of M\y. Since x ∈ cl∗M\y(Yz ∪ e), we deduce
that x ∈ cl∗M\y(Yx − e − x). Also, as {x, z} ⊆ Yz ∪ e ∪ x, we have that
y ∈ cl(Yz ∪ e ∪ x). Hence (Yx − e − x, Yz ∪ e ∪ x ∪ y) is a 3-separation of
M . Thus |Yx − e − x| ≤ 3. As |Yx − e| ≥ 4, we deduce that |Yx| = 5 and
Yx − e − x is a triangle or a triad of M . Since x ∈ cl∗M\y(Yx − e − x) and
M is binary, Yx − e− x is a triangle. Hence Yx is a 5-element sequential set
in M\y, and Yx − e − x, which equals Xy ∩ Yx, is a triangle. Since M\y is
binary, it follows that Yx is a 5-element fan of M\y. Thus (ii) holds when
e ∈ cl(Xz ∩ Yz).

We may now assume that e 6∈ cl(Xz∩Yz). Then (Xy,Xz) ∼= (Xy∪e,Xz−e)
in M\x and, by Lemma 5.4, |Xz − e| ≥ 4. By Lemma 5.5, x ∈ cl(Yx − x),
so x ∈ cl(Xy ∪ e). Thus (Xy ∪ e ∪ x,Xz − e) is a 3-separation of M . Hence
|Xz − e| ≤ 3; a contradiction. �

Lemma 5.9. The set Xy is not a quad of M\x.

Proof. Suppose that Xy is a quad of M\x. We shall argue that this implies
that M\y or M\z is (4, 4, S)-connected; a contradiction. Using Lemma 5.8
and symmetry, we have, since Xy is not a 5-element fan of M\x, that |Xy ∩
Yz| ≥ 2. Now Xy ∩ Yx 6= ∅ otherwise, since y ∈ cl(Xy − y), we have
that y ∈ cl(Yz); a contradiction. Thus |Xy ∩ Yz| = 2 and |Xz ∩ Yx| ≥ 2.
Now λM\y(Yx) = 2 = λM\x(Xz). By Lemma 5.5, x ∈ cl(Yx − x) and y ∈
cl(Xy−y), so λM\x,y(Yx−x) = 2 = λM\x,y(Xz). Thus λM\x,y((Yx−x)∩Xz)+
λM\x,y((Yx − x)∪Xz) ≤ 4, that is, λM\x,y(Yx ∩Xz) + λM\x,y(Yz ∩Xy) ≤ 4.
But λM\x,y(Yx ∩ Xz) = λM (Yx ∩ Xz) as z ∈ E(M) − {x, y} − (Yx ∩ Xz)
and y ∈ cl(Xy − y), so x ∈ cl(E(M) − {x, y} − (Yx ∩ Xz)). Similarly,
λM\x,y(Yz ∩ Xy) = λM (Yz ∩ Xy). As |Yx ∩ Xz|, |Yz ∩ Xy| ≥ 2, we have
λM (Yx ∩Xz) = 2 = λM (Yz ∩Xy). Thus |Yx ∩Xz| ≤ 3.

Let Xy ∩ Yx = {1} and Xy ∩ Yz = {2, 3}. We shall show next that we
may choose Yx to be a quad of M\y. This is certainly true if |Yx ∩Xz| = 2,
so we assume that |Yx ∩ Xz| = 3. Then Yx ∩Xz is a triangle or a triad of
M , and |Yx| = 5. Suppose that Yx is a sequential 3-separating set in M\y.
Then Yx is a 5-element fan in M\y. If Yx ∩Xz is a triad of M , then there
is a triangle contained in Yx meeting this triad, so M has a 4-element fan;
a contradiction. Hence Yx ∩Xz is a triangle {4, 5, 6} of M . Now x 6∈ cl(Yz)
otherwise y ∈ cl(Yz). Moreover, by Lemma 5.5, x ∈ cl(Yx − x). Thus
we may assume that {4, 5, x} is a triad of M\y and {4, x, 1} is a triangle.
Then M has {4, 5, x, y} as a cocircuit. But {1, 2, 3, y} is a circuit. Thus
we have a contradiction to orthogonality. We may now assume that Yx is
non-sequential. Since |Yx| = 5, it follows that Yx contains a quad Y ′

x of
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M\y. Since z ∈ Yz, we must have that x ∈ Y ′
x. Thus, by replacing (Yx, Yz)

by (Y ′
x, E(M\y) − Y ′

x), we may indeed assume that Yx is a quad of M\y.
Let Xz ∩ Yx = {4, 5}. Then M has {1, 2, 3, x, y}, {1, 4, 5, x, y}, and

{2, 3, 4, 5} as cocircuits, and {1, 2, 3, y} and {1, 4, 5, x} as circuits. By
Lemma 5.6 and symmetry, either |Xy ∩ Zx| ≥ 2, or |Xy ∩ Zx| = 1. In
the latter case, by Lemma 5.8, Zx is a 5-element fan of M\z and Xz ∩ Zx

is a triangle. Similarly, either |Yx ∩ Zy| ≥ 2, or |Yx ∩ Zy| = 1 and Zy is a
5-element fan of M\z.

Suppose that |Xy ∩ Zx| = 1. Then |Zx| = 5. As |E(M)| ≥ 13, we
deduce that |Zy| 6= 5, so |Yx ∩ Zy| ≥ 2. Assume that the element, w, of
Xy ∩ Zx is also in Yx, that is, w = 1. As Xy is a circuit, 1 ∈ cl(Xy − 1), so
1 ∈ cl(Zy). As |Yx∩Zy| ≥ 2 and Yx is a circuit, we deduce that x ∈ cl(Zy); a
contradiction to Lemma 5.7. Hence we may assume that w ∈ Yz, so, without
loss of generality, w = 2. Then 1 ∈ Zy. Consider Zx. It is a 5-element fan
of M\z having Xz ∩ Zx as a triangle avoiding {2, x}. As {1, 4, 5, x} is a
cocircuit of M\y and {1, x} ∩ (Xz ∩ Zx) = ∅, it follows, by orthogonality,
that either {4, 5} ⊆ Xz ∩ Zx, or {4, 5} ∩ (Xz ∩ Zx) = ∅. But |Yx ∩ Zy| ≥ 2,
so {4, 5} ∩ Zy 6= ∅. Hence {4, 5} ⊆ Zy, so {1, 4, 5} ⊆ Zy and x ∈ cl(Zy); a
contradiction to Lemma 5.7.

We may now assume that |Xy ∩ Zx| ≥ 2. Since y 6∈ cl(Zx), we must have
|Xy ∩ Zx| = 2. Hence we need only consider the following cases:

(a) {2, 3} ⊆ Zx and 1 ∈ Zy; and
(b) {1, 3} ⊆ Zx and 2 ∈ Zy.

Consider case (a). If {4, 5} ⊆ Zx, then 1 ∈ cl(Zx), so y ∈ cl(Zx); a
contradiction. If {4, 5} ⊆ Zy, then x ∈ cl(Zy); a contradiction. Thus we
may assume that 4 ∈ Zx and 5 ∈ Zy. As {2, 3, 4, 5} is a cocircuit of M , it
follows that (Zx, Zy) ∼= (Zx ∪ 5, Zy − 5) in M\z. Now 1 ∈ cl(Zx ∪ 5) and so
y ∈ cl(Zx ∪ 5). Thus (Zx ∪ 5 ∪ y ∪ z, Zy − 5− y) is a 3-separating partition
of M . Hence |Zy − 5 − y| ≤ 3. We deduce that Zy is sequential in M\z.
Thus, by Lemma 5.3, |Zy| = 5, so Zy − 5 is a 4-element fan in M\y. This is
a contradiction since {1, y} ⊆ cl(Zx ∪ 5).

Consider case (b). If {4, 5} ⊆ Zy, then (Zx, Zy) ∼= (Zx−3, Zy∪3) in M\z.
But 1 ∈ cl(Zy∪3), so x ∈ cl(Zy∪3). Thus (Zx, Zy) ∼= (Zx−3−x,Zy∪3∪x).
Hence |Zx−3−x| ≤ 3 and Zx is sequential in M\z. Thus |Zx| = 5, so Zx−3
is a 4-element fan in M\x. This is a contradiction since {1, x} ⊆ cl(Zy ∪ 3).
If {4, 5} ⊆ Zx, then Yx∩Zy = ∅; a contradiction. Thus we may assume that
4 ∈ Zx and 5 ∈ Zy. Then |Yx ∩ Zy| = 1, so Zy is a 5-element fan in M\z
and Yz ∩ Zy is a triangle. But {1, 2, 3, x, y} is a cocircuit of M meeting the
circuit Yz ∩ Zy in a single element thereby contradicting orthogonality. �

We are now ready to complete the proof of the theorem. As |E(M)| ≥ 13,
by Theorem 5.2, either T is the central triangle of a rotor, or T contains
an element e such that M\e is weakly 4-connected. Assume that T is not
the central triangle of a rotor. Then, without loss of generality, we may
assume that M\x is weakly 4-connected. But none of M\x,M\y, or M\z
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is (4, 4, S)-connected. By Lemma 5.3, M\x has a quad, which we may take
to be Xy. Thus we have a contradiction to Lemma 5.9. �

6. The Quasi Rotor Case

The purpose of this section is to prove the following result.

Theorem 6.1. Let M be an internally 4-connected binary matroid having
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) as a quasi rotor
and having at least thirteen elements. Then either

(i) M\1, M\9, M\1/2, or M\9/8 is internally 4-connected; or
(ii) M has triangles {6, 8, 10} and {2, 4, 11} such that |{1, 2, . . . , 11}| =

11, and M\3, 4/5 is internally 4-connected.

Lemma 6.3 below will be useful not only in the proof of the last theorem
but also elsewhere in the paper. We shall use the following preliminary
result.

Lemma 6.2. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and ({1, 7, 8}, {4, 5, 6},
{5, 6, 7, 8}) be bowties in an internally 4-connected binary matroid M where
|{1, 2, . . . , 8}| = 8 and |E(M)| ≥ 13. Then M\1 is internally 4-connected.

Proof. Assume that M\1 is not internally 4-connected and let (X1, Y1) be
a (4, 3)-violator of it. By symmetry, we may assume that {2, 7} ⊆ X1 and
{3, 8} ⊆ Y1.

Suppose first that {5, 6} ⊆ X1. Then, as (X1 ∪ 8, Y1 − 8) ∼= (X1, Y1) and
(X1∪8∪1, Y1−8) is a 3-separation ofM , we deduce that Y1 is a 4-element fan
of M\1 having a fan ordering (y1, y2, y3, 8) where {y2, y3, 8} is a triad. Then
{y2, y3, 8, 1} is a cocircuit of M . By orthogonality with the triangle {1, 2, 3},
we deduce that 3 ∈ {y2, y3}, so we may suppose that y3 = 3. The triangle
{y1, y2, y3} and the cocircuit {2, 3, 4, 5} imply that 4 ∈ {y1, y2}. If y2 = 4,
then {4, 3, 8, 1} is a cocircuit of M , which contradicts orthogonality with the
circuit {4, 5, 6}. If y1 = 4, then {4, y2, 3} is a triangle and {y2, 3, 8, 1} is a
cocircuit. Thus, for Z = {1, 2, . . . , 8, y2}, we have λ(Z) = r(Z) + r∗(Z) −
|Z| ≤ 5 + 6 − 9 = 2; a contradiction. We deduce that {5, 6} 6⊆ X1. By
symmetry, {5, 6} 6⊆ Y1.

By symmetry again, we may now assume that 5 ∈ X1 and 6 ∈ Y1. Con-
sider the location of 4. Suppose first that 4 ∈ X1. Then {2, 7, 5, 4} ⊆ X1

and {3, 8, 6} ⊆ Y1. Now (X1 ∪ 6, Y1 − 6) ∼= (X1, Y1) so we have reduced to
the previous case unless Y1 is a 4-element fan of M\1 having (y1, y2, y3, 6)
as a fan ordering where {y2, y3, 6} is a triangle. Consider the exceptional
case. Since 3 ∈ cl∗M\1(X1), we deduce that y1 = 3, so, as 8 ∈ {y2, y3}, we
may take y3 = 8. Then λ({1, 2, . . . , 8, y2}) ≤ 2; a contradiction.

Finally, with 5 ∈ X1 and 6 ∈ Y1, we may assume that 4 ∈ Y1. Then
(X1 − 5, Y1 ∪ 5) ∼= (X1, Y1) and we have reduced to an earlier case unless
X1 is a 4-element fan having an ordering (x1, x2, x3, 5) where {x2, x3, 5} is
a triangle of M . Thus {x1, x2, x3, 1} is a cocircuit of M . The cocircuit
{2, 3, 4, 5} implies that 2 ∈ {x2, x3} so we may take 2 = x3. Now 7 ∈
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{x1, x2}. If x2 = 7, then {7, 2, 5} is a triangle of M and λ({1, 2, . . . , 8}) ≤ 2;
a contradiction. If x1 = 7, then λ({1, 2, . . . , 8, x2}) ≤ 2; a contradiction. We
conclude that the lemma holds. �

Lemma 6.3. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in an internally
4-connected binary matroid M where |E(M)| ≥ 13. Assume that M\1 is
not internally 4-connected. Then one of the following holds:

(i) M\6 is internally 4-connected;
(ii) M has a triangle {7, 8, 9} and a 4-cocircuit C∗ containing {6, 7, 8}

where {7, 8, 9} ∩ {1, 2, . . . , 6} = ∅ and |C∗ ∩ {4, 5}| = 1; or
(iii) M has a triangle {a, d, e} and a cocircuit {a, b, d, 6} where d and e

are in {4, 5} and {2, 3}, respectively, and |{1, 2, 3, 4, 5, 6, a, b}| = 8.

Moreover, M\6 is (4, 4, S)-connected unless {4, 5, 6} is the central triangle
of a quasi rotor whose other triangles are {1, 2, 3}, {x, y, 7}, and {7, 8, 9}
and whose cocircuits are {2, 3, 4, 5} and {y, 6, 7, 8}, for some x in {2, 3} and
some y in {4, 5}.

Proof. Assume that M\6 is not internally 4-connected. Then M\6 has a
(4, 3)-violator (X6, Y6). If possible, choose (X6, Y6) to be a (4, 4, S)-violator.
As M is internally 4-connected, we may assume that 4 ∈ X6 and 5 ∈ Y6.

6.3.1. If X6 or Y6 contains {1, 2, 3}, then (ii) holds, min{|X6|, |Y6|} = 4,
and (X6, Y6) is sequential. Moreover, M\6 is (4, 4, S)-connected.

By symmetry, we may assume that {1, 2, 3} ⊆ X6. Then (X6∪5, Y6−5) ∼=
(X6, Y6) in M\6. Moreover, (X6∪5∪6, Y6−5) is a 3-separation of M . Thus
|Y6 − 5| ≤ 3 so |Y6| = 4. Hence, by Lemma 2.8, Y6 contains a triangle
{7, 8, 9} of M that is disjoint from {1, 2, . . . , 6}, and Y6 contains a triad
T ∗ of M\6 that contains 5. We may assume that T ∗ meets {7, 8, 9} in
{7, 8}. Then T ∗ ∪ 6 = {5, 6, 7, 8} and so (ii) holds in this case. Observe also
that min{|X6|, |Y6|} = 4 and (X6, Y6) is sequential. Thus (X6, Y6) is not a
(4, 4, S)-violator. Hence (6.3.1) holds.

Now let {x, y, z} = {1, 2, 3}. Without loss of generality, assume that
{x, y} ⊆ X6 and z ∈ Y6. Then, as |Y6| ≥ 4, we have that (X6 ∪ z ∪ 5, Y6 −
z−5) ∼= (X6, Y6). Thus (X6∪ z∪5∪6, Y6− z−5) is an exactly 3-separating
partition of M . Hence |Y6 − z − 5| ≤ 3, so |Y6| = 4 or |Y6| = 5.

6.3.2. If |Y6| = 4, then (iii) holds and M\6 is (4, 4, S)-connected.

The set Y6 is a fan of M\6 having an ordering of the form (y1, y2, y3, z)
where {y2, y3, z} is a triangle of M . Now {2, 3, 4, 5} is a cocircuit of M\6,
so |{2, 3, 4, 5} ∩ {y2, y3, z}| ∈ {0, 2}. Thus, by symmetry, either z = 2 and
y3 = 5; or z = 1 and y1 = 5. In the first case, (iii) holds. In the second
case, {y2, y3, 1} is a triangle of M that is disjoint from {2, 3, 4, 5, 6} while
{5, y2, y3, 6} is a cocircuit of M . Hence ({1, y2, y3}, {5, 6, 4}, {y2 , y3, 5, 6})
is a bowtie of M . Thus, by Lemma 6.2, M\1 is internally 4-connected; a
contradiction. We conclude that (6.3.2) holds.
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We may now assume that |Y6| = 5. Then Y6 has a sequential ordering of
the form (9, 8, 7, 5, z). Thus Y6 is a 5-element fan in M\6 having {9, 8, 7} as
a triangle that avoids {1, 2, 3, 4, 5, 6}. We may also assume that {7, 5, z} is
a triangle and {8, 7, 5} is a triad of M\6. Thus {5, 6, 7, 8} is a cocircuit of
M . By orthogonality and symmetry, we may assume that z = 3. Thus M
has {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and {3, 5, 7} as triangles, and {2, 3, 4, 5} and
{5, 6, 7, 8} as cocircuits. We conclude that {4, 5, 6} is the central triangle of
a quasi rotor. �

Lemma 6.4. In an internally 4-connected binary matroid M , let
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) be a quasi rotor.
If |E(M)| ≥ 13, then

(i) the only triangles containing 5 are {3, 5, 7} and {4, 5, 6}; and
(ii) the only cocircuits of M contained in {1, 2, . . . , 9} are

{2, 3, 4, 5}, {5, 6, 7, 8}, and {2, 3, 4, 6, 7, 8}.

Proof. Let Z = {1, 2, . . . , 9}. Then the specified triangles and cocircuits
imply that r(Z) ≤ 5 and r∗(Z) ≤ 7. If Z contains a cocircuit other than
the three specified in (ii), then r∗(Z) ≤ 6, so λ(Z) ≤ 2. On the other hand,
if 5 is in a triangle T different from {4, 5, 6} or {3, 5, 7}, then the cocircuits
{2, 3, 4, 5} and {5, 6, 7, 8} and the other triangles imply that T = {2, 5, 8}.
Thus r(Z) ≤ 4 and again λ(Z) ≤ 2. We conclude that if (i) or (ii) fails,
then λ(Z) ≤ 2. Thus, when |E(M)| ≥ 13, we contradict the fact that M is
internally 4-connected. �

Lemma 6.5. Let M be an internally 4-connected binary matroid having
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) as a quasi rotor
where |E(M)| ≥ 13 and M\9 is not internally 4-connected. Then M has a
4-cocircuit C∗ that meets {1, 2, . . . , 9} in {8, 9}. Moreover, either

(i) M has a triangle that contains {6, 8} and an element of C∗−{8, 9};
or

(ii) M has a triangle that contains C∗ − {8, 9} and an element e that
avoids {2, 3, . . . , 9}.

Proof. Consider the bowtie ({4, 5, 6}, {7, 8, 9}, {5, 6, 7, 8}) inM . By assump-
tion, M\9 is not internally 4-connected. Moreover, M\4 is not internally
4-connected since it has {1, 2, 3, 5} as a fan. Thus, by Lemmas 6.3 and 6.4,
either

(a) M has a triangle {10, 11, 12} disjoint from {4, 5, 6, 7, 8, 9} and M has
a 4-cocircuit containing {9, 10, 11} and exactly one of 7 and 8; or

(b) M has a triangle {a, d, 6} and a cocircuit {a, b, d, 9} where d ∈ {7, 8}
and {a, b} ∩ {4, 5, 6, 7, 8, 9} = ∅.

In each case, we obtain a 4-cocircuit C∗ containing 9 and exactly one
of 7 and 8. Moreover, C∗ avoids {4, 5, 6}. Assume 7 ∈ C∗. Then, in
each case, orthogonality implies that 3 ∈ C∗, and 1 or 2 is in C∗. Thus
C∗ ⊆ {9, 7, 3, 1, 2} and we have a contradiction to Lemma 6.4. Hence 8 ∈ C∗.
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Moreover, C∗ meets {4, 5, 6, 7, 8, 9} in {8, 9}. If C∗ meets {1, 2, 3}, then
|C∗ ∩ {1, 2, 3}| = 2 and again we contradict Lemma 6.4. Thus C∗ meets
{1, 2, . . . , 9} in {8, 9}.

In case (b), the triangle {a, d, 6} contains {6, 8}, so (i) holds. In case
(a), the triangle {10, 11, 12} satisfies the condition in (ii) since the cocircuit
{2, 3, 4, 5} implies that 12 6∈ {2, 3}. �

Lemma 6.6. In an internally 4-connected binary matroid M , let
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) be a quasi rotor.
Then

(i) M\1 is internally 4-connected; or
(ii) M\1/2 is internally 4-connected; or
(iii) M has a triangle containing {2, 4}.

Proof. Assume that neither (i) nor (iii) holds. Then, as {2, 3, 4, 5} is a
cocircuit and Lemma 6.4 implies that M has no triangle containing {2, 5},
it follows by orthogonality that {1, 2, 3} is the only triangle of M containing
2. Moreover, by Lemma 6.5, M has a 4-cocircuit {1, 2, a, b} and a triangle
{a, b, c} where {a, b} avoids {1, 2, . . . , 9}. Since 3 is in a triangle, M\3 is
3-connected. Now (2, 4, 5, 6) is a fan ordering of a fan in M\3. Since 2 is in
no triangles of M\3, it is a fan end in M\3. Thus M\3/2 is 3-connected.
But M/2 has {3, 1} as a circuit, so M/2\3 ∼= M/2\1. Hence M/2\1 is
3-connected. Assume it is not internally 4-connected. Then it has a (4, 3)-
violator (X,Y ).

If X or Y , say X, contains {3, 4, 5}, then (X∪2∪1, Y ) is a 3-separation of
M ; a contradiction. Hence we may assume that neither X nor Y con-
tains {3, 4, 5}. Without loss of generality, |X ∩ {3, 4, 5, 6, 7}| ≥ 3. Sup-
pose first that |X ∩ {3, 4, 5, 6, 7}| = 4. Then |X ∩ {3, 4, 5}| = 2. Let
{y} = Y ∩ {3, 4, 5, 6, 7}. The triangles {3, 5, 7} and {4, 5, 6} imply that
(X,Y ) ∼= (X ∪ y,X − y) in M\1/2. If |Y − y| ≥ 4, then, as X ∪ y contains
{3, 4, 5}, we obtain a contradiction. Hence |Y −y| = 3. Now Y is a 4-element
fan in M\1/2 containing a triangle {y2, y3, y} and a triad {y1, y2, y3}. More-
over, {y1, y2, y3} ∩ {1, 2, . . . , 7} = ∅. Since {2, 3, 4, 5} is a cocircuit of M
and y ∈ {3, 4, 5}, orthogonality implies that {y2, y3, y, 2} is a circuit of M .
The triangle {1, 2, 3} of M avoids {y1, y2, y3}. Thus {y1, y2, y3, 1} is not a
cocircuit of M , so {y1, y2, y3} is a triad of M . Hence {y1, y2, y3} avoids
{1, 2, . . . , 9}. Now M has a cocircuit {1, 2, a, b} and a triangle {a, b, c}
where {a, b} avoids {1, 2, . . . , 9}. Then {a, b, c} avoids {y1, y2, y3}. But
|{1, 2, a, b} ∩ {y2, y3, y, 2}| = 1, so we contradict orthogonality. We deduce
that |X ∩ {3, 4, 5, 6, 7}| = 3.

Now either

(a) X spans {3, 4, 5, 6, 7}; or
(b) X ∩ {3, 4, 5, 6, 7} = {3, 5, 7}; or
(c) X ∩ {3, 4, 5, 6, 7} = {4, 5, 6}.

In case (a), let Y ∩{3, 4, 5, 6, 7} = {y1, y2}. Then (X,Y ) ∼= (X∪y1, Y −y1).
As {y1, y2} ⊆ clM\1/2(X), we must have |Y | ≥ 5. Hence |Y − y1| ≥ 4. As
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|(X ∪ y1) ∩ {3, 4, 5, 6, 7}| = 4, we obtain a contradiction as in the previous
paragraph.

Next consider case (b), that is, {3, 5, 7} ⊆ X and {4, 6} ⊆ Y . Suppose
that 8 ∈ X. The cocircuit {5, 6, 7, 8} implies that (X ∪ 6, Y − 6) ∼= (X,Y ).
Since |(X ∪ 6)∩ {3, 4, 5, 6, 7}| = 4, we again obtain a contradiction as above
unless Y is a 4-element fan in M\1/2. In the exceptional case, Y contains
a triad T ∗ of M\1/2 containing 6. As 6 is not in a triad of M , we have
that T ∗ ∪ 1 is a cocircuit of M meeting the triangle {1, 2, 3} in a single
element; a contradiction. We may now assume that 8 ∈ Y . In that case, we
consider the location of 9 supposing first that it is in X. Then X contains
{3, 5, 7, 9} and Y contains {4, 6, 8}, so (X,Y ) ∼= (X∪8, Y −8). Thus we have
reduced to an earlier case unless Y is a 4-element fan of M\1/2 containing
a triangle {y2, y3, 8} and a triad {y1, y2, y3}. This triad contains {4, 6}, so
{y1, y2, y3, 1} is a cocircuit of M meeting the triangle {1, 2, 3} in a single
element; a contradiction.

We may now assume that 9 ∈ Y , so {3, 5, 7} ⊆ X and {4, 6, 8, 9} ⊆ Y .
Then (X,Y ) ∼= (X−7, Y ∪7). As Y ∪7 spans {3, 4, 5, 6, 7}, we have reduced
to case (a), unless |X − 7| = 3. In the exceptional case, X − 7 is a triad of
M\1/2 containing {3, 5}. Hence (X−7)∪1 is a 4-cocircuit of M containing
{1, 3, 5} but meeting the circuit {4, 5, 6} in a single element; a contradiction.
This completes the elimination of case (b).

Now consider case (c), that is, {4, 5, 6} ⊆ X and {3, 7} ⊆ Y . Then
(X,Y ) ∼= (X − 5, Y ∪ 5), so we have reduced to a case that is symmetric
to case (b) unless X − 5 is a triad of M\1/2. In the exceptional case, as
X − 5 contains {4, 6}, it follows that (X − 5) ∪ 1 is a cocircuit of M . But
this cocircuit meets the triangle {1, 2, 3} in a single element; a contradiction.
We conclude that M\1/2 is internally 4-connected. �

We are now ready to prove that, when M contains a quasi rotor, it has a
proper internally 4-connected minor N such that |E(M)| − |E(N)| ≤ 3.

Proof of Theorem 6.1. Assume that none of M\1, M\9, M\1/2, or M\9/8
is internally 4-connected. By Lemma 6.6 and symmetry, M has triangles
{6, 8, 10} and {2, 4, 11}. Let Z = {1, 2, . . . , 9}. As |E(M)| ≥ 13, we must
have λM (Z) ≥ 3. But r(Z) ≤ 5 and r∗(Z) ≤ 7, so equality must hold in
the last three inequalities. The elements 10 and 11 are distinct, otherwise
{2, 4, 6, 8} is a circuit of M and r(Z) ≤ 4; a contradiction. Similarly, neither
10 nor 11 is in {1, 2, . . . , 9}, otherwise r(Z) ≤ 4.

Next we observe that

6.7.1. M has no 4-cocircuit containing {10, 11}.

Assume the contrary. Then the triangles of M imply, by orthogonality,
that {4, 6, 10, 11} is a cocircuit of M . Let Z ′ = {2, 3, 4, 5, 6, 7, 8, 10, 11}.
Then r∗(Z ′) ≤ 6 and r(Z ′) ≤ 5, so λM (Z ′) ≤ 2; a contradiction since
|E(M)| ≥ 13. Hence (6.7.1) holds.
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Now, since 3 is in a triangle of M , the matroid M\3 is 3-connected. This
matroid has {2, 4, 5, 6} as a fan. Moreover, 6 is a fan end unless M\3 has
a triad containing 6 and either 4 or 5. In the exceptional case, M has a 4-
cocircuit containing {3, 6} and either 4 or 5. By orthogonality, this cocircuit
also contains 1 or 2, so we contradict Lemma 6.4. We deduce that 6 is a fan
end in M\3, so M\3, 6 is 3-connected. The last matroid has {5, 7, 8, 9} as a
fan. Since M has {3, 5, 7} and {4, 5, 6} as its only triangles containing 5, it
follows that 5 is a fan end in M\3, 6, so M\3, 6/5 is 3-connected. As M/5
has 4 and 6 in parallel, we deduce that M\3, 4/5 is 3-connected.

Suppose that M\3, 4/5 is not internally 4-connected. Then this matroid
has a (4, 3)-violator (X,Y ). Thus M/5 has (X ′, Y ′) as a 3-separation where
we adjoin 3 to whichever of X and Y contains 7, and 4 to whichever of X
and Y contains 6. Then r(X ′ ∪ 5) + r(Y ′ ∪ 5) = r(M) + 3. If X ′ or Y ′,
say X ′, contains {6, 7, 8} or {2, 3, 4}, then (X ′ ∪ 5, Y ′) is a 3-separation of
M ; a contradiction. Thus, as M/5 has {3, 7} and {4, 6} as circuits, we may
assume that neither X nor Y contains {6, 7, 8} or {2, 6, 7}.

Suppose next that |X∩{2, 6, 7, 8}| = 3 and let Y ∩{2, 6, 7, 8} = {y}. Then
y ∈ {6, 7} and, as (X,Y ) ∼= (X ∪ y, Y − y), we reduce to the case treated in
the last paragraph unless Y is a 4-element fan in M\3, 4/5 having {y2, y3, y}
as a triad and {y1, y2, y3} as a triangle. If y = 6, then, since Y avoids {2, 8},
we deduce, by orthogonality with the triangles {2, 6, 11} and {6, 8, 10} of
M\3, 4/5, that {y2, y3} = {10, 11}. It follows that M has {4, 6, 10, 11} as
a cocircuit; a contradiction to (6.7.1). Hence y 6= 6, so y = 7. Then
orthogonality with the triangles {1, 2, 7} and {7, 8, 9} of M\3, 4/5 implies
that {y2, y3} = {1, 9}. It follows that {3, 1, 7, 9} is a cocircuit of M ; a
contradiction to Lemma 6.4.

We may now assume that |X ∩ {2, 6, 7, 8}| = 2 = |Y ∩ {2, 6, 7, 8}|. Then,
by symmetry, we may suppose that either

(a) {6, 7} ⊆ X and {2, 8} ⊆ Y ; or
(b) {7, 8} ⊆ X and {2, 6} ⊆ Y .

Consider case (a) and suppose first that 9 ∈ X. Then (X,Y ) ∼=
(X ∪ 8, Y − 8), so we have reduced to an earlier case unless Y is a 4-
element fan of M\3, 4/5 having {y1, y2, y3} as a triad and {y2, y3, 8} as a
triangle. Since this triangle avoids {5, 6, 7}, orthogonality with the cocir-
cuits {5, 6, 7, 8} and {2, 3, 4, 5} of M implies that {y2, y3, 8, 5} is a circuit of
M and 2 ∈ {y2, y3}. As {y1, y2, y3} is a triad of M\3, 4/5, we deduce from
the triangles {1, 2, 7} and {2, 6, 11} of M\3, 4/5 that {y1, y2, y3} = {1, 2, 11}.
The triangles {1, 2, 3} and {2, 4, 11} of M imply that {1, 2, 11} is a triad of
M ; a contradiction.

Still in case (a), we may now assume that 9 ∈ Y and, by symmetry, that
1 ∈ Y . Then (X−7, Y ∪7) ∼= (X,Y ) and we reduce to an earlier case unless
X is a 4-element fan of M\3, 4/5. In the exceptional case, X contains a
triangle {x2, x3, 7} and a triad {x1, x2, x3}. Thus {x2, x3, 7} is a triangle
of M , otherwise {x2, x3, 7, 5} is a circuit of M having a single common
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element with the cocircuit {2, 3, 4, 5}. By orthogonality with the cocircuit
{5, 6, 7, 8} of M , we deduce that 6 ∈ {x2, x3}, so we can take x3 = 6. Then
{x1, x2, 6} is a triad of M\3, 4/5 avoiding {2, 8}. Hence {x1, x2} = {10, 11},
so {4, 6, 10, 11} is a cocircuit of M , contradicting (6.7.1).

Finally, consider case (b). Suppose first that 1 ∈ X. Then X contains
{7, 8, 1} and Y contains {2, 6}, so (X∪2, Y −2) ∼= (X,Y ). Hence we reduce to
an earlier case unless Y is a 4-element fan of M\3, 4/5 containing {y2, y3, 2}
as a triangle and {y1, y2, y3} as a triad. Moreover, 6 ∈ {y1, y2, y3}. Then the
triangles {2, 6, 11} and {6, 8, 10} of M\3, 4/5 imply that {6, 10, 11} is a co-
circuit of M\3, 4. Hence {4, 6, 10, 11} is a cocircuit of M ; a contradiction to
(6.7.1). We may now assume that 1 ∈ Y . Then (X,Y ) ∼= (X− 7, Y ∪ 7) and
we have reduced to an earlier case unless M\3, 4/5 has X − 7 as a triad.
In the exceptional case, X − 7 contains 8 but avoids 6 and 7. Thus X − 7
contains 9 and 10. Hence {8, 9, 10} is a triad of M\3, 4/5. By orthogonality,
this set is also a triad of M ; a contradiction. We are now able to conclude
that M\3, 4/5 is internally 4-connected. �

7. An M(K4)-restriction

In this section, we shall prove the main result when M has an M(K4)-
restriction but has no quasi rotor.

Theorem 7.1. Let M be a binary internally 4-connected matroid having
at least 13 elements. Assume that M contains no quasi rotor and that M
has a restriction isomorphic to M(K4). Then M has a proper internally
4-connected minor M ′ with |E(M)| − |E(M ′)| ≤ 2.

Proof. We may assume that no single-element deletion of M is internally
4-connected. Let N be a restriction of M that is isomorphic to M(K4).

Lemma 7.2. No cocircuit of M is contained in E(N).

Proof. We know rM (E(N)) = 3. If E(N) contains a cocircuit of M , then
r∗M (E(N)) ≤ 5, so λM (E(N)) ≤ 2. Hence |E(M)| ≤ 9; a contradiction. �

We now label N so that its triangles are {1, 2, 3}, {1, 5, 6}, {2, 4, 6}, and
{3, 4, 5}. By Theorem 5.1, since no triangle of M is the central triangle of a
quasi rotor, each triangle contains an element e such that M\e is (4, 4, S)-
connected.

Lemma 7.3. If M\1 is (4, 4, S)-connected, then M has a 4-cocircuit that
meets E(N) in either {1, 3, 5} or {1, 2, 6}. Moreover, M\1 has at most two
4-element fans, including at most one containing {3, 4, 5} and at most one
containing {2, 4, 6}.

Proof. Clearly M\1 has a 4-element fan {e1, e2, e3, e4} where {e1, e2, e3}
is a triangle and {e2, e3, e4} is a triad. As M is internally 4-connected,
{e2, e3, e4, 1} is a cocircuit of M . By orthogonality with the circuits {1, 5, 6}
and {1, 2, 3} of M , it follows that {e2, e3, e4} contains exactly one of 5 and
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6 and contains exactly one of 2 and 3. If {e2, e3, e4} contains {2, 5}, then
it must contain 4. Hence M has {1, 2, 4, 5} as a cocircuit contradicting
Lemma 7.2. By symmetry, we deduce that {e2, e3, e4} contains either {3, 5}
or {2, 6}. In each case, 4 ∈ cl({e1, e2, e3, e4}). As M\1 is (4, 4, S)-connected,
it follows that 4 ∈ {e1, e2, e3, e4}. Thus {e1, e2, e3} is {3, 4, 5} or {2, 4, 6}, so
e1 = 4, and the lemma follows without difficulty. �

Lemma 7.4. Either

(i) N has a triangle T such that M\e is (4, 4, S)-connected for each e in
T and T can be labelled {a, b, c} so that M has 4-element cocircuits
that contain {a, c} and {b, c}; or

(ii) N has a matching {a, b} and another element c such that M\e is
(4, 4, S)-connected for each e in {a, b} and M has 4-element cocir-
cuits that contain {a, c} and {b, c}.

Proof. Let S be the set of elements s of E(N) for which M\s is (4, 4, S)-
connected. Since every triangle of N contains a member of S, either

(a) S includes the edges of a triangle of N ; or
(b) S includes the edges of a matching in (the graph associated with)

N .

Then, by repeatedly applying Lemma 7.3, we deduce that (i) or (ii) holds.
�

By the last lemma and symmetry, we may assume that:

7.5. Either

(A) M\1 and M\4 are (4, 4, S)-connected; or
(B) M\1, M\2, and M\3 are (4, 4, S)-connected.

Moreover, M has 4-cocircuits {1, 3, 5, 7} and {2, 3, 4, 8} where
|{1, 2, . . . , 8}| = 8.

Lemma 7.6. Let (X1, Y1) be a (4, 3)-violator of M\1. Then, after a possible
permutation of X1 and Y1,

(i) {2, 6} ⊆ X1 and {3, 5} ⊆ Y1; and
(ii) either X1 is a 4-element fan of M\1 containing {2, 4, 6} and M has

a 4-cocircuit containing {1, 2, 6}; or Y1 is a 4-element fan of M\1
containing {3, 4, 5} and M has a 4-cocircuit containing {1, 3, 5}.

Proof. As M has {1, 3, 5, 7} as a cocircuit, M\1 has {4, 3, 5, 7} as a fan
which, since M\1 is (4, 4, S)-connected, must be maximal. Hence M has
no triangle containing {3, 7} or {5, 7}. Thus, by orthogonality with the
cocircuit {1, 3, 5, 7}, the only triangles of M containing 3 or 5 are {1, 2, 3},
{3, 4, 5}, and {1, 5, 6}. As M\1 is (4, 4, S)-connected, it has X1 or Y1 as a
4-element fan. Without loss of generality, 2 ∈ X1 and 3 ∈ Y1. Moreover,
either

(a) 5 ∈ X1 and 6 ∈ Y1; or
(b) 6 ∈ X1 and 5 ∈ Y1.
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Suppose that (a) occurs. ThenM\1 has a 4-element fan F such that either
(I) {2, 5} ⊆ F and {1, 3, 6}∩F = ∅; or (II) {3, 6} ⊆ F and {1, 2, 5}∩F = ∅.
These cases are symmetric, so we may assume that (I) holds. Now F contains
a triangle of M . But this triangle cannot contain 5. Thus F has (f1, f2, f3, 5)
as a fan ordering where {f2, f3, 5} is a triad of M\1. The triangle {3, 4, 5}
of M\1 implies that 4 ∈ {f2, f3}. Since 2 ∈ {f1, f2, f3}, we deduce that the
triangle {f1, f2, f3} must be {2, 4, 6} as M has a unique triangle containing
{2, 4}. Since 6 /∈ F , this is a contradiction. We conclude that (a) cannot
occur, so (b) holds; that is, {2, 6} ⊆ X1 and {3, 5} ⊆ Y1.

If Y1 is a 4-element fan of M\1, then, as {4, 7} ⊆ fclM\1(Y1) and M\1 is
(4, 4, S)-connected, it follows that Y1 = {3, 4, 5, 7}. Hence, (ii) holds when
Y1 is a 4-element fan.

If X1 is a 4-element fan of M\1, then, since 4 ∈ cl(X1) and M\1 is
(4, 4, S)-connected, {2, 4, 6} ⊆ X1. The triad T ∗ of M\1 that is contained
in X1 includes 2 or 6. In the latter case, T ∗ contains {2, 6} or {4, 6}. But
if T ∗ contains 4, it also contains 3 or 5; a contradiction. Thus T ∗ contains
{2, 6}, so T ∗ = {2, 6, 9} for some element 9. Hence {1, 2, 6, 9} is a cocircuit
of M and (ii) holds. �

Recall, by (7.5), that M has {1, 3, 5, 7} and {2, 3, 4, 8} as cocircuits.

Lemma 7.7. One of the following holds:

(i) M\5 is (4, 4, S)-connected;
(ii) M has a triangle {y1, y2, 6} and a cocircuit {y2, 6, 4, 5} where

{y1, y2} ∩ {1, 2, . . . 8} = ∅, and M\4 is not (4, 4, S)-connected; or
(iii) M has a triangle containing {1, 7} and avoiding {2, 3, 4, 5, 6, 8} and

M\3 is not (4, 4, S)-connected.

Proof. Suppose that M\5 is not (4, 4, S)-connected and let (X5, Y5) be a
(4, 4, S)-violator for M\5. Then, without loss of generality, 1 ∈ X5 and
6 ∈ Y5. Moreover, either

(a) 3 ∈ X5 and 4 ∈ Y5; or
(b) 4 ∈ X5 and 3 ∈ Y5.

Assume that (b) holds. If 7 ∈ X5, then (X5 ∪ 3, Y5 − 3) ∼= (X5, Y5) and,
as (X5, Y5) is a (4, 4, S)-violator, |Y5− 3| ≥ 4. Hence (X5 ∪ 3∪ 5, Y5 − 3) is a
3-separator of M , a contradiction. Thus we may assume that 7 ∈ Y5. Then
(X5−1, Y5∪1) ∼= (X5, Y5) and again we get the contradiction that M is not
internally 4-connected. Hence (b) does not hold.

We may now assume that {1, 3} ⊆ X5 and {4, 6} ⊆ Y5. Consider the
location of the elements 2 and 8. Suppose {2, 8} ⊆ Y5. Then (X5 − 3, Y5 ∪
3) ∼= (X5, Y5). But 5 ∈ cl(Y5 ∪ 3), so M is not internally 4-connected; a
contradiction. Similarly, if {2, 8} ⊆ X5, then (X5 ∪ 4, Y5 − 4) ∼= (X5, Y5)
and, as 5 ∈ cl(X5 ∪ 4), we again get a contradiction.

Now suppose that 8 ∈ X5 and 2 ∈ Y5. Then (X5, Y5) ∼= (X5 ∪ 2, Y5− 2) ∼=
(X5∪2∪4, Y5−2−4). AsM is internally 4-connected, it follows that Y5−2 is a
4-element fan of M\5 having (y1, y2, y3, 4) as a fan ordering where {y2, y3, 4}
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is a triad. By orthogonality, y3 = 6. Hence {y2, 6, 4, 5} is a cocircuit of M
and {y1, y2, 6} is a triangle of M . Thus M\4 has {y1, y2, 6, 5, 1} as a fan, so
M\4 is not (4, 4, S)-connected, and (ii) holds.

Finally, suppose that 2 ∈ X5 and 8 ∈ Y5. Then (X5, Y5) ∼= (X5 − 2, Y5 ∪
2) ∼= (X5 − 2− 3, Y5 ∪ 2∪ 3), so, by Lemma 5.3, X5 − 2 is a 4-element fan of
M\5 having (x1, x2, x3, 3) as an ordering where {x2, x3, 3} is a triad. Hence
x3 = 1 and {x2, 1, 3, 5} is a cocircuit of M , so x2 = 7. Thus M has {x1, 1, 7}
as a triangle avoiding {2, 3, 4, 5, 6} and hence avoiding 8. Therefore M\3 has
{x1, 1, 7, 5, 6} as a fan so M\3 is not (4, 4, S)-connected, and (iii) holds. �

In (7.5), we distinguished two cases. The next two lemmas complete the
proof of Theorem 7.1 in case (A).

Lemma 7.8. Suppose M\1 and M\4 are (4, 4, S)-connected. Then either

(i) M\1, 4 is internally 4-connected; or
(ii) M has a triangle {6, y1, y2} and a cocircuit {1, 3, 4, 6, y2} where

{y1, y2} avoids {1, 2, . . . , 8}.

Proof. Consider M\1, 4. As M\1 has {3, 4, 5, 7} as a maximal fan and this
fan has 4 as an end, M\1, 4 is 3-connected. Assume it is not internally
4-connected. Then it has a (4, 3)-violator (X14, Y14).

7.8.1. Neither X14 nor Y14 contains {3, 5} or {2, 6}.

Assume X14 contains {3, 5} or {2, 6}. Then (X14∪4, Y14) is a 3-separation
of M\1 with |X14 ∪ 4| ≥ 5 and |Y14| ≥ 4. But neither X14 ∪ 4 nor Y14 is a
4-element fan containing {2, 4, 6} or {3, 4, 5}. This contradicts Lemma 7.6.
Thus (7.8.1) holds.

By (7.8.1) and symmetry, we have

(a) {2, 3} ⊆ X14 and {5, 6} ⊆ Y14; or
(b) {6, 3} ⊆ X14 and {5, 2} ⊆ Y14.

In the former case, (X14 ∪ 1, Y14) and (X14, Y14 ∪ 1) are 3-separations of
M\4. Since |X14| or |Y14| is at least 5, we contradict the fact that M\4 is
(4, 4, S)-connected. We deduce that {6, 3} ⊆ X14 and {5, 2} ⊆ Y14, that is,
(b) holds. Next, we consider the location of 7 and 8.

Suppose 7 ∈ X14 and 8 ∈ Y14. Then the cocircuits {3, 5, 7} and {2, 3, 8}
imply that (X14, Y14) ∼= ((X14∪5)−3, (Y14−5)∪3). But {5, 6} ⊆ (X14∪5)−3
and {2, 3} ⊆ (Y14 − 5) ∪ 3, so we have returned to case (a) and thereby get
a contradiction.

If 7 ∈ Y14 and 8 ∈ X14, then (X14, Y14) ∼= ((X14 ∪ 2) − 3, (Y14 − 2) ∪ 3).
But {2, 6} ⊆ (X14 ∪ 2)− 3, so we get a contradiction by (7.8.1).

Suppose {7, 8} ⊆ X14. Then both 2 and 5 are in cl∗M\1,4(X14). Hence

|Y14| ≥ 5. Thus (X14 ∪ 5 ∪ 1 ∪ 4, Y14 − 5) is a 3-separation of M with
|Y14 − 5| ≥ 4; a contradiction.

Finally, suppose {7, 8} ⊆ Y14. Then (X14 − 3, Y14 ∪ 3) ∼= (X14, Y14). As
{1, 4} ⊆ cl(Y14 ∪ 3), we deduce that |X14| = 4 otherwise M is not internally
4-connected. Thus X14 is a 4-element fan of M\1, 4 containing a triangle
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{y1, y2, y3} avoiding {1, 2, 3, 4, 5, 7, 8} and a triad {y2, y3, 3}. The circuit
{2, 3, 5, 6} of M\1, 4 implies that 6 ∈ {y2, y3}, say 6 = y3. Since {1, 2, . . . , 6}
does not contain a cocircuit of M , the element y2 is not in {1, 2, . . . , 6}. The
circuits {3, 4, 5} and {1, 6, 5} imply that {y2, 6, 3, 4, 1} is a cocircuit of M .
Thus (ii) holds. �

Lemma 7.9. Suppose M\1 and M\4 are (4, 4, S)-connected. Then M\1, 4
or M\2, 5 is internally 4-connected.

Proof. Assume that M\1, 4 is not internally 4-connected. Then, by
Lemma 7.8, M has a triangle {6, y1, y2} and a cocircuit {1, 3, 4, 6, y2} where
{y1, y2} avoids {1, 2, . . . , 8}. Suppose (iii) of Lemma 7.7 holds. Then
M has a triangle {1, 7, a} that avoids {2, 3, 4, 5, 6, 8}. By orthogonal-
ity with the cocircuit {1, 3, 4, 6, y2}, we deduce that a = y2. Consider
Z = {1, 2, 3, 4, 5, 6, 7, y2}. Then r(Z) ≤ 4 and r∗(Z) ≤ 6, so λ(Z) ≤ 2;
a contradiction to the fact that |E(M)| ≥ 13. Thus (iii) of Lemma 7.7 does
not hold. Moreover, (ii) of Lemma 7.7 does not hold as M\4 is (4, 4, S)-
connected. Hence (i) of Lemma 7.7 holds, that is, M\5 is (4, 4, S)-connected.

Now, by applying the permutation (7, 8)(2, 5)(1, 4) of {1, 2, . . . , 8} to
Lemma 7.7, we deduce that either M\2 is (4, 4, S)-connected, or M has a
triangle containing {4, 8} and avoiding {1, 2, 3, 5, 6, 7}. In the latter case, the
triangle {4, 8, b} and the cocircuit {1, 3, 4, 6, y2} imply that y2 = b. Then, for
Z = {1, 2, 3, 4, 5, 6, 8, y2}, we have λ(Z) ≤ 2; a contradiction. We conclude
that M\2 is (4, 4, S)-connected.

Since both M\2 and M\5 are (4, 4, S)-connected, by applying the per-
mutation (1, 2)(4, 5)(7, 8) to {1, 2, . . . , 8}, we deduce from Lemma 7.8 that
M\2, 5 is internally 4-connected, or M has a cocircuit {2, 3, 5, 6, z2} and
a triangle {6, z1, z2} where {z1, z2} ∩ {1, 2, . . . , 8} = ∅. We may assume
that M\2, 5 is not internally 4-connected. Then the symmetric difference
of the cocircuits {1, 3, 5, 7}, {2, 3, 4, 8}, {1, 3, 4, 6, y2}, and {2, 3, 5, 6, z2} is
the disjoint union of a set of cocircuits of M . This symmetric difference is
{7, 8} ∪ ({y2} △ {z2}), so it equals {7, 8, y2, z2}, a cocircuit of M . By or-
thogonality with the triangle {6, z1, z2}, we deduce that z1 = y2. Similarly,
z2 = y1.

Now M\y1 and M\y2 have {2, 3, 5, 6} and {1, 3, 4, 6}, respectively, as
quads. Thus neither M\y1 nor M\y2 is (4, 4, S)-connected. Hence, as
{y1, y2, 6} is not the central triangle of a quasi rotor, M\6 is (4, 4, S)-
connected. Thus M has a 4-cocircuit containing {4, 5, 6} or {1, 2, 6}. Under
the permutation (7, 8)(2, 5)(1, 4) of {1, 2, . . . , 8}, these two possibilities are
symmetric. Thus we let this cocircuit be {4, 5, 6, x}. Then the symmetric
difference of {1, 3, 4, 6, y2}, {4, 5, 6, x}, and {1, 3, 5, 7} is {y2} △ {x} △ {7}
and so equals {y2, x, 7}, a triad of M . But {6, y1, y2} is a triangle of M , so
y2 is in a 4-element fan of M ; a contradiction. �

The next lemma completes the proof of Theorem 7.1 in case (B).
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Lemma 7.10. Suppose that each of M\1, M\2, and M\3 is (4, 4, S)-
connected. Then M\1, 4 or M\2, 5 or M\6, 3 is internally 4-connected.

Proof. By Lemma 7.9 and symmetry, if M\5 is (4, 4, S)-connected, the
lemma holds. Hence we may assume that M\5 is not (4, 4, S)-connected.
Then, by Lemma 7.7, M has a triangle {y1, y2, 6} and a cocircuit {y2, 6, 4, 5}
where {y1, y2} ∩ {1, 2, . . . , 8} = ∅.

Now M\3 has {7, 1, 5, 6} as a maximal fan with 6 as an end, so M\3, 6
is 3-connected. Moreover, by Lemma 7.3, M\3 has exactly two 4-element
fans, {1, 5, 6, 7} and {2, 4, 6, 8}. SupposeM\3, 6 is not internally 4-connected
and let (X36, Y36) be a (4, 3)-violator of it. If {1, 5} or {2, 4} or {y1, y2} is
contained in X36, then (X36 ∪ 6, Y36) is a 3-separation of M\3 but neither
X36 ∪ 6 nor Y36 is {1, 5, 6, 7} or {2, 4, 6, 8}. Hence we may assume that
exactly one of y1 and y2 is in each of X36 and Y36, and either

(i) {1, 4} ⊆ X36 and {2, 5} ⊆ Y36; or
(ii) {1, 2} ⊆ X36 and {4, 5} ⊆ Y36.

Assume (i) holds and suppose y2 ∈ Y36. Then (X36 − 4, Y36 ∪ 4) ∼=
(X36, Y36) so (X36 − 4, Y36 ∪ 4 ∪ 6) is a 3-separation of M\3 with {1, y1} ⊆
X36 − 4. Then neither X36 − 4 nor Y36 ∪ 4 ∪ 6 is {1, 5, 6, 7} or {2, 4, 6, 8} so
|X36 − 4| = 3. Then X36 is a 4-element fan of M\3, 6 having a fan ordering
of the form (g1, g2, g3, 4) where {g1, g2, g3} is a triangle of M containing 1.
This triangle is not {1, 5, 6} or {1, 2, 3} so it contains {1, 7}. Then M\3 has
a 5-element fan; a contradiction.

Now suppose (i) holds but y2 ∈ X36. Then (X36 ∪ 5, Y36− 5) ∼= (X36, Y36)
and {2, y1} ⊆ Y36 − 5. Then, as in the last paragraph, we get that M has a
triangle containing 2 that is different from {2, 3, 1} and {2, 4, 6}. Hence this
triangle contains {2, 8} and so M\3 is not (4, 4, S)-connected.

We may now assume that (ii) holds. Suppose 7 ∈ Y36. Then (X36 −
1, Y36 ∪ 1) ∼= (X36, Y36). Again M has a triangle containing 2 and y1 or y2,
so this triangle contains 8 and M\3 is not (4, 4, S)-connected. If 7 ∈ X36,
then (X36 ∪ 5, Y36 − 5) ∼= (X36, Y36). This time, M has a triangle containing
4 and y1 or y2. This triangle must also contain 8 and again M\3 is not
(4, 4, S)-connected. �

In (7.5), we noted that (A) or (B) may be assumed to occur. The last two
lemmas establish that Theorem 7.1 holds in these two cases, so the theorem
is proved. �

8. Building Structure

In this section, we establish a number of lemmas that are basic tools for
building structure in a binary internally 4-connected matroid. The first of
these begins with the structure shown in Figure 3.

Lemma 8.1. In a binary internally 4-connected matroid M , assume that
{1, 2, 3} and {3, 4, 5} are triangles, and {2, 3, 4, 6} and {1, 3, 5, 7} are cocir-
cuits. Suppose |E(M)| ≥ 11. Then



INTERNALLY 4-CONNECTED BINARY MATROIDS 27

1

2
3
4

5

6

7

Figure 3. The initial configuration in Lemma 8.1.

(i) M has a triangle containing 6 and exactly one of 2 and 4, but avoid-
ing 3; or

(ii) M/6 is internally 4-connected; or
(iii) M has a circuit {y2, y3, 4, 6} and a triad {y1, y2, y3} where

y1, y2, y3, 1, 2, . . . , 7 are distinct except that, possibly, y1 = 7; or
(iv) M has a circuit {3, 6, 7, y2} and a triad {7, y2, y1} where

|{1, 2, . . . , 7, y1, y2}| = 9; or
(v) M has a circuit {x2, x3, 2, 6} and a triad {x1, x2, x3} where

x1, x2, x3, 1, 2, . . . , 7 are distinct except that, possibly, x1 = 7.

Proof. First observe that, since M has no 4-element fans, none of 1, 2, 3, 4, 5
is in a triad. Suppose that M has a triangle T containing 6. Then |{2, 3, 4}∩
T | = 1. If 3 ∈ T , then 7 ∈ T , and λ({1, 2, . . . , 7}) ≤ 2; a contradiction since
|E(M)| ≥ 11. Thus T contains 2 or 4, and, sinceM is binary, |T∩{2, 4}| = 1.

Assume next that M has no triangles containing 6. Now M\2 has
{3, 4, 5, 6} as a fan, and 6 is an end of this fan because 6 is in no trian-
gles. Thus M\2/6 is 3-connected. Hence so is M/6. Assume that M/6
is not internally 4-connected letting (X,Y ) be a (4, 3)-violator of it. Then
neither X nor Y contains {2, 3, 4}. Thus we have the following three cases
to consider:

(a) {2, 3} ⊆ X and 4 ∈ Y ;
(b) {2, 4} ⊆ X and 3 ∈ Y ;
(c) {3, 4} ⊆ X and 2 ∈ Y .

Consider case (a). Suppose first that 5 ∈ X. Then (X,Y ) ∼= (X∪4, Y −4).
Thus we may assume that Y is a 4-element fan of M/6 containing a triangle
{y2, y3, 4} and a triad {y1, y2, y3}. Then {y2, y3, 4, 6} is a circuit of M and
{y1, y2, y3} is a triad. We know that {y1, y2, y3} ∩ {1, 2, 3, 4, 5} = ∅, and
6 6∈ {y1, y2, y3}. By orthogonality, 7 6∈ {y2, y3}, but possibly y1 = 7. Thus
(iii) holds.

We may now assume, in case (a), that 5 ∈ Y . If 1 ∈ Y , then (X ∪ 1, Y −
1) ∼= (X,Y ). If |Y − 1| = 3, then M/6, and hence M , has a triad meeting
{4, 5}; a contradiction. Thus |Y − 1| ≥ 4, so we may assume that 1 ∈ X.
Suppose 7 ∈ X. Then (X,Y ) ∼= (X ∪ 5, Y − 5) and we have reduced to
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Figure 4. The initial configuration in Lemma 8.2.

a previous case unless |Y − 5| = 3. In the exceptional case, by the dual
of Lemma 2.8, the element 5 is in a triad of M ; a contradiction. We may
now assume that 7 ∈ Y . Then {2, 3, 1} ⊆ X and {4, 5, 7} ⊆ Y . Hence
(X,Y ) ∼= (X − 3, Y ∪ 3) ∼= (X − 3− 1, Y ∪ 3 ∪ 1). As 1 ∈ cl∗M/6(Y ∪ 3), it
follows by Lemmas 2.9 and 2.8 that |X − 3| ≥ 6 otherwise 1 is in a triad of
M . Hence (X,Y ) ∼= (X − 3 − 1 − 2, Y ∪ 3 ∪ 1 ∪ 2); a contradiction. This
completes the proof of case (a).

Consider case (b), that is, {2, 4} ⊆ X and 3 ∈ Y . If 1 or 5 is in X, then
(X,Y ) ∼= (X∪3, Y −3), so Y is a 4-element fan of M/6 containing a triangle
{y2, y3, 3} and a triad {y1, y2, y3}. Now {y1, y2, y3} avoids {1, 2, 3, 4, 5} and
{y2, y3, 3, 6} is a circuit of M . Hence, by orthogonality, 7 ∈ {y2, y3}, so we
may take y3 = 7. Then (iv) holds. We may now assume that Y contains
{1, 5}. Hence {2, 4} ⊆ X and {1, 3, 5} ⊆ Y . Then {2, 4} ⊆ clM/6(Y ). Hence
|X| ≥ 5 and, as (X,Y ) ∼= (X−2, Y ∪2), we have reduced to a case symmetric
to case (a).

Finally, assume that case (c) occurs, that is, {3, 4} ⊆ X and 2 ∈ Y . Then,
by symmetry with case (a), we deduce that (v) holds. �

In the next lemma, we begin with the structure in Figure 4.

Lemma 8.2. In a binary internally 4-connected matroid M , assume that
({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) is a bowtie, and that {2, 5, 7} is a triangle and
{1, 2, 7, 8} and {5, 6, 7, 9} are cocircuits. Assume that M has no M(K4)-
restriction and |E(M)| ≥ 13. Then |{1, 2, . . . , 9}| = 9. Moreover,

(i) M has a triangle containing {1, 8}; or
(ii) M/8 is internally 4-connected; or
(iii) M has a circuit {y2, 9, 7, 8} and a triad {y1, y2, 9} where

|{1, 2, . . . , 9, y1, y2}| = 11; or
(iv) M has a circuit {x2, x3, 1, 8} and a triad {x1, x2, x3} where

x1, x2, x3, 1, 2, . . . , 9 are distinct except that, possibly, x1 = 9.

Proof. Clearly |{1, 2, . . . , 6}| = 6. Moreover, {7, 8, 9} ∩ {1, 2, . . . , 6} =
∅ by orthogonality. Thus |{1, 2, . . . , 9}| = 9 otherwise 8 = 9 and
λ({1, 2, . . . , 8}) ≤ 2; a contradiction. We now apply the preceding lemma
to the triangles {1, 2, 3} and {2, 5, 7} and the cocircuits {1, 2, 7, 8} and
{2, 3, 4, 5}. If (i) of that lemma holds, then M has a triangle T contain-
ing 8. If T contains 7, then it contains 5, 6, or 9, so λ({1, 2, . . . , 9}) ≤ 2;
a contradiction. Hence T must contain 1, so (i) holds. If (ii) of the last
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lemma holds, then (ii) of this lemma holds. If (iii) of the last lemma
holds, then M has a circuit {y2, y3, 7, 8} and a triad {y1, y2, y3}, where
y1, y2, y3, 1, 2, 3, 4, 5, 7, 8 are distinct since y1 6= 4 as M has no 4-element
fans. The triangle {4, 5, 6} implies that 6 6∈ {y1, y2, y3}. The cocircuit
{5, 6, 7, 9} and circuit {y2, y3, 7, 8} imply that 9 ∈ {y2, y3}. Thus we may
take 9 = y3. Then |{y1, y2, 1, 2, . . . , 9}| = 11 and (iii) holds.

If part (iv) of the last lemma holds, then 4 is in a triad of M , which is not
so. If part (v) of the last lemma holds, then M has a circuit {x2, x3, 1, 8}
and a triad {x1, x2, x3} where x1, x2, x3, 1, 2, 3, 4, 5, 7, 8 are distinct as x1 6= 4.
Also 6 6∈ {x1, x2, x3}. The cocircuit {5, 6, 7, 9} and circuit {x2, x3, 1, 8} imply
that 9 6∈ {x2, x3} but possibly 9 = x1. Hence (iv) holds. �

Lemma 8.3. Assume that |E(M)| ≥ 13. Let M have, as triangles, {a, b, c},
{1, 2, 3}, {4, 5, 6}, and {7, 8, 9} and, as cocircuits, {1, 2, a, b}, {4, 5, b, c}, and
{7, 8, a, c}. Assume that a, b, c, 1, 2, 3, 4, 5, 6, 7, 8, 9 are distinct except that,
possibly, 3 = 9 or 3 = 6 or 6 = 9. Then either

(i) {a, b, c} is the central triangle of a quasi rotor; or
(ii) M/a, b, c is internally 4-connected.

Proof. Assume that {a, b, c} is not the central triangle of a quasi rotor. The
triangle {a, b, c} has an element e such that M\e is (4, 4, S)-connected. By
symmetry, we may assume that e is a.

8.3.1. M/a, b, c is 3-connected.

Assume that M/a, b, c is not 3-connected. Now M\a is (4, 4, S)-connected
having {b, 1, 2, 3} as a maximal fan. Since b is a fan end, M\a/b is 3-
connected. NowM\a/b has {c, 7, 8, 9} as a fan andM\a/b/c = M/a, b, c. As
the last matroid is not 3-connected, it follows, by Tutte’s Triangle Lemma,
that c is in a triangle T of M\a/b. It follows by orthogonality with the
cocircuit {c, 7, 8} that T contains 7 or 8. By symmetry, we may assume that
T = {c, 7, x} for some element x.

Suppose that {c, 7, x} is a circuit of M . Then x ∈ {4, 5} by orthogonality
with the cocircuit {4, 5, b, c}. This implies that 6 = 9 otherwise {a, b, c} is
the central triangle of a quasi rotor. Let X = {a, b, c, 4, 5, 6, 7, 8}. Then
X contains at least two cocircuits of M , so r∗(X) ≤ 6. Moreover, X is
spanned by {a, 5, 6, 7}, so r(X) ≤ 4. Hence λ(X) ≤ 2, so |E(M)| ≤ 11; a
contradiction.

We may now assume that {c, 7, x, b} is a circuit of M . Then {c, 7, x, b}△
{a, b, c}, which equals {a, 7, x}, is a circuit of M . Using symmetry with the
argument in the last paragraph, we conclude that (8.3.1) holds.

Suppose M/a, b, c has a (4, 3)-violator (X,Y ). Then rM/a,b,c(X) +
rM/a,b,c(Y ) = r(M/a, b, c) + 2. Thus

8.3.2. r(X ∪ {a, b, c}) + r(Y ∪ {a, b, c}) − 2 = r(M) + 2.

Next we show that:

8.3.3. Neither X nor Y contains {1, 2, 4, 5}, {1, 2, 7, 8}, or {4, 5, 7, 8}.
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Assume X contains {1, 2, 4, 5}. Then each of {a, b} and {b, c} is a cocir-
cuit of M\{1, 2, 4, 5}, so {a, b, c} is a component of M\{1, 2, 4, 5}. Hence
r(Y ∪ {a, b, c}) = r(Y ) + 2 and (8.3.2) implies the contradiction that
(X ∪ {a, b, c}, Y ) is a 3-separation of M . Thus (8.3.3) holds.

Now, by symmetry, we may assume that X contains at least two elements
of each of {1, 2, 3} and {4, 5, 6}. Suppose first that {1, 2} ⊆ X. Then, since
X does not contain {1, 2, 4, 5}, we may assume that {5, 6} ⊆ X and 4 ∈ Y .
We get the contradiction that (X ∪ 4, Y − 4) is a (4, 3)-violator of M/a, b, c
unless |Y | = 4. In the exceptional case, Y is a fan of M/a, b, c with ordering
(y1, y2, y3, 4) where {y2, y3, 4} is a triangle. Then {y1, y2, y3} is a triad of
M so it avoids {a, b, c, 1, 2, . . . , 9} since M is internally 4-connected. Now
M/a, b, c = M\b/a, c. ThusM has a circuit C that contains {y2, y3, 4} and is
contained in {y2, y3, 4, a, c}. By orthogonality with the cocircuits {b, c, 4, 5}
and {a, c, 7, 8}, we deduce that C = {y2, y3, 4, a, c}. This contradicts orthog-
onality with the cocircuit {1, 2, a, b}.

We conclude that {1, 2} * X. By symmetry, this eliminates the case in
which {1, 3} ⊆ X and {4, 5} ⊆ X. It remains to consider the case when
{1, 3} ⊆ X and {4, 6} ⊆ X. Then {2, 5} ⊆ Y . Now (X ∪ 2, Y − 2) ∼= (X,Y ).
If |Y − 2| ≥ 4, then we have reduced to the case in which X contains {1, 2}.
If |Y − 2| = 3, then Y − 2 is a triad of M/a, b, c and hence of M . Since this
triad contains 5, we have a contradiction. �

Lemma 8.4. Let M be an internally 4-connected binary matroid having
{1, 2, 3}, {a, b, c}, and {4, 5, 6} as circuits, and {2, 3, a, b} and {4, 5, b, c} as
cocircuits where |{a, b, c, 1, 2, 3, 4, 5, 6}| = 9. Then

(i) M/a, b, c is internally 4-connected; or
(ii) {a, b, c} is the central triangle of a quasi rotor; or
(iii) M/b\a is internally 4-connected; or
(iv) M has a cocircuit {a, c, z1, z2} and a triangle containing exactly one

of z1 and z2 and either
(a) a and exactly one of 2 and 3; or
(b) c and exactly one of 4 and 5.
Moreover, {z1, z2} avoids {1, 2, 3, 4, 5, 6}.

Proof. Assume that neither (i) nor (ii) holds. By Lemma 2.5, as a is not in
a triad of M , the matroid M\a is 3-connected. This matroid has {b, 1, 2, 3}
as a fan with b as an end. Thus M\a/b is 3-connected unless b is in a
triangle other than {a, b, c}. In the exceptional case, if T is such a triangle,
then T = {b, x, y} where x ∈ {2, 3} and y ∈ {4, 5}. Thus {a, b, c} is the
central triangle of a quasi rotor, which is not so. We conclude that M\a/b
is 3-connected.

Now assume that M\a/b is not internally 4-connected. Then M\a/b has
a (4, 3)-violator (X,Y ). Without loss of generality, c ∈ X. As {a, c} is a
circuit of M/b, it follows that M/b\c has ((X−c)∪a, Y ) as a (4, 3)-violator.
Thus we have symmetry in M between (1, {2, 3}, c) and (6, {4, 5}, a).
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Now X or Y contains at least two elements of {1, 2, 3}, and X or Y
contains at least two elements of {4, 5, 6}. Hence, by symmetry, we need
only consider the following cases:

(a) {2, 3} ⊆ X;
(b) {1, 2} ⊆ X and 3 ∈ Y ;
(c) {2, 3, 4, 5} ⊆ Y ;
(d) {2, 3, 5, 6} ⊆ Y and 4 ∈ X; and
(e) {1, 2, 5, 6} ⊆ Y and {3, 4} ⊆ X.

In case (a), as c ∈ X and {a, c} is a circuit of M/b, we have (X ∪ a, Y ) as
a 3-separation of M/b. But {2, 3, a, b} is a cocircuit of M , so (X ∪ a ∪ b, Y )
is a 3-separation of M ; a contradiction.

In case (b), (X ∪ 3, Y − 3) ∼= (X,Y ) so we reduce to case (a) unless Y − 3
is a triad of M\a/b. Consider the exceptional case. Then 4 or 5, say 4, is in
Y otherwise we have reduced to a case symmetric to (a). Then Y − 3 is not
a cocircuit of M . Thus M has a cocircuit {4, a, y1, y2}. But {y1, y2} avoids
{b, c} so we contradict orthogonality.

Next consider case (c), that is, {2, 3, 4, 5} ⊆ Y . As {2, 3, 4, 5, c} is a
cocircuit of M/b\a, we have (X − c, Y ∪ c) ∼= (X,Y ). Thus |X − c| =
3, otherwise we have reduced to a case symmetric to case (a). Therefore
X is a fan of M/b\a having an ordering of the form (x1, x2, x3, c) where
{x2, x3, c} is a triad. Thus, by orthogonality, {x2, x3, c, a} is a cocircuit of
M . As {2, 3, a, b} is a cocircuit of M that avoids {x1, x2, x3}, we deduce
that {x1, x2, x3} is a circuit of M . Then x1, x2, x3, 1, 2, 3, a, b, c, 4, 5, and 6
are distinct, or x1 ∈ {1, 6}. In each case, it follows, by Lemma 8.3, that
M/a, b, c is internally 4-connected.

Now consider case (d), that is, {2, 3, 5, 6} ⊆ Y and 4 ∈ X. Then
(X − 4, Y ∪ 4) ∼= (X,Y ) and we have reduced to case (c) unless X is a 4-
element fan in M/b\a having a fan ordering (x1, x2, x3, 4) where {x1, x2, x3}
is a triad. Consider the exceptional case. As c ∈ {x1, x2, x3}, it follows
that {x1, x2, x3, a} is a cocircuit of M containing {a, c} but avoiding {4, 5}.
Moreover, orthogonality between the cocircuit {2, 3, 4, 5, c} and the trian-
gle {x2, x3, 4} of M/b\a implies that c ∈ {x2, x3} so we may take c = x3.
The cocircuit {b, c, 4, 5} of M implies that {x2, c, 4} is a circuit of M . We
conclude that (iv) of the lemma holds.

Finally, consider case (e), that is, {1, 2, 5, 6} ⊆ Y and {3, 4} ⊆ X. As
{3, 4} ⊆ clM/b\a(Y ) and |X| ≥ 4, it follows that |X| ≥ 5. Thus |X − 3| ≥ 4.
As (X − 3, Y ∪ 3) ∼= (X,Y ), we have reduced to case (d). �

9. The Non-bowtie Case

The purpose of this section is to prove the following result.
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Theorem 9.1. Let M be an internally 4-connected binary matroid having
at least 13 elements. Suppose that M has no bowties and has no M(K4)-
restriction. Assume that M has triangles {1, 2, 3} and {3, 4, 5} and a cocir-
cuit {2, 3, 4, 6}, and that M\4 is (4, 4, S)-connected. Then M\1, M\3, or
M\1, 4 is internally 4-connected.

To prove this theorem, we shall establish a sequence of lemmas. All are
subject to the same hypotheses as the theorem.

Lemma 9.2. Suppose M\1 is not internally 4-connected. Then

(i) every (4, 3)-violator (X1, Y1) of M\1 has {2, 6} ⊆ U1 and {3, 4} ⊆ V1

where {U1, V1} = {X1, Y1}; and
(ii) if (X1, Y1) is a (4, 3)-violator of M\1 and {2, 6} ⊆ X1 and {3, 4} ⊆

Y1, then either 5 ∈ Y1; or 5 ∈ X1 and |X1| ≥ 5 and (X1 − 5, Y1 ∪ 5)
is a 3-separation of M\1.

Proof. Let (X1, Y1) be a (4, 3)-violator of M\1. Then we may assume that
2 ∈ X1 and 3 ∈ Y1. We shall consider the location of 4 and 6.

Suppose {4, 6} ⊆ X1. Then (X1 ∪ 3, Y1 − 3) ∼= (X1, Y1). Thus Y1 is a 4-
element fan otherwise we obtain a contradiction. Hence Y1 contains a triad
{y2, y3, 3} of M\1. Thus {y2, y3, 3, 1} is a cocircuit of M . By orthogonality
with the triangle {3, 4, 5}, we deduce that 5 ∈ {y2, y3} so we may take y3 = 5.
Then ({y1, y2, 5}, {1, 2, 3}, {y2 , 5, 3, 1}) is a bowtie of M ; a contradiction.

Next, suppose that {4, 6} ⊆ Y1. Since (X1 − 2, Y1 ∪ 2) ∼= (X1, Y1),
we obtain a contradiction unless X1 is a 4-element fan of M\1 contain-
ing a triangle {x1, x2, x3} and a triad {x2, x3, 2}. In the exceptional case,
({x1, x2, x3}, {1, 2, 3}, {x2 , x3, 2, 1}) is a bowtie of M ; a contradiction.

Now suppose that 4 ∈ X1 and 6 ∈ Y1. Assume first that 5 ∈ X1. Then
3 ∈ cl(X1) so (X1, Y1) ∼= (X1 ∪ 3, Y1 − 3) and we must have that Y1 is a 4-
element fan of M\1 containing a triangle {y2, y3, 3} and a triad {y1, y2, y3}.
Hence {y1, y2, y3, 1} is a cocircuit of M that meets the triangle {1, 2, 3} in a
single element; a contradiction. We conclude that 5 ∈ Y1. Then (X1, Y1) ∼=
(X1 − 4, Y1 ∪ 4). Thus we have reduced to an earlier case unless X1 is a 4-
element fan having an ordering of the form (x1, x2, x3, 4) where {x2, x3, 4} is
a triangle of M . Consider the exceptional case. As {2, 3, 4, 6} is a cocircuit
of M , we deduce that 2 ∈ {x2, x3}. Thus M has a triangle containing {2, 4},
so M has an M(K4)-restriction using {1, 2, 3, 4, 5} and one other element; a
contradiction. Since we have eliminated every other possibility, we conclude
that 6 ∈ X1 and 4 ∈ Y1; that is, (i) holds.

For (ii), suppose (X1, Y1) is a (4, 3)-violator of M\1 with {2, 6, 5} ⊆ X1

and {3, 4} ⊆ Y1. Then (X1 − 5, Y1 ∪ 5) ∼= (X1, Y1). Suppose |X1| = 4. Then
X1 has a fan ordering of the form (x1, x2, x3, 5) where {x2, x3, 5} is a circuit
of M avoiding {3, 4} and meeting {2, 6}. By orthogonality with the cocircuit
{2, 3, 4, 6}, we deduce that {x2, x3} = {2, 6}. Then {2, 6, 5}△{3, 4, 5}, which
equals {2, 3, 4, 6}, is a circuit of M , and so is a quad of M ; a contradiction.
We conclude that (ii) holds. �
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Lemma 9.3. Suppose that M\3 is not internally 4-connected. Then

(i) every (4, 3)-violator (X3, Y3) of M\3 has {1, 5} ⊆ U3 and {2, 4} ⊆ V3

where {U3, V3} = {X3, Y3}; and
(ii) if (X3, Y3) is a (4, 3)-violator of M\3 and {1, 5} ⊆ X3 and {2, 4} ⊆

Y3, then either 6 ∈ Y3; or 6 ∈ X3 and |X3| ≥ 5 and (X3 − 6, Y3 ∪ 6)
is a 3-separation of M\3.

Proof. Let (X3, Y3) be a (4, 3)-violator of M\3. Then, without loss of gen-
erality, we may assume that 1 ∈ X3 and 2 ∈ Y3. Moreover, each of X3 and
Y3 contains one of 4 and 5. Suppose first that 4 ∈ X3 and 5 ∈ Y3. Con-
sider the location of 6. Suppose 6 ∈ X3. Since (X3, Y3) ∼= (X3 ∪ 2, Y3 − 2),
it follows that Y3 is a 4-element fan in M\3 having (y1, y2, y3, 2) as a fan
ordering where {y2, y3, 2} is a triad. Then {y2, y3, 2, 3} is a cocircuit of M
which, by orthogonality, must contain 5. Hence we may assume y3 = 5.
Also, {y1, y2, 5} is a triangle of M , so ({y1, y2, 5}, {1, 2, 3}, {y2 , 5, 2, 3}) is a
bowtie; a contradiction. We conclude that 6 /∈ X3. A symmetric argument
establishes that 6 /∈ Y3. Therefore we must have that 4 ∈ Y3 and 5 ∈ X3;
that is, (i) holds.

Now let (X3, Y3) be a (4, 3)-violator of M\3 and suppose that {1, 5, 6} ⊆
X3 and {2, 4} ⊆ Y3. Then (X3 − 6, Y3 ∪ 6) ∼= (X3, Y3). If |X3| = 4, then X3

is a fan having an ordering of the form (x1, x2, x3, 6) where {x1, x2, x3} is a
triangle containing {1, 5}. We conclude that M has an M(K4)-restriction;
a contradiction. Hence (ii) holds. �

Lemma 9.4. If neither M\1 nor M\3 is internally 4-connected, then either

(i) M\1, 3 is 3-connected; or
(ii) M\1, 3 has a unique 2-separation ({5, a}, E(M\1, 3) − {5, a}) and

{1, 3, 5, a} is a cocircuit of M .

Proof. Let (J,K) be a 2-separation of M\1, 3. Assume that |J | ≥ |K| ≥ 3.
As |E(M)| ≥ 13, we have |J | ≥ 4. Now (J,K ∪ 1) and (J,K ∪ 3) are 3-
separations of M\3 and M\1, respectively. Then, by Lemmas 9.2 and 9.3,
{1, 5} ⊆ K∪1 and {2, 4} ⊆ J , while {2, 6} ⊆ J and {3, 4} ⊆ K∪3. Hence 4 ∈
J ∩K; a contradiction. We deduce that (J,K) is a minimal 2-separation of
M\1, 3. ThusM\1, 3 has a 2-cocircuit, {a, b}. Hence {1, 3, a, b} is a cocircuit
of M . By orthogonality, we may assume that b ∈ {4, 5}. If b = 4, then M\4
has {1, 3, a} as a triad, so M\4 has {a, 1, 3, 2, 6} as a fan, contradicting the
fact that M\4 is (4, 4, S)-connected. Thus b = 5 and M has {1, 3, 5, a} as a
cocircuit. �

Lemma 9.5. Assume that neither M\1 nor M\3 is internally 4-connected.
Then M has a 4-element cocircuit that contains {1, 3, 5} and some element
7 not in {1, 2, . . . , 6}.

Proof. Suppose M has a 4-cocircuit containing {1, 3, 5}. Then the fourth
element of this cocircuit is not in {1, 2, . . . , 6} otherwise r({1, 2, . . . , 6}) +
r∗({1, 2, . . . , 6})−|{1, 2, . . . , 6}| ≤ 4+4−6 = 2, that is, λM ({1, 2, . . . , 6}) ≤ 2.



34 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

This is a contradiction since |E(M)| ≥ 13. We may now assume that M
has no 4-cocircuit containing {1, 3, 5}. Then, by the last lemma, M\1, 3 is
3-connected. Let (X1, Y1) and (X3, Y3) be (4, 3)-violators of M\1 and M\3,
respectively. Then, by Lemmas 9.2 and 9.3, we may assume that {2, 6} ⊆ X1

and {3, 4, 5} ⊆ Y1, while {1, 5} ⊆ X3 and {2, 4, 6} ⊆ Y3. Observe that, as
M\1, 3 is 3-connected, λM\1(X1) = 2 = λM\1,3(X1). Moreover, λM\3(X3) =
2 ≥ λM\3,1(X3 − 1) ≥ 2. Thus r(X3 − 1) = r(X3), that is,

9.5.1. 1 ∈ cl(X3 − 1).

We show next that

9.5.2. |X3 ∩ Y1| ≥ 2.

Assume that |X3 ∩Y1| < 2. Then X3∩Y1 = {5}. Thus |X1∩X3| ≥ 2 and
|Y1∩Y3| ≥ 2. As M\1, 3 is 3-connected, we deduce that λM\1,3(X1∩X3) ≥ 2
and λM\1,3(Y1 ∩ Y3) ≥ 2. But λM\1,3(X1) = 2 = λM\1,3(X3 − 1). Thus, by
the submodularity of λ and its invariance under taking complements, we
have λM\1,3(X1 ∩ X3) = 2 = λM\1,3(Y1 ∩ Y3). Now 1 ∈ cl(X3 − 1), so
3 ∈ cl((X3 − 1) ∪ X1). Hence λM (Y1 ∩ Y3) = 2. Thus |Y1 ∩ Y3| ≤ 3. If
|Y1 ∩ Y3| = 3, then Y1 ∩ Y3 is a triangle or a triad of M . As 4 ∈ Y1 ∩ Y3

and 4 is in a triangle of M , the set Y1 ∩ Y3 is not a triad. Hence it is a
triangle having a single element in common with the cocircuit {2, 3, 4, 6};
a contradiction. We deduce that |Y1 ∩ Y3| ≤ 2. Hence |Y1| = 4. As Y1

contains a triangle of M\1, there is also a triad of M\1 contained in Y1.
Thus M has a 4-cocircuit C∗ contained in {1, 3, 4, 5, y} and containing 1
where Y1 ∩ Y3 = {4, y}. By orthogonality, C∗ contains 3 and exactly one of
4 and 5. If C∗ contains 4, then M\4 is not (4, 4, S)-connected. Hence C∗ is
{1, 3, 5, y}; a contradiction. We conclude that (9.5.2) holds.

As M\1, 3 is 3-connected, (9.5.2) implies that λM\1,3(X3 ∩ Y1) ≥ 2. As
|X1 ∩ Y3| ≥ 2, we also have λM\1,3(X1 ∩ Y3) ≥ 2. Since λM\1,3(X1) =
2 = λM\1,3(Y3), it follows by submodularity that λM\1,3(X3 ∩ Y1) = 2 =
λM\1,3(X1 ∩ Y3). Thus, by (9.5.1), λM (X1 ∩ Y3) = 2, so |X1 ∩ Y3| ≤ 3. If
|X1 ∩ Y3| = 3, then X1 ∩ Y3 is a triangle or a triad of M containing {2, 6}.
But 2 is not in a triad of M , and {2, 6} is not in a triangle otherwise M\4
is not (4, 4, S)-connected. Thus |X1 ∩ Y3| < 3 so |X1 ∩ Y3| = 2. Hence
|X1 ∩ X3| ≥ 2 and |Y1 ∩ Y3| ≥ 2. It follows, by the submodularity of λ,
that λM\1,3(Y1 ∩ Y3) = 2 = λM\1,3(X1 ∩X3). Thus λM (Y1 ∩ Y3) = 2 since
1 ∈ cl(X3 − 1) by (9.5.1), and 3 ∈ cl((X3 − 1) ∪X1). Hence |Y1 ∩ Y3| ≤ 3.
If |Y1 ∩ Y3| = 3, then Y1 ∩ Y3 is a triad of M containing 4, or Y1 ∩ Y3 is
a triangle of M meeting the cocircuit {2, 3, 4, 6} in a single element. Both
possibilities lead to contradictions. Thus |Y1 ∩ Y3| ≤ 2. Hence |Y1 ∩ Y3| = 2,
so |Y3| = 4. Thus Y3 = {2, 4, 6, y} where Y1 ∩ Y3 = {4, y}. Now M\3 has
{2, 4, 6} as a cocircuit, so Y3 contains a triangle T containing y and two
elements of {2, 4, 6}. But M\4 is (4, 4, S)-connected and M has no M(K4)-
restriction, so T contains neither {2, 6} nor {2, 4}. Thus T contains {4, 6}.
Hence (X1, Y1) ∼= (X1 − 6, Y1 ∪ 6) in M\1. This gives a contradiction unless
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X1 is a 4-element fan containing a triangle T ′ of M where 6 ∈ T ′. It follows
by orthogonality with the cocircuit {2, 3, 4, 6} that T ′ contains 2. Thus M
has a triangle containing {2, 6}, a contradiction. �

Lemma 9.6. The only triangles of M meeting {1, 2, . . . , 7} are {1, 2, 3} and
{3, 4, 5}.

Proof. The cocircuits {1, 3, 5, 7} and {2, 3, 4, 6} mean that a triangle T meet-
ing {1, 2, . . . , 7} must contain at least two elements of this set. In this proof,
we will not use the fact that M\4 is (4, 4, S)-connected, so we have symme-
try between the cocircuits {1, 3, 5, 7} and {2, 3, 4, 6}. Hence we may assume
that T meets {1, 3, 5, 7}. If T contains 3 and is not {1, 3, 5} or {3, 4, 5},
then, by orthogonality, it meets {2, 4, 6} and {1, 5, 7}, so it is contained in
{1, 2, . . . , 7}. Thus r({1, 2, . . . , 7}) ≤ 4, so λ({1, 2, . . . , 7}) ≤ 2; a contradic-
tion since |E(M)| ≥ 13. Hence we may assume that 3 /∈ T . If T contains
{1, 5}, then M has an M(K4)-restriction. If T contains {1, 7}, then M has
(T, {3, 4, 5}, {1, 3, 5, 7}) as a bowtie. Similarly, if T contains {5, 7}, then M
has a bowtie. �

Lemma 9.7. Let (X4, Y4) be a (4, 3)-violator of M\4. Then X4 or Y4 is
{1, 2, 3, 6}.

Proof. Since M\4 is (4, 4, S)-connected, either X4 or Y4, say X4, is a 4-
element fan of M\4. Thus X4 contains a triad T ∗ and a triangle T of M\4.
Hence T ∗∪4 is a cocircuit of M . By orthogonality with the triangle {3, 4, 5},
we deduce that exactly one of 3 and 5 is in T ∗.

Suppose that 3 ∈ T ∗. Then, by orthogonality, 1 or 2 is in T ∗. If 1 ∈ T ∗,
then T ∗ ∪ 4 = {1, 3, 4, y} for some element y. Thus M\4 has a 5-element
fan, {1, 2, 3, 6, y}; a contradiction to the fact that M\4 is (4, 4, S)-connected.
Hence we may assume that 2 ∈ T ∗. Then T ∗ ∪ 4 contains {2, 3, 4}, so
T ∗ ∪ 4 = {2, 3, 4, 6} and therefore X4 = {1, 2, 3, 6}.

We may now assume that 3 /∈ T ∗, so 5 ∈ T ∗. By Lemma 9.6, if the
triangle T in X4 is not {3, 4, 5} or {1, 2, 3}, then it avoids {1, 2, . . . , 7}.
Thus (T, {3, 4, 5}, T ∗ ∪4) is a bowtie in M ; a contradiction. Clearly X4 does
not contain {3, 4, 5}. Hence we may assume that X4 contains {1, 2, 3}. Thus
X4 = {1, 2, 3, 5} so X4 ∪ 4 contains a cocircuit of M containing 4. Hence
r∗({1, 2, . . . , 6}) ≤ 4, so λ({1, 2, . . . , 6}) ≤ 2; a contradiction. �

Lemma 9.8. If M\1 is not internally 4-connected, then M\1, 4 is internally
4-connected unless M has a triangle {a, b, c} and a cocircuit {1, 3, 4, a, b}
where {a, b, c} is disjoint from {1, 2, . . . , 7}.

Proof. As M\4 is (4, 4, S)-connected having {1, 2, 3, 6} as a maximal fan
with 1 as an end, M\4\1 is 3-connected. Suppose that M\1, 4 is not inter-
nally 4-connected and let (X14, Y14) be a (4, 3)-violator of it. If X14 contains
{2, 3}, then (X14∪1, Y14) is a 3-separation of M\4 contradicting Lemma 9.7.
Hence we may assume that 2 ∈ X14 and 3 ∈ Y14. If Y14 contains {3, 5}, then
(X14, Y14 ∪ 4) is a 3-separation of M\1 so, by Lemma 9.2, {2, 6} ⊆ X14.



36 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

Now (X14 ∪ 3, Y14 − 3) ∼= (X14, Y14) in M\1, 4, so we get a contradiction as
above unless Y14 is a 4-element fan of M\1, 4 having (y1, y2, y3, 3) as a fan
ordering where {y1, y2, y3} is a triangle. In the exceptional case, {y1, y2, y3}
contains 5 but is not {3, 4, 5}; a contradiction to Lemma 9.6. We deduce
that {2, 5} ⊆ X14 and 3 ∈ Y14.

Suppose 6 ∈ Y14. Then (X14 − 2, Y14 ∪ 2) ∼= (X14, Y14) in M\1, 4. Hence
we have a contradiction unless X14 is a 4-element fan in M\1, 4 having
(x1, x2, x3, 2) as a fan ordering and {x1, x2, x3} as a triangle. Since this
triangle contains 6, we have a contradiction to Lemma 9.6.

We may now assume that 6 ∈ X14. Then (X14∪3, Y14−3) ∼= (X14, Y14) in
M\1, 4. Thus we have a contradiction unless Y14 is a fan of M\1, 4 having
{y1, y2, y3} as a triangle, and {y2, y3, 3} as a triad. Then, by Lemma 9.6,
{y1, y2, y3} avoids {1, 2, . . . , 7}. By orthogonality, {y2, y3, 3, 1, 4} is a cocir-
cuit of M . Thus the lemma is proved. �

Lemma 9.9. If neither M\1 nor M\1, 4 is internally 4-connected, then
M\3 is internally 4-connected.

Proof. By the last lemma, M has a cocircuit {1, 3, 4, a, b} and a triangle
{a, b, c} where {a, b, c} avoids {1, 2, . . . , 7}. Suppose that M\3 has a (4, 3)-
violator (X3, Y3). Then, by Lemma 9.3, we may assume that {1, 5} ⊆ X3

and {2, 4, 6} ⊆ Y3. If 7 ∈ Y3, then (X3 ∪ 7, Y3 − 7) ∼= (X3, Y3) in M\3.
Suppose |Y3| = 4. Then Y3 = {2, 4, 6, 7} and Y3 has {2, 4, 6} as a triangle; a
contradiction. Thus we may assume that {1, 5, 7} ⊆ X3 and {2, 4, 6} ⊆ Y3.

Now M has {1, 3, 4, a, b} as a cocircuit, so M\3 has {1, 4, a, b} as a cocir-
cuit. If {a, b} ⊆ X3, then (X3 ∪ 4, Y3 − 4) ∼= (X3, Y3) in M\3, so we have a
contradiction otherwise Y3 is a 4-element fan containing a triangle containing
{2, 6}, which does not happen. If {a, b} ⊆ Y3, then (X3−1, Y3∪1) ∼= (X3, Y3)
in M\3, so we have a contradiction otherwise X3 contains a triangle con-
taining {5, 7}. We deduce that we may assume that a ∈ X3 and b ∈ Y3.

Consider the location of c. Either X3 or Y3 contains c, so we can move
b or a, respectively, to obtain an equivalent 3-separation in which {a, b} is
contained in the same set. This move reduces us to an earlier case unless it
leaves a set with fewer than four elements. In the exceptional case, there is
a triangle of M\3 containing c and some element of {1, 5, 7} or {2, 4, 6}, a
contradiction to Lemma 9.6. �

Proof of Theorem 9.1. This theorem follows immediately by combining the
preceding lemmas. �

10. Bowties

The purpose of this section is to prove the following result.

Theorem 10.1. Let M be a binary internally 4-connected matroid with
|E(M)| ≥ 13. Assume that

(i) M does not contain a quasi rotor; and
(ii) no restriction of M is isomorphic to M(K4); and
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(iii) M has a bowtie (T1, T2, C
∗) but has no bowtie of the form (T1, T3,D

∗)
where T1 ∩ C∗ 6= T1 ∩D∗.

Then M has a proper internally 4-connected minor N with |E(M)−E(N)| ≤
4. Moreover, equality is attained in this bound if and only if M is isomorphic
to the cycle matroid of a terrahawk.

The proof of this theorem is a long case analysis and we now give a brief
outline of it. Assume that the hypotheses of the theorem hold and that M
has no proper internally 4-connected minor N with |E(M) − E(N)| ≤ 3.
We begin with a bowtie ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}). By Theorem 5.1 and
Lemma 6.3, as M contains no quasi rotor, M\1 is (4, 4, S)-connected. We
distinguish the cases when M\1 has a unique 4-element fan, and when M\1
has more than one such fan. In Figures 5 and 6, we indicate, for these
two cases, the lemmas that take us to the structure in Figure 7(a). In
Lemma 10.13, we show that the structure in Figure 7(a) forces the structure
in Figure 7(b). Finally, Lemma 10.15 shows that if the last structure arises,
then M is the cycle matroid of a terrahawk. A more formal description of
the proof is given at the end of the section.

Lemma 10.2. Let M be an internally 4-connected binary matroid in which
no single-element deletion is internally 4-connected. Suppose |E(M)| ≥ 13
and let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and ({1, 2, 3}, {7, 8, 9}, {1, 2, 7, 8}) be
bowties. Then |{1, 2, . . . , 9}| = 9.

Proof. Certainly |{1, 2, 3, 4, 5, 6}| = 6 = |{1, 2, 3, 7, 8, 9}|. If {4, 5, 6} =
{7, 8, 9}, then λ({1, 2, . . . , 6}) ≤ 2; a contradiction. If {4, 5, 6} △ {7, 8, 9} is
a circuit of M , then it is a 4-circuit and λ({1, 2, . . . , 9}) = r({1, 2, . . . , 9}) +
r∗({1, 2, . . . , 9})−|{1, 2, . . . , 9}| ≤ 4+6−8 = 2; a contradiction. We conclude
that {4, 5, 6} ∩ {7, 8, 9} = ∅, as required. �

For the remainder of this section, we shall assume that M contains no
quasi rotor and that M has no M(K4)-restriction.

Lemma 10.3. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a
bowtie and has {2, 5, 7} as a triangle and {1, 2, 7, 8} as a cocircuit where
|{1, 2, . . . , 8}| = 8. Assume that M\1 has a unique 4-element fan and that
M\6 is not internally 4-connected. Then either

(i) M has a cocircuit {5, 6, 7, 9} where 9 /∈ {1, 2, . . . , 8}; or
(ii) M/4\6 is internally 4-connected; or
(iii) M has a triangle {3, 4, 9} and a cocircuit {4, 6, 9, 10} where

|{1, 2, . . . , 10}| = 10.

Proof. By Lemma 6.3, M has a 4-cocircuit C∗ containing {5, 6} or {4, 6}.
If C∗ ⊆ {1, 2, . . . , 8}, then λ({1, 2, ..., 8}) ≤ 2; a contradiction. Thus, by
orthogonality, C∗ = {5, 6, 7, 9} or C∗ = {4, 6, 9, 10}, where 9 /∈ {1, 2, . . . , 8}
and 10 /∈ {1, 2, 3, 4, 5, 6, 7, 9}. In particular, if M has a 4-cocircuit containing
{5, 6}, then (i) holds.
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Lemma 10.9

1

1

Lemma 10.8

1- or 2- element move
preserves internal
4-connectivity

1

Lemma 10.11

1

Figure 5. The steps when M\1 has a unique 4-element fan.

We may now assume that C∗ = {4, 6, 9, 10}. Either (ii) or (iii) of
Lemma 6.3 holds. Assume (iii) holds. Then M has a triangle {9, 4, e} where
e ∈ {2, 3}. As M has no M(K4)-restriction, e 6= 2, so e = 3. Hence (iii) of
the lemma holds because 10 6= 8 otherwise λM ({1, 2, . . . , 9}) ≤ 2. Next we
assume that (ii) of Lemma 6.3 holds. Then M has a triangle {9, 10, 11} that
is disjoint from {1, 2, 3, 4, 5, 6}. Thus we have ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5})
and ({4, 5, 6}, {9, 10, 11}, {4, 6, 9, 10}) as bowties. Thus, by Lemma 8.4, since
M/4, 5, 6 is not 3-connected and {4, 5, 6} is not the central triangle of a quasi
rotor, either M/4\6 is internally 4-connected and so (ii) holds, or M has a
4-cocircuit containing {5, 6}, and (i) holds. �

Lemma 10.4. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a
bowtie and that M has {2, 5, 7} as a triangle and {1, 2, 7, 8} and {5, 6, 7, 9}
as cocircuits. Then {2, 5, 7} is the only triangle of M containing 7.

Proof. Suppose that M has a triangle T containing 7 but different from
{2, 5, 7}. By orthogonality, T ⊆ {1, 2, 5, 6, 7, 8, 9}, so λM ({1, 2, . . . , 9}) ≤ 2;
a contradiction. �
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1

Lemma 10.7

1

Lemma 10.9

1

Figure 6. When M\1 has more than one 4-element fan.

Lemma 10.5. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in a binary
internally 4-connected matroid M . Let {2, 5, 7} be a circuit and {1, 2, 7, 8}
be a cocircuit. Suppose M\1 has a unique 4-element fan and that M\6 is
not internally 4-connected. Then M\1/8 is 3-connected. Let (X18, Y18) be a
(4, 3)-violator of M\1/8. Then each of X18 and Y18 meets {2, 7}.

(i) If 2 ∈ X18 and {5, 7} ⊆ Y18, then M has a triangle {1, 8, 9} and a
cocircuit {1, 3, 9, 10} where |{1, 2, . . . , 10}| = 10.

(ii) If {2, 5} ⊆ X18 and 7 ∈ Y18, then Y18 is a 4-element fan of M\1/8
having (y1, y2, y3, 7) as a fan ordering where {y2, y3}∩{1, 2, . . . , 8} =
∅; and M has a circuit {y2, y3, 7, 8}; and either {3, y2, y3, 1} is a co-
circuit of M , or {y1, y2, y3} is a cocircuit of M and y1 /∈ {1, 2, . . . , 8}.

Proof. By Lemma 6.3, M\1 is (4, 4, S)-connected. Since M\1 has {8, 2, 7, 5}
as its unique 4-element fan and this fan has 8 as an end; M\1/8 is 3-
connected. Let (X18, Y18) be a (4, 3)-violator of M\1/8. Since M\1 has

(a) (b)

Figure 7
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{2, 7, 8} as a cocircuit, if {2, 7} ⊆ X18, then (X18 ∪ 8, Y18) is a 3-separation
of M\1. But neither X18 ∪ 8 nor Y18 equals {8, 2, 7, 5}, so we have a con-
tradiction. Thus we may assume that 2 ∈ X18 and 7 ∈ Y18. Consider the
location of 5.

Suppose first that 5 ∈ Y18. Then 2 ∈ X18 and {5, 7} ⊆ Y18, and
(X18, Y18) ∼= (X18−2, Y18∪2) in M\1/8. Thus we get a contradiction unless
X18 is a 4-element fan in M\1/8 containing a triangle {x2, x3, 2} and a triad
{x1, x2, x3}. Consider the exceptional case. Orthogonality with the cocir-
cuit {1, 2, 7, 8} implies that {x2, x3, 2, 8} is a circuit of M . The cocircuit
{2, 3, 4, 5} of M implies that |{3, 4} ∩ {x2, x3}| = 1. Thus {x1, x2, x3, 1} is a
cocircuit of M , so 3 ∈ {x1, x2, x3} by orthogonality with the circuit {1, 2, 3}.
If {4, 6} ∩ {x1, x2, x3} 6= ∅, then orthogonality with the circuit {4, 5, 6} im-
plies that {x1, x2, x3, 1} = {1, 3, 4, 6}. Then λM ({1, 2, . . . , 6}) ≤ 2; a con-
tradiction. We deduce that {4, 6} ∩ {x1, x2, x3} = ∅. Thus we may assume
that 3 = x3. Then M has {x1, x2, 3, 1} as a cocircuit and {x2, 3, 2, 8} as
a circuit. But {1, 2, 3} is also a circuit, so {1, 8, x2} is a circuit. Now let
x2 = 9 and x1 = 10. Then 9 /∈ {1, 2, . . . 8} otherwise λM ({1, 2, . . . , 8}) ≤ 2.
If 10 ∈ {1, 2, . . . , 9}, then 10 /∈ {1, 3, 8, 9}. Orthogonality with known trian-
gles implies that 10 /∈ {2, 4, 5, 6, 7}. We conclude that (i) holds.

Suppose next that 5 ∈ X18. Then (X18∪7, Y18−7) ∼= (X18, Y18) inM\1/8.
Thus Y18 is a 4-element fan of M\1/8 having (y1, y2, y3, 7) as a fan ordering
where {y2, y3, 7} is a triangle of M\1/8 and hence of M/8, while {y1, y2, y3}
is a triad of M\1. Orthogonality with the cocircuit {1, 2, 7, 8} of M implies
that {y2, y3, 7, 8} is a circuit of M . Now either {y1, y2, y3} or {y1, y2, y3, 1}
is a cocircuit of M . Since M is internally 4-connected, the first possibility
implies that {y1, y2, y3}∩{1, 2, . . . , 8} = ∅, so (ii) holds. Consider the second
possibility. From it, we deduce that 3 ∈ {y1, y2, y3}. If 3 ∈ {y2, y3}, then
the cocircuit {2, 3, 4, 5} implies that 4 ∈ {y2, y3}. Hence {3, 4, 7, 8} is a
circuit of M , and λM ({1, 2, . . . , 8}) ≤ 2; a contradiction. Thus 3 = y1.
Evidently, {y2, y3} ∩ {1, 2, 3, 5, 7, 8} = ∅. Moreover, {y2, y3} avoids {4, 6}
otherwise, by orthogonality, {y2, y3} = {4, 6} and λM ({1, 2, . . . , 6}) ≤ 2.
Hence {y2, y3} ∩ {1, 2, . . . , 8} = ∅ and (ii) holds. �

Lemma 10.6. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a
bowtie and that M has {2, 5, 7} as a triangle and {1, 2, 7, 8} and {5, 6, 7, 9}
as cocircuits. If M\1 has a unique 4-element fan, then either

(i) M\1, 5 or M\1/8 is internally 4-connected; or
(ii) M has a triangle containing {3, 4}; or
(iii) (a) M has a triangle containing {6, 9} and an element 10 not in

{1, 2, . . . , 9}; and
(b) M has a triangle {1, 8, 11} and a cocircuit {1, 3, 11, 12} where

|{1, 2, . . . , 12}| = 12.

Proof. By assumption, {1, 2, 3} is not the central triangle of a quasi rotor.
Assume also that M has no triangle containing {3, 4}. By Lemma 6.3, M\1
is (4, 4, S)-connected. Now {8, 2, 7, 5} is the unique 4-element fan of M\1
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and it has 5 as an end, so M\1, 5 is 3-connected. Assume that M\1, 5 is not
internally 4-connected letting (X15, Y15) be a (4, 3)-violator of it.

If {4, 6} or {2, 7} is contained inX15, then (X15∪5, Y15) is a 3-separation of
M\1 with |X15∪5| ≥ 5 and |Y15| ≥ 4, so neither X15∪5 nor Y15 is {8, 2, 7, 5};
a contradiction. Hence we may assume that 4 ∈ X15 and 6 ∈ Y15. Also,
exactly one of 2 and 7 is in X15. Thus we have two cases to consider:

(I) {4, 7} ⊆ X15 and {6, 2} ⊆ Y15; or
(II) {4, 2} ⊆ X15 and {6, 7} ⊆ Y15.

Consider case (I). Suppose first that 3 ∈ X15. Then (X15 ∪ 2, Y15 − 2) ∼=
(X15, Y15) in M\1, 5, so Y15 is a 4-element fan in M\1, 5 otherwise we have a
contradiction. Now Y15 has (y1, y2, y3, 2) as a fan ordering where {y1, y2, y3}
is a triangle containing 6, and {y2, y3, 2} is a triad of M\1, 5. The circuit
{2, 4, 6, 7} of M\1, 5 implies that 6 ∈ {y2, y3}, so 6 = y3, say. The cocircuit
{6, 7, 9} of M\1, 5 implies that 9 ∈ {y1, y2}. But {2, 6, 9} is not a cocircuit of
M\1, 5, so 9 = y1. Now y2 /∈ {1, 2, . . . , 9}, otherwise λM ({1, 2, . . . , 9}) ≤ 2.
Taking y2 = 10, we have that (iii)(a) holds.

Next in case (I), assume that 3 ∈ Y15. Then (X15, Y15) ∼= (X15−4, Y15∪4)
in M\1, 5 and we have a contradiction unless X15 is a 4-element fan in
M\1, 5 containing a triangle that contains 7 but is different from {2, 5, 7}.
The exceptional case contradicts Lemma 10.4.

Now consider case (II) and look at the location of 8. Suppose 8 ∈ X15.
Then (X15 ∪ 7, Y15 − 7) ∼= (X15, Y15) in M\1, 5. Thus Y15 is a 4-element fan
in M\1, 5 otherwise we obtain a contradiction. We have (y1, y2, y3, 7) as a
fan ordering of Y15 where {y1, y2, y3} is a triangle and {y2, y3, 7} is a triad.
The circuit {2, 4, 6, 7} of M\1, 5 implies that 6 ∈ {y2, y3}. Since {6, 7, 9} is
a cocircuit of M\1, 5, we deduce that {y2, y3} = {6, 9}. By orthogonality,
y1 is not in {1, 2, . . . , 9}, so (iii)(a) holds with 10 = y1.

Finally, in case (II), suppose that 8 ∈ Y15. Then (X15, Y15) ∼= (X15 −
2, Y15 ∪ 2) in M\1, 5. Therefore X15 is a 4-element fan of M\1, 5 having
(x1, x2, x3, 2) as a fan ordering with {x1, x2, x3} as a triangle containing 4.
It follows, by orthogonality with the cocircuit {2, 3, 4} of M\1, 5, that the
triangle {x1, x2, x3} contains 3 and so is {1, 2, 3}; a contradiction.

To complete the proof, we need to show that when (iii)(a) holds, so does
(iii)(b). To establish this, assume that (iii)(a) holds and considerM\1/8. By
Lemma 10.5, it is 3-connected. Moreover, if (X18, Y18) is a (4, 3)-violator of
it, then we may assume 2 ∈ X18 and 7 ∈ Y18.

Suppose that 5 ∈ X18. Then, by Lemma 10.5, Y18 is a 4-element fan of
M\1/8 having (y1, y2, y3, 7) as a fan ordering where {y2, y3}∩{1, 2, . . . , 8} =
∅; and {y2, y3, 7, 8} is a circuit of M , while {3, y2, y3, 1} or {y1, y2, y3} is a
cocircuit of M . The cocircuit {5, 6, 7, 9} of M implies that 9 ∈ {y2, y3}.
But 9 is in a triangle of M . Hence {y1, y2, y3} is not a cocircuit of M ,
so {3, y2, y3, 1} is. Moreover, since 9 ∈ {y2, y3}, the triangle {6, 9, 10} im-
plies that {y2, y3} = {9, 10}. Therefore {3, 9, 10, 1} is a cocircuit of M , so
λM ({1, 2, . . . , 10}) ≤ 2; a contradiction.
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We may now assume that 5 ∈ Y18. Then, by Lemma 10.5, M has a triangle
{1, 8, 11} and a cocircuit {1, 3, 11, 12} where |{1, 2, . . . , 8, 11, 12}| = 10. Thus
|{1, 2, . . . , 12}| = 12 provided {9, 10} ∩ {11, 12} = ∅. The triangle {6, 9, 10}
and the cocircuit {1, 3, 11, 12} imply that |{9, 10} ∩ {11, 12}| is 0 or 2. In
the latter case, λM ({1, 2, . . . , 7, 9, 10}) ≤ 2; a contradiction. �

Lemma 10.7. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in M . Suppose
that no single-element deletion of M is internally 4-connected and that M\1
has at least two 4-element fans. Then

(i) for {a, b} = {4, 5}, there are distinct elements x12, x2a, x13 and x3b
not in {1, 2, . . . , 6} such that {2, a, x2a} and {3, b, x3b} are circuits of
M , and {1, 2, x12, x2a} and {1, 3, x13, x3b} are cocircuits of M ; or

(ii) M has a triangle {7, 8, 9} disjoint from {1, 2, . . . , 6} such that
({1, 2, 3}, {7, 8, 9}, C∗) is a bowtie and C∗ contains 1.

Proof. By Lemma 6.3, M\1 is (4, 4, S)-connected. Let (y1, y2, y3, y4) be a fan
ordering of a fan in M\1 where {y2, y3, y4} is a triad. Then {y2, y3, y4, 1} is a
cocircuit of M , so |{y2, y3, y4} ∩ {2, 3}| = 1. By symmetry, we may suppose
that 2 ∈ {y2, y3, y4} and indeed that 2 ∈ {y3, y4}.

First we show:

10.7.1. If 2 = y3, then M has {y1, y2, 2} as a triangle and {y2, 2, y4, 1} as
a cocircuit where y1 ∈ {4, 5}, and {y2, y4} avoids {1, 2, . . . , 6}.

Since M is binary, |{y1, y2} ∩ {4, 5}| = 1. If 4 or 5 is y2, then
{4, 5} = {y2, y4}, so {y2, 2, y4, 1} ⊆ {1, 2, . . . , 6}. Thus r∗({1, 2, . . . , 6}) ≤ 4,
so λ({1, 2, . . . , 6}) ≤ 2; a contradiction. Hence y1 is 4 or 5. Certainly {y2, y4}
avoids {1, 2, 3}. If {y2, y4} meets {4, 5, 6} then {y2, y4} ⊆ {4, 5, 6} and again
we get the contradiction that λ({1, 2, . . . , 6}) ≤ 2. Thus (10.7.1) holds.

10.7.2. If 2 = y4, then ({1, 2, 3}, {y1 , y2, y3}, {1, 2, y2, y3}) is a bowtie and
|{1, 2, . . . , 6, y1, y2, y3}| = 9.

Certainly ({1, 2, 3}, {y1 , y2, y3}, {1, 2, y2, y3}) is a bowtie. The fact that
|{1, 2, . . . , 6, y1, y2, y3}| = 9 follows immediately from Lemma 10.2.

We now assume that (ii) of the lemma does not hold. Then, by (10.7.2)
and symmetry, we get that if (y1, y2, y3, y4) is a fan ordering of a fan in M\1
having {y1, y2, y3} as a triangle, then y4 /∈ {2, 3}. Suppose M\1 has two
distinct 4-element fans having fan orderings (y1, y2, 2, y4) and (z1, z2, 2, z4)
where {y1, y2, 2} and {z1, z2, 2} are triangles. Then, by (10.7.1), each of y1
and z1 is in {4, 5}. If y1 = z1, then y2 = z2, so y4 = z4, and the fans are equal.
Thus we may assume that y1 6= z1. Then, without loss of generality, y1 = 4
and z1 = 5. It follows that M |{2, 4, 5, 6, y2 , z2} ∼= M(K4); a contradiction.

It remains to consider when M\1 has fans with fan orderings (y1, y2, 2, y4)
and (z1, z2, 3, z4) where {y1, y2, 2} and {z1, z2, 3} are triangles. If yi = zi
for some i in {1, 2}, then we get an M(K4)-restriction of M containing
{1, 2, 3, yi}. Hence we may assume that y1 6= z1 and y2 6= z2. Thus,
by (10.7.1), we may suppose that y1 = 5 and z1 = 4.
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We show next that |{1, 2, . . . , 6, y2, y4, z2, z4}| = 10. If y2 = z4, then
the triangle {5, y2, 2} and triad {z2, 3, y2} of M\1 imply that z2 ∈ {2, 5},
which does not occur. Thus y2 6= z4 and, by symmetry, y4 6= z2. Fi-
nally, suppose y4 = z4. Then let Z = {1, 2, 3, 4, 5, y2 , z2, y4}. We have
r(Z) ≤ 5 and r∗(Z) ≤ 5, so λ(Z) ≤ 2; a contradiction. We conclude that
|{1, 2, . . . , 6, y2, y4, z2, z4}| = 10. Hence (i) holds. �

Lemma 10.8. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as
a bowtie and that {2, 5, 7}, {6, 9, 10}, and {1, 8, 11} are triangles
while {1, 2, 7, 8}, {5, 6, 7, 9}, and {1, 3, 11, 12} are cocircuits, where
|{1, 2, . . . , 12}| = 12. Assume that M\1 has a unique 4-element fan. Then
M\11/12 or M/12 is internally 4-connected.

Proof. The matroid M has ({1, 8, 11}, {2, 5, 7}, {1, 2, 7, 8}) as a bowtie and
has {1, 2, 3} as a triangle and {1, 3, 11, 12} and {2, 3, 4, 5} as cocircuits. Sup-
pose M\11 has a unique 4-element fan. Then, by Lemma 10.6, M\11, 2 or
M\11/12 is internally 4-connected; or M has a triangle containing {7, 8};
or M has a triangle containing {11, 12}. Since M\11, 2 has a 4-element fan
while the lemma holds if M\11/12 is internally 4-connected, we may assume
that one of the last two possibilities occurs. The second last possibility con-
tradicts Lemma 10.4, while the last contradicts the fact that M\1 has a
unique 4-element fan.

We may now assume that M\11 has more than one 4-element fan. Then,
by Lemma 10.7 applied to the bowtie ({1, 8, 11}, {2, 5, 7}, {1, 2, 7, 8}), either

(a) M has triangles containing {1, 7} and {2, 8}; or
(b) M has a triangle containing {7, 8}; or
(c) M has a triangle {13, 14, 15} disjoint from {1, 8, 11, 2, 5, 7}, and

M has a bowtie ({1, 8, 11}, {13, 14, 15}, C∗) where C∗ contains
{11, 13, 14}.

In the first case, M has an M(K4)-restriction, which is not so. The
second case is excluded by Lemma 10.4. Hence the third case occurs. Then
C∗ contains {1, 11} or {8, 11}. Suppose {1, 11} ⊆ C∗. The circuit {1, 2, 3}
implies that 3 ∈ C∗. Thus C∗ contains {1, 3, 11}, so C∗ = {1, 3, 11, 12} and
{13, 14} = {3, 12}. Hence 12 is in a triangle of M\1, which contradicts the
fact that M\1 has a unique 4-element fan. Thus C∗ contains {8, 11}.

The matroid M\3 is 3-connected and has {1, 8, 11, 12} as a fan. Now 12
is not in a triangle of M otherwise M has an M(K4)-restriction or M\1
does not have a unique 4-element fan. Thus 12 is a fan end in M\3. Hence
M\3/12 is 3-connected. It follows that M/12 is 3-connected since 12 is not
in a triangle of M . Assume that M/12 is not internally 4-connected. Let
(X12, Y12) be a (4, 3)-violator of M/12. Then neither X12 nor Y12 contains
{1, 3, 11}. Thus we may assume that one of the following possibilities occurs:

(I) {1, 11} ⊆ X12 and 3 ∈ Y12; or
(II) {3, 11} ⊆ X12 and 1 ∈ Y12; or
(III) {1, 3} ⊆ X12 and 11 ∈ Y12.
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Consider case (I). Suppose first that 2 ∈ X12. Then (X12 ∪ 3, Y12 − 3) ∼=
(X12, Y12). Thus we may assume that Y12 is a 4-element fan in M/12
having (y1, y2, y3, 3) as a fan ordering where {y2, y3, 3} is a triangle. As
M/12 has {2, 3, 4, 5} as a cocircuit, the triad {y1, y2, y3} meets {2, 4, 5};
a contradiction. Hence we may assume that 2 ∈ Y12. Next consider
the location of 8. Suppose 8 ∈ Y12. Then {1, 11} ⊆ clM/12(Y12). Thus
(X12, Y12) ∼= (X12 − 11, Y12 ∪ 11) ∼= (X12 − 11 − 1, Y12 ∪ 11 ∪ 1). Hence
|X12 − 11 − 1| = 3 otherwise we get a contradiction. Thus X12 − 11 − 1
is a triad {x1, x2, x3} of M/12, and X12 − 11 is a 4-element fan having
(x1, x2, x3, 1) as a fan ordering. The triangle {x2, x3, 1} of M/12 implies
that {2, 7, 8} meets the triad {x1, x2, x3}; a contradiction.

We may now assume that 8 ∈ X12, so {1, 11, 8} ⊆ X12 and {2, 3} ⊆ Y12. If
7 ∈ X12, then (X12∪2, Y12−2) ∼= (X12, Y12) so we get a contradiction unless
Y12 is a 4-element fan in M/12. In the exceptional case, (y1, y2, y3, 2) is a fan
ordering of Y12 with {y2, y3, 2} as a triad; a contradiction. We deduce that
7 ∈ Y12. Then (X12, Y12) ∼= (X12 − 1, Y12 ∪ 1) ∼= (X12 − 1− 8, Y12 ∪ 1 ∪ 8) ∼=
(X12−1−8−11, Y12∪1∪8∪11). Hence we get a contradiction if |X12| ≥ 7.
If |X12| ≤ 6, then |X12 − 1| ≤ 5 so X12 − 1 is a fan of M/12. Since
8 ∈ cl∗M/12(Y12∪1), it follows that 8 is in a triad of M ; a contradiction. We
conclude that case (I) does not occur.

Next consider case (II). Suppose first that 2 ∈ X12, so {2, 3, 11} ⊆ X12 and
1 ∈ Y12. Then, as (X12 ∪ 1, Y12− 1) ∼= (X12, Y12), we must have that Y12 is a
4-element fan ofM/12 having (y1, y2, y3, 1) as a fan ordering where {y2, y3, 1}
is a triangle of M/12. The cocircuit {1, 2, 7, 8} implies that {y2, y3} meets
{2, 7, 8}. Thus the triad {y1, y2, y3} meets {2, 7, 8}; a contradiction. Hence
we may assume that 2 ∈ Y12. Then (X12 − 3, Y12 ∪ 3) ∼= (X12, Y12) and we
have reduced to case (I) unless X12 is a 4-element fan of M/12 having a fan
ordering (x1, x2, x3, 3) where {x1, x2, x3} is a triad. In the exceptional case,
the triangle {x2, x3, 3} and cocircuit {2, 3, 4, 5} of M/12 imply that the triad
{x1, x2, x3} meets {2, 4, 5}; a contradiction. We conclude that case (II) does
not occur.

Finally, consider case (III). Suppose first that 8 ∈ X12. ThenX12 contains
{1, 3, 8} and Y12 contains 11. As (X12∪11, Y12−11) ∼= (X12, Y12), we deduce
that M/12 has (y1, y2, y3, 11) as a fan ordering of Y12 having {y2, y3, 11} as
a triangle. Then the triad {y1, y2, y3} meets {8, 13, 14}; a contradiction. We
may now suppose that 8 ∈ Y12. Then (X12, Y12) ∼= (X12 − 1, Y12 ∪ 1) and we
get a contradiction unless X12 − 1 is a triad of M/12. But X12 − 1 contains
3 so it cannot be a triad. �

Lemma 10.9. Suppose M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a bowtie
and that M has {2, 5, 7} and {3, 4, 10} as circuits and {1, 2, 7, 8} and
{1, 3, 9, 10} as cocircuits where |{1, 2, . . . , 10}| = 10. If neither M\1
nor M\6 is internally 4-connected, then M has a 4-element cocircuit
that contains {4, 6, 10} or {5, 6, 7} and has its fourth element outside of
{1, 2, . . . , 10}.
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Proof. Either (ii) or (iii) of Lemma 6.3 holds. Assume the former. IfM has a
triangle {11, 12, 13} disjoint from {1, 2, . . . , 6} and a cocircuit C∗ containing
{6, 11, 12} and one of 4 and 5, then, by symmetry, we may assume that
5 ∈ C∗. Then 2 or 7 is in C∗, so 7 ∈ {11, 12}. Thus 7 = 11, without loss
of generality, and |{11, 12, 13} ∩ {1, 2, 7, 8}| = 2, so {7, 8} ⊆ {11, 12, 13}. If
{7, 8} = {11, 12}, then {5, 6, 11, 12} △ {1, 2, 7, 8}, which equals {1, 2, 5, 6},
is a cocircuit of M , so λM ({1, 2, . . . , 6}) ≤ 2; a contradiction. Thus 8 = 13.
Hence λ({1, 2, 3, 4, 5, 6, 7, 8, 12}) ≤ 2; a contradiction. We conclude that (ii)
of Lemma 6.3 does not occur.

We may now assume that (iii) of Lemma 6.3 occurs. Then M has a
4-cocircuit {a, b, d, 6} and a triangle {c, d, e} where |{1, 2, . . . , 6, a, b}| = 8
and c ∈ {a, b}, d ∈ {4, 5}, and e ∈ {2, 3}. Without loss of gen-
erality, assume that d = 5. Then, since {2, 5} is contained in a tri-
angle but M has no M(K4)-restriction, M has no triangle containing
{3, 5}, so e = 2, and c = 7. Thus, without loss of generality, M has
{a, 5, 6, 7} as a cocircuit. Then a /∈ {1, 2, 3, 4, 5, 6, 7, 10} by orthogonality.
If a = 8, then λ({1, 2, 3, 4, 5, 6, 7, 8}) ≤ 2; a contradiction. If a = 9, then
λ({1, 2, 3, 4, 5, 6, 7, 9, 10}) ≤ 2; a contradiction. �

Lemma 10.10. Suppose that M has bowties ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5})
and ({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}), and M has cocircuits {1, 2, 7, 8} and
{4, 6, 10, 11}. Then each of M\1, M\6, M\7, and M\11 is (4, 4, S)-
connected, and each of 1, 6, 7, and 11 is in a unique triangle of M . More-
over,

(i) M has a 4-cocircuit containing {5, 6, 7}; or
(ii) M\6 has a unique 4-element fan, and

(a) M\3, 6, 7 is internally 4-connected; or
(b) M has a triangle {g1, g2, g3} and a cocircuit {5, 6, 7, g2 , g3}

where {g1, g2, g3} ∩ {1, 2, 3, 4, 5, 6, 7, 8, 10, 11} = ∅.

Proof. By Lemma 6.3, for each e in {1, 6, 7, 11}, the matroid M\e is (4, 4, S)-
connected. Thus each of 1, 6, 7, and 11 is in a unique triangle of M . Now
assume that M has no 4-cocircuit containing {5, 6, 7}. First we show:

10.10.1. If (X6, Y6) is a (4, 3)-violator for M\6, then X6 or Y6 is
{3, 4, 10, 11}.

This assertion is equivalent to the assertion that M\6 has {3, 4, 10, 11}
as its unique 4-element fan. Suppose the latter fails. Then M has a tri-
angle {a1, a2, a3} and a 4-cocircuit C∗ that is {4, 6, a2, a3} or {5, 6, a2, a3}.
Suppose C∗ = {4, 6, a2, a3}. Then, the triangle {3, 4, 11} implies that C∗

contains 11 or 3. In the first case, {a2, a3} = {10, 11}. Then M\6 is not
(4, 4, S)-connected; a contradiction. On the other hand, if 3 ∈ C∗, then 1 or
2 is in C∗ and λ({1, 2, . . . , 6}) ≤ 2; a contradiction. Hence we may suppose
that C∗ is {5, 6, a2, a3}. Then {a2, a3} meets {2, 7}. But 2 /∈ C∗ other-
wise C∗ ⊆ {1, 2, . . . , 6} and λ({1, 2, . . . , 6}) ≤ 2. Moreover, 7 /∈ {a2, a3}
otherwise C∗ contains {5, 6, 7}. Thus (10.10.1) holds.
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Next we show that

10.10.2. M\7\3\6 is 3-connected.

Certainly M\7 is 3-connected having {8, 1, 2, 3} as a maximal fan. As 3
is an end of this fan, M\7\3 is 3-connected and has {2, 4, 5, 6} as a fan. The
element 6 is an end of a maximal fan unless M\7\3 has a triad T ∗ avoiding
2 but containing {4, 6} or {5, 6}. Suppose T ∗ contains {4, 6}. Then either
T ∗ = {4, 6, 11}; or T ∗ avoids 11 and T ∗∪3 is a cocircuit of M\7. In the first
case, {4, 6, 11} is a triad of M\7. But {4, 6, 11, 10} is a cocircuit of M , so
we have a contradiction. Thus T ∗ ∪ 3 is a cocircuit of M\7. Then 1 or 2 is
in T ∗. Hence T ∗ is {4, 6, 1} or {4, 6, 2}, so M has {4, 6, 1, 3} or {4, 6, 2, 3, 7}
as a cocircuit. The first possibility implies that λM ({1, 2, . . . , 6}) ≤ 2. The
second implies that {4, 6, 2, 3, 7} △ {2, 3, 4, 5}, that is, {5, 6, 7} is a cocircuit
of M ; a contradiction.

Now suppose that {5, 6} ⊆ T ∗. As 2 /∈ T ∗, it follows that T ∗ ∪ 7 is a
cocircuit of M\3 containing {5, 6, 7}. Since M has no 4-cocircuit containing
{5, 6, 7}, we deduce that T ∗ ∪ 7 ∪ 3 is a cocircuit of M , which must equal
{1, 5, 6, 7, 3}. Then λM ({1, 2, . . . , 7}) ≤ 2; a contradiction. We conclude that
6 is indeed an end of a maximal fan in M\7\3, so M\7\3\6 is 3-connected.

Clearly M\3 is not internally 4-connected. A (4, 3)-violator (X3, Y3) of
M\3 must have exactly one of 1 and 2 in X3, and exactly one of 4 and 11 in
X3. Assume that M\3, 6, 7 is not internally 4-connected and let (X367, Y367)
be a (4, 3)-violator of it. Suppose {2, 4, 5} ⊆ X367. Then (X367 ∪ 6∪ 7, Y367)
is a 3-separation of M\3. Then Y367 contains {1, 11}.

Consider the location of 10. Suppose first that 10 ∈ X367. Then (X367 ∪
11, Y367−11) ∼= (X367, Y367) in M\3, 6, 7, and (X367∪11∪{3, 6, 7}, Y367−11)
is a 3-separation of M . Hence we may assume that Y367 is a 4-element fan in
M\3, 6, 7 containing a triad {g2, g3, 11} and a triangle {g1, g2, g3} where the
latter contains 1. By orthogonality, 8 ∈ {g1, g2, g3}. ButM\7 has no triangle
containing {1, 8} since it is (4, 4, S)-connected. This contradiction implies
that 10 ∈ Y367.

We now have {2, 4, 5} ⊆ X367 and {1, 11, 10} ⊆ Y367. Then (X367 −
4, Y367 ∪ 4) ∼= (X367, Y367) in M\3, 6, 7. This means that ((X367 − 4) ∪
7, (Y367∪4)∪3) is a 3-separation of M\6 in which each side has at least four
elements and neither side is {3, 4, 10, 11} contradicting (10.10.1).

We now know that neither X367 nor Y367 contains {2, 4, 5}. Let {2, 4, 5} =
{α, β, γ} and assume that {α, β} ⊆ X367 and γ ∈ Y367. If |Y367| > 4, then
(X367 ∪ γ, Y367 − γ) has {2, 4, 5} in X367 ∪ γ and has |Y367 − γ| ≥ 4, so
we have reduced to the previous case. Thus we may assume that Y367 is
a 4-element fan in M\3, 6, 7 containing a triangle {g1, g2, g3} and a triad
{g2, g3, γ}. Hence {g1, g2, g3} avoids {2, 3, 4, 5, 6, 7}. As M has {1, 2, 4, 11}
as a circuit, if γ ∈ {2, 4}, then {g2, g3} meets {1, 11}. But {g1, g2, g3} is not
{1, 2, 3} or {3, 4, 11}, the only triangles of M containing 1 and 11, respec-
tively. Hence γ /∈ {2, 4}, so γ = 5. Thus {g2, g3, 5} is a triad of M\3, 6, 7. As
{g2, g3}∩{2, 4} = ∅, we deduce that {g2, g3, 5, 6, 7} is a cocircuit of M\3, by
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orthogonality. Hence {g2, g3, 5, 6, 7} is a cocircuit ofM . We know {g1, g2, g3}
avoids {2, 3, 4, 5, 6, 7}. It also avoids {1, 11} since each of 1 and 11 is in a
unique triangle. Finally, {g1, g2, g3} avoids {8, 10} by orthogonality. We
conclude that (ii)(b) holds. �

Lemma 10.11. Suppose that M has bowties ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5})
and ({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}) and cocircuits {1, 2, 7, 8} and
{4, 6, 10, 11}. Then |{1, 2, . . . , 8, 10, 11}| = 10. Moreover,

(i) M has a 4-cocircuit containing {1, 3, 11} or {5, 6, 7}; or
(ii) M\3, 6, 7 is internally 4-connected; or
(iii) M\1/8 is internally 4-connected.

Proof. One easily checks that |{1, 2, 3, 4, 5, 6, 7, 8, 10, 11}| = 10. Suppose
that (i) does not hold. Then, by Lemma 10.10 and symmetry, each of M\1,
M\6, M\7, and M\11 has a unique 4-element fan. Suppose that M\1/8 is
not internally 4-connected, letting (X18, Y18) be a (4, 3)-violator of it. Then,
by Lemma 10.5, we may assume that 2 ∈ X18 and 7 ∈ Y18. Moreover, if
5 ∈ Y18, then M has a triangle {1, 8, 12}. This is a contradiction since, by
Lemma 10.10, there is a unique triangle containing 1.

We may now assume that 5 ∈ X18. In that case, Lemma 10.5 implies that
{7, 8, y2, y3} is a circuit of M ; and {3, y2, y3, 1} or {y1, y2, y3} is a cocircuit
of M where {y1, y2, y3} ∩ {1, 2, . . . , 8} = ∅. If {3, y2, y3, 1} is a cocircuit of
M , then the circuit {3, 4, 11} implies, since {1, 3, 4, 6} is not a cocircuit,
that 11 ∈ {y2, y3}, so (i) holds. We deduce that {y1, y2, y3} is a cocircuit of
M . This cocircuit avoids {1, 2, 3, 4, 5, 6, 7, 8, 11}. If 10 ∈ {y1, y2, y3}, then
orthogonality implies that 10 = y1. Hence 1, 2, . . . , 8, 10, 11, y1 , y2, y3 are
distinct except that, possibly, 10 = y1.

Now assume that M\3, 6, 7 is not internally 4-connected. Then, by
Lemma 10.10, M has a triangle {g1, g2, g3} and a cocircuit {5, 6, 7, g2 , g3}
where {g1, g2, g3} ∩ {1, 2, . . . , 8, 10, 11} = ∅. Now {2, 5, 8, y2, y3} is a circuit
of M\3, 6, 7. Thus {g2, g3} meets {y2, y3}. But {y1, y2, y3} is a triad of M
so it avoids {g1, g2, g3}; a contradiction. �

Lemma 10.12. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and
({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}) as bowties, and has {1, 2, 7, 8}, {5, 6, 7, 9},
and {4, 6, 10, 11} as cocircuits. Then

(i) M/9 is internally 4-connected; or
(ii) M has a 4-circuit {7, 8, 9, e2} and a triad {8, e1, e2}; or
(iii) M has a 4-circuit {6, 9, 10, f2} and a triad {10, f1, f2}.

Proof. We apply Lemma 10.10. Since M\6 is (4, 4, S)-connected having 9
in a triad at the end of a 4-element fan, M\6/9 is 3-connected. But M has
no triangle containing 9, so M/9 is 3-connected. Assume it is not internally
4-connected. Then it has a (4, 3)-violator (X9, Y9). Clearly neither X9 nor
Y9 contains {5, 6, 7}. Thus we may assume that one of the following holds:

(a) {5, 6} ⊆ X9 and 7 ∈ Y9; or
(b) {5, 7} ⊆ X9 and 6 ∈ Y9; or



48 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

(c) 5 ∈ X9 and {6, 7} ⊆ Y9.

Consider case (a). If 4 ∈ Y9, then (X9∪4, Y9−4) ∼= (X9, Y9) and |Y9−4| ≥
4 unless Y9 − 4 is a triad of M/9, and hence of M , containing 7. Since this
does not arise, we may assume that 4 ∈ X9. Now assume that 2 ∈ X9.
Then (X9∪7, Y9−7) ∼= (X9, Y9). Hence Y9 is a 4-element fan in M/9 having
(y1, y2, y3, 7) as a fan ordering where {y2, y3, 7} is a triangle. By Lemma 10.4,
{2, 5, 7} is the unique triangle of M containing 7. Thus {y2, y3, 7, 9} is a
circuit of M . By orthogonality, 8 ∈ {y2, y3}, so we may take 8 = y3. Thus
{y2, 7, 8, 9} is a circuit of M and {8, y2, y1} is a cocircuit of M . Hence, when
2 ∈ X9, part (ii) of the lemma holds.

We may now suppose that 2 ∈ Y9. If 3 ∈ X9, then (X9 ∪ 2, Y9 − 2) ∼=
(X9, Y9), so we may assume that Y9 is a 4-element fan of M/9 having a
triad containing 2; a contradiction. Thus 3 ∈ Y9. Hence {5, 6, 4} ⊆ X9 and
{7, 2, 3} ⊆ Y9. Now (X9, Y9) ∼= (X9−5, Y9∪5) ∼= (X9−5−4, Y9∪5∪4). Since
we move 5 by closure and 4 by coclosure, but 4 is not in a triad of M , the set
X9−5 has at least six elements. But (X9−5−4−6, Y9∪5∪4∪6) ∼= (X9, Y9)
and |X9 − 5 − 4 − 6| ≥ 4, so we have a contradiction. We deduce that if
case (a) arises, then (ii) of the lemma holds. By symmetry, if case (b) arises,
then (iii) of the lemma holds.

Finally, consider case (c). If 4 ∈ X9, then (X9 ∪ 6, Y9 − 6) ∼= (X9, Y9) so
we reduce to case (a) unless Y9 − 6 is a triad containing 7, which is not so.
Thus we may assume that 4 ∈ Y9. Then (X9 − 5, Y9 ∪ 5) ∼= (X9, Y9) so we
may assume that X9 is a 4-element fan of M/9 having 5 in a triangle. This
triangle must contain 2, 3, or 4, so one of these elements is in a triad of M ,
a contradiction. �

Lemma 10.13. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and
({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}) as bowties, and has {1, 2, 7, 8}, {5, 6, 7, 9},
and {4, 6, 10, 11} as cocircuits. Then |{1, 2, . . . , 11}| = 11. Moreover, either

(i) M/9 is internally 4-connected; or
(ii) M\1/8 or M\11/10 is internally 4-connected; or
(iii) M\1, 11, 5 is internally 4-connected; or
(iv) M has a 4-cocircuit containing {1, 3, 11}.

Proof. First observe that one easily checks that

10.13.1. |{1, 2, . . . , 11}| = 11.

Assume that none of (i)-(iv) holds. Then M has no 4-cocircuit contain-
ing {1, 3, 11}. By orthogonality and the fact that λ({1, 2, . . . , 6}) ≥ 3, it
follows that M has no 4-cocircuit containing {1, 3}. By Lemma 10.10, M\1,
M\7, M\6 and M\11 are all (4, 4, S)-connected and M has no triangles
containing 1, 7, 6, or 11 beyond those in the bowties listed. As M\1 has a
unique 4-element fan and M\1/8 is not internally 4-connected, Lemma 10.5
implies that M has a circuit {y2, y3, 7, 8} and a cocircuit {y1, y2, y3} where
{y1, y2, y3} avoids {1, 2, 3, 4, 5, 6, 7, 8}. The cocircuit {5, 6, 7, 9} implies that
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9 ∈ {y2, y3} so we may take 9 = y3, without loss of generality. Hence we
have {7, 8, 9, y2} as a circuit and {y1, y2, 9} as a triad. Moreover,

10.13.2. |{1, 2, . . . , 9, y1, y2}| = 11.

By symmetry, M has a circuit {6, 9, 10, z2} and a triad {z1, z2, 9}, and
|{1, 2, . . . , 8, 10, z1 , z2}| = 11. Now |{z1, z2, 9}∩{7, 8, 9, y2}| = 2. But {7, 8}∩
{z1, z2} = ∅, so

{z1, z2, 9} = {y1, y2, 9}.

By Lemma 10.10 and symmetry, since M\1, 11, 5 is not internally 4-
connected, M has a triangle {g1, g2, g3} and a cocircuit {1, 3, 11, g2 , g3} where
{g1, g2, g3} ∩ {1, 2, 3, 4, 5, 6, 7, 8, 10, 11} = ∅. Thus, by (10.13.2) and orthog-
onality,

10.13.3. |{1, 2, . . . , 9, y1, y2, g1, g2, g3, 11}| = 15.

Also 10 /∈ {1, 2, . . . , 9, 11, g1, g2, g3}. By symmetry,

|{1, 2, . . . , 7, 9, 10, z1 , z2, g1, g2, g3, 11}| = 15.

Suppose y2 = z2. The circuits {7, 8, 9, y2} and {6, 9, 10, z2} imply that
{6, 7, 8, 10} is a circuit. Then λ({1, 2, . . . , 11}) ≤ 2, so we have a contradic-
tion since |E(M)| ≥ 15. Thus (y2, z2) = (z1, y1). Then, by Lemma 10.12
and symmetry, we may assume that M has 4-circuit {7, 8, 9, e2} and a triad
{8, e1, e2}. As {7, 8, 9, y2} is a circuit, we must have that e2 = y2. Thus the
cocircuits of M include {8, e1, y2} and {9, y1, y2}, while the circuits include
{7, 8, 9, y2} and {6, 9, 10, y1}. Next we observe that

10.13.4. |{1, 2, . . . , 11, y1, y2, g1, g2, g3}| = 16.

By (10.13.3), if this fails, then 10 ∈ {y1, y2}. But 10 6= y1 as {6, 9, 10, y1}
is a 4-circuit; and 10 6= y2 otherwise the triad {9, y1, y2} is contained in the
circuit {6, 9, 10, y1}.

Now e1 /∈ {1, 2, . . . , 7, 11, g1, g2, g3} since M has no 4-element
fans. By construction, e1 /∈ {8, y2} and, by orthogonality be-
tween {8, e1, y2} and {6, 9, 10, y1}, we have e1 /∈ {9, 10, y1}. Thus
|{1, 2, . . . , 11, y1, y2, g1, g2, g3, e1}| ≥ 17. As λM ({1, 2, . . . , 11, y1, y2}) ≤ 7 +
8− 13 = 2, this gives a contradiction. �

The next lemma will be used in the proof of the subsequent lemma.

Lemma 10.14. Let (X,Y ) be a 3-separation of M(Wk) for some k ≥ 3.
Then X and Y are fans.

Proof. This is certainly true if k = 3, so assume that k ≥ 4. Then the set of
spokes of Wk is uniquely defined and neither X nor Y contains this set of
spokes. Let Wk be labelled as in Figure 8. We show first that:

10.14.1. If s1 and s2 are in X, then w1 ∈ X.
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Figure 8. A labelled wheel.

Suppose w1 6∈ X. Then, since (X ∪ w1, Y − w1) ∼= (X,Y ), we must
have that w1 ∈ cl(Y − w1). Thus wk and w2 are in Y . If Y con-
tains {w1, w2, . . . , wk}, then, as X does not contain the set of spokes,
r(Y ) = k and r(X) = |X|, so r(X) + r(Y ) 6= r(M) + 2; a contra-
diction. Thus Y does not contain {w1, w2, . . . , wk}. Hence Y contains
si+1, wi+1, . . . , wk, w1, . . . , wj , sj+1 for some i > j. Then s1 is a coloop of
M |X. But s1 ∈ cl(Y ). Thus (X − s1, Y ∪ s1) is a 2-separation of M ; a
contradiction.

By (10.14.1) and duality, if two consecutive rim elements are inX, then so
is the spoke element that forms a triad with these two rim elements. Hence
if X is a fan, so is Y . Assume that X is not a fan. Then we can partition
the spokes of Wk into maximal consecutive sets that are contained entirely
in X or entirely in Y . As there must be at least four such sets, it follows
easily that r(X) + r(Y ) ≥ r(M) + 4; a contradiction. �

Lemma 10.15. Suppose M has bowties ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and
({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}), and M has cocircuits {1, 2, 7, 8}, {5, 6, 7, 9},
{4, 6, 11, 10}, and {1, 3, 11, 12}. If |E(M)| ≥ 13, then M.{1, 2, . . . , 12} is
isomorphic to the cycle matroid of the octahedron. Moreover,

(i) M has a proper internally 4-connected minor N with |E(M)| −
|E(N)| ≤ 2; or

(ii) after a possible symmetric relabelling, M has a 4-circuit
{7, 8, 9, y2} and has triads {z1, y2, 8} and {y1, y2, 9} where
|{1, 2, . . . , 12, y2, z1, y1}| = 15, and M/8, 9\y2 is internally 4-
connected; or

(iii) M is isomorphic to the cycle matroid of a terrahawk.

Proof. Let Z = {1, 2, . . . , 12}, R = E(M) − Z, and S = {1, 2, . . . , 7, 11}.
By Lemma 10.10, |Z| = 12. The symmetric difference of the cocir-
cuits {2, 3, 4, 5}, {1, 2, 7, 8}, {5, 6, 7, 9}, {4, 6, 11, 10}, and {1, 3, 11, 12} is
{8, 9, 10, 12}, which must be a cocircuit of M . Consider M\{8, 9, 10, 12}.
We have λM\{8,9,10,12}(S) = 0. Hence M\{8, 9, 10, 12} = (M |S) ⊕ (M |R).
Thus M\{8, 9, 10, 12}/R = M |S ∼= M(W4). Since M/R has {8, 9, 10, 12} as
a cocircuit, we deduce that M/R has rank 5.

Observe that rM/R({8, 9, 10, 12}) = 4 otherwise M has a circuit C con-
taining some non-empty subset X of {8, 9, 10, 12} such that C ⊆ R∪X. But
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the cocircuits of M contained in Z prevent the existence of such a circuit.
As {2, 3, 4, 5} is a cocircuit of M/R, it follows that M/R\{2, 3, 4, 5} has
{8, 9, 10, 12} as a basis. By orthogonality, the fundamental circuit of 7 with
respect to this basis avoids {10, 12} and contains {8, 9}. Hence it is {7, 8, 9}.
Likewise, M/R has {6, 9, 10}, {11, 10, 12}, and {1, 8, 12} as circuits. We de-
duce, since M is binary, that M/R is isomorphic to the cycle matroid of the
octahedron.

We now know that if 13 ≤ |E(M)| ≤ 14, then M has a proper internally
4-connected minor N such that |E(M)|−|E(N)| ≤ 2. Hence we may assume
that |E(M)| ≥ 15 and that M has no proper internally 4-connected minor
N with |E(M)| − |E(N)| ≤ 2.

By Lemma 10.10, each of M\1, M\7, M\6, and M\11 is (4, 4, S)-
connected, and M has no triangles containing any of 1, 7, 6, or 11 except
for those in the two specified bowties. Since M contains no quasi rotor and
{1, 3, 11, 12} is a cocircuit, it follows by Lemma 8.2 and symmetry that we
may assume that M has a 4-circuit {y2, 9, 7, 8} and a triad {y1, y2, 9} where
|{1, 2, . . . , 9, y1, y2, 11}| = 12.

Now apply Lemma 8.2 again, this time focussed on the element 9. We
get that M has either

(a) a 4-circuit {7, 8, 9, z2} and a triad {z1, z2, 8}; or
(b) a 4-circuit {6, 9, 10, z2} and a triad {z1, z2, 10} where z2 6∈

{1, 2, . . . , 10}.

In case (a), we see immediately that z2 = y2.
Next we show the following:

10.15.1. If {6, 9, 10, z2} is a circuit and z2 is in a triad of M where z2 6∈
{1, 2, . . . , 10}, then z2 = y1.

Observe that {9, y1, y2} meets {6, 9, 10, z2} in exactly two elements and
6 /∈ {y1, y2}. Thus |{y1, y2} ∩ {10, z2}| = 1. Suppose first that z2 = y2.
Then {7, 8, 9, y2} △ {6, 9, 10, y2} = {6, 7, 8, 10}, a circuit of M . Thus
λ({1, 2, 3, 4, 5, 6, 7, 8, 10, 11}) ≤ 5 + 7 − 10 = 2, so we have a contradic-
tion since |E(M)| ≥ 15.

Next observe that y2 6= 10 otherwise the circuit {y2, 9, 7, 8} and the co-
circuit {8, 9, 10, 12} have three common elements; a contradiction. Now
suppose that 10 = y1. Then M has {y2, 9, 7, 8} as a circuit and {9, 10, y2} as
a cocircuit. Thus λM ({1, 2, . . . , 11, y2}) ≤ 7 + 7 − 12 = 2, so |E(M)| ≤ 15.
Hence |E(M)| = 15, so E(M) − {1, 2, . . . , 11, y2} is a triangle or a triad of
M . But E(M) − {1, 2, . . . , 11, y2} contains z2, which is in a triad of M ,
so E(M) − {1, 2, . . . , 11, y2} is a triad of M . This triad meets the circuit
{6, 9, 10, z2} in a single element; a contradiction. We conclude that we must
have z2 = y1, that is, (10.15.1) holds.

Note that if {6, 9, 10, y1} is a circuit and {z1, y1, 10} is a cocircuit, then,
as {y1, y2, 9} is also a cocircuit, we have, by symmetry, a special case of
case (a). Hence we may suppose that case (a) occurs. Then z2 = y2, so
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10.15.2. M has a 4-circuit {7, 8, 9, y2} and has triads {z1, y2, 8} and
{y1, y2, 9}.

By orthogonality, y2 /∈ {10, 12}. Thus |{1, 2, . . . , 12, y2}| = 13. Moreover,
{z1, y1}∩{1, 2, . . . , 7, 8, 9, 11} = ∅. The symmetric difference of the cocircuits
{8, 9, 10, 12}, {8, z1, y2}, and {9, y1, y2} is {10, 12}△{z1}△{y1}. Thus either
|{1, 2, . . . , 12, y2, z1, y1}| = 15, or {z1, y1} = {10, 12}.

10.15.3. {z1, y1} 6= {10, 12} and |{1, 2, . . . , 12, y2, z1, y1}| = 15.

Assume the contrary. Then the symmetric difference of {8, y2, z1}
with whichever of {1, 3, 11, 12} and {4, 6, 10, 11} contains z1 implies
that either {8, y2, 1, 3, 11} or {8, y2, 4, 6, 11} is a cocircuit of M .
Hence r∗({1, 2, . . . , 9, 11, y2}) ≤ 8 and r({1, 2, . . . , 9, 11, y2}) ≤ 6, so
λ({1, 2, . . . , 9, 11, y2}) ≤ 2; a contradiction since |E(M)| ≥ 15. Thus
(10.15.3) holds.

Now apply Lemma 8.2 focussing on the element 10. Then M has either

(I) a 4-circuit {6, 9, 10, u2} and a cocircuit {u1, u2, 9}; or
(II) a 4-circuit {10, 11, 12, u2} and a cocircuit {u1, u2, 12}.

Next we show the following:

10.15.4. If M has a circuit {6, 9, 10, u2}, then M is isomorphic to the cycle
matroid of a terrahawk.

First, observe, by (10.15.1), that u2 = y1. Then λ({1, 2, . . . , 11, y1, y2}) ≤
2, so we get a contradiction if |E(M)| ≥ 17. But |E(M)| ≥ 15. Sup-
pose |E(M)| = 15. Then, as M is spanned by {2, 3, 4, 5, 8, 9, 10} and
cospanned by {1, 2, 3, 4, 6, 8, 10, y2}, we deduce that r(M) = 7. But
r(M.{1, 2, . . . , 12}) = 5. Hence r({y2, z1, y1}) = 2, so y2 is in both a tri-
angle and a triad; a contradiction. We deduce that |E(M)| = 16.

Now M is 3-connected. Let Z ′ = {1, 2, . . . , 11, y1, y2}. Then

λ(Z ′) = r(Z ′) + r∗(Z ′)− |Z ′| ≤ 7 + 8− 13 = 2.

Since |E(M)| = 16, we must have that equality holds throughout
the last chain of inequalities. Let w1 be the element of M not in
{1, 2, . . . , 12, y1, y2, z1}. Then {12, w1, z1} is a triangle or a triad. The
fact that z1 is in a triad implies that {12, w1, z1} is a triad of M . As
r({1, 2, . . . , 11, y1, y2}) = 7, it follows that r(M) = 8. As {8, 9, 10, 12}
is a cocircuit of M , we have r(M\{8, 9, 10, 12}) = 7. But, in the nota-
tion from the start of the proof of the lemma, M\{8, 9, 10, 12} = (M |S) ⊕
M |{y1, y2, z1, w1}. As r(M |S) = 4, it follows that r({y1, y2, z1, w1}) = 3.
Since none of y1, y2, or z1 is in a triangle, we deduce that {y1, y2, z1, w1} is
a circuit of M .

Now M has {2, 3, 4, 5, 8, 9, 10, 12} as a basis B since this set spans
{1, 7, 6, 11, y2 , y1}, and M is 3-connected having 16 elements. Clearly
the fundamental circuit of y2 with respect to B is {y2, 8, 2, 5, 9}. By or-
thogonality, C(z1, B), the fundamental circuit of z1 with respect to B, is
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{z1, 8, 2, 3, 12}. The fundamental circuits of y1 and w1 contain {9, 5} and
{12, 3}. Moreover, C(y1, B) contains exactly one of {2, 8}, {3, 12}, and
{4, 10}, and avoids the other two sets. As C(y2, B) = {y2, 8, 2, 5, 9}, it
follows that {2, 8} * C(y1, B). Thus C(y1, B) contains exactly one of
{3, 12} and {4, 10}. If {3, 12} ⊆ C(y1, B), then C(y1, B) △ C(z1, B) △
C(y2, B) = {y1, z1, y2}. But the last set is not a circuit of M , so
C(y1, B) = {y1, 9, 5, 4, 10}. Then the symmetric difference of C(y1, B),
C(z1, B), C(y2, B), and {y1, y2, z1, w1} is {w1, 12, 3, 10, 4}, which must be
the fundamental circuit of w1. We conclude that M is, indeed, the cycle
matroid of a terrahawk. This completes the proof of (10.15.4).

By the last result and symmetry, we may now assume that

10.15.5. M has no 4-circuit containing {6, 9, 10} or {12, 1, 8}.

We deduce from the above that (II) holds, that is, M has a circuit
{10, 11, 12, u2} and a cocircuit {u1, u2, 12}. By applying Lemma 8.2 rela-
tive to the element 12, we get that M has a cocircuit {v1, u2, 10}.

Since 8 is in a triad, M/8 is 3-connected. This matroid has {7, 9, y2, y1}
contained in a maximal fan having 7 as an end that is in a triangle. Thus
M/8\7 is 3-connected. It has {9, 5, 6, 4} as a fan. Suppose this fan is not
contained in a maximal fan having 9 as an end. Then M/8\7 has a triangle
T containing 9 and one of 5 and 6. Then T ∪8 is a 4-circuit of M containing
{8, 9, 5} or {8, 9, 6}. By orthogonality, this is impossible. Hence M/8\7/9 is
3-connected. As y2 and 7 are parallel in M/8, 9, we deduce that M/8, 9\y2
is 3-connected.

To complete the proof of the lemma, we establish the following.

10.15.6. M/8, 9\y2 is internally 4-connected.

Assume this assertion fails and let (X,Y ) be a (4, 3)-violator ofM/8, 9\y2.
Now M |S ∼= M(W4) and M |(S ∪ {8, 9, 10, 12}) has 8, 9, 10, 12 as coloops.
Therefore (M |(S ∪ {8, 9, 10, 12}))/{8, 9}\{10, 12} = M |S. We deduce that
M |S is a restriction of M/8, 9\y2.

Since the only 3-separations of M(W4) have a fan on each side, it follows
that |X ∩ S| ≤ 2 or X ∩ S is a fan in M |S, and |Y ∩ S| ≤ 2 or Y ∩ S is a
fan in M |S. Observe that

10.15.7. Neither X nor Y contains {1, 2, 7, 5, 6}.

If X contains {1, 2, 7, 5, 6}, then (X∪{8, 9, y2}, Y ) is a 3-separation of M ;
a contradiction.

10.15.8. Both |X ∩S| and |Y ∩S| exceed two, so both X ∩S and Y ∩S are
fans in M |S.

Assume that |Y ∩S| ≤ 2. ThenX spans S. Hence (X,Y ) ∼= (X∪S, Y −S).
But X∪S contains {1, 2, 7, 5, 6}, so |Y −S| ≤ 3. If |Y ∩S| = 2, then, as both
elements of Y ∩ S are in the closure of X, we deduce that |Y − S| = 3. In
that case, (X,Y ) ∼= (X∪s1, Y −s1) where Y ∩S = {s1, s2} and |Y −s1| ≥ 4.
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Thus to complete the proof of (10.15.8), it suffices to eliminate the case when
|Y ∩ S| = 1 and Y is a 4-element fan of M/8, 9\y2 that contains a triangle
T where T ∩ S = {σ}. By orthogonality, σ /∈ {2, 3, 4, 5} so σ ∈ {1, 7, 6, 11}.
Now T , T ∪8, T ∪9, or T ∪{8, 9} is a circuit C of M . But M has no triangle
containing 1, 7, 6, or 11 except for those contained in S. Thus C 6= T . By
orthogonality between C and the cocircuits {1, 2, 7, 8} and {5, 6, 7, 9}, we
deduce that either 7 = σ and {8, 9} ⊆ C, or 7 6= σ and |C∩{8, 9}| = 1. In the
first case, C △ {7, 8, 9, y2} is a triangle of M containing y2; a contradiction.
In the second case, by symmetry, we may assume that 8 ∈ C. The cocircuit
{2, 3, 4, 5} implies that σ = 1. Then orthogonality implies that 12 ∈ C.
Hence C is a 4-circuit containing {12, 1, 8}; a contradiction to (10.15.5). We
deduce that (10.15.8) holds.

It follows immediately from (10.15.8) that neither X nor Y contains
{2, 3, 4, 5}. Suppose that X contains exactly three members of {2, 3, 4, 5}.
Then, as (X ∪ {2, 3, 4, 5}, Y − {2, 3, 4, 5}) ∼= (X,Y ), we deduce that Y is a
4-element fan of M/8, 9\y2. We know that Y ∩ S is a fan of M |S having
at least three elements. Since X contains three elements of {2, 3, 4, 5}, by
symmetry, Y contains either {1, 2, 7} or {4, 6, 11}. Moreover, Y has a fan
ordering (h1, h2, h3, α) in M/8, 9\y2 where α is 2 or 4, and {h2, h3, α} is a
triad of M\y2 containing 1, 7, 6, or 11, so {h2, h3, α, y2} is a cocircuit of M .
Since this cocircuit avoids {8, 9}, it must contain 7, so it contains 2. Thus
it also contains 1, so {y2, 7, 2, 1} is a cocircuit. This is a contradiction since
{8, 7, 2, 1} is a cocircuit.

We may now assume that each of X and Y contain exactly two elements
of {2, 3, 4, 5}. Moreover, in each of X ∩ {2, 3, 4, 5} and Y ∩ {2, 3, 4, 5}, the
elements must be consecutive in the cyclic order (2, 3, 4, 5). Suppose that
{2, 3} ⊆ X and {4, 5} ⊆ Y . Then, as X ∩ S and Y ∩ S are both fans of
M |S, it follows that 1 ∈ X and 6 ∈ Y . By symmetry, we may assume
that 7 ∈ X. Then (X ∪ 5, Y − 5) ∼= (X,Y ) so we reduce to an earlier
case unless Y is a fan of M/8, 9\7 with an ordering (h1, h2, h3, 5) where
{h2, h3, 5} is a triangle. In the exceptional case, as Y contains {4, 5, 6}, the
unique triangle of M containing 6, we have {h2, h3, 5} = {4, 6, 5}. Thus
{h1, h2, h3, 7} is a cocircuit of M containing {4, 6, 7} but avoiding 2, so we
contradict orthogonality.

Finally, suppose that {2, 5} ⊆ X and {3, 4} ⊆ Y . Then 7 ∈ X and
11 ∈ Y . If 1 ∈ X, then (X ∪ 3, Y − 3) ∼= (X,Y ) and we have reduced to an
earlier case unless Y is a 4-element fan of M/8, 9\y2 having (h1, h2, h3, 3)
as a fan ordering where {h2, h3, 3} is a triangle. In the exceptional case,
{h2, h3, 3} = {4, 11, 3}. Thus {4, 11, y2} is contained in a 4-cocircuit of M
that avoids {7, 8, 9}; a contradiction to orthogonality.

We may now assume that 1 ∈ Y . By symmetry, 6 ∈ Y . Then (X − 2, Y ∪
2) ∼= (X,Y ) and we have reduced to an earlier case unless X is a 4-element
fan in M/8, 9\y2 having a fan ordering (h1, h2, h3, 2) where {h1, h2, h3} is a
triad. In the exceptional case, since {5, 7} ⊆ {h1, h2, h3}, we deduce that
M has a 4-cocircuit containing {5, 7, y2}. This cocircuit avoids {4, 6} so
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we have a contradiction. This completes the proof of (10.15.6) and thereby
finishes the proof of the lemma. �

Proof of Theorem 10.1. Assume that M has no proper internally 4-
connected minor N with |E(M)| − |E(N)| ≤ 3. Let ({1, 2, 3},
{4, 5, 6}, {2, 3, 4, 5}) be a bowtie in M such that there is no bowtie
({1, 2, 3}, T, C∗) with {1, 2, 3} ∩ C∗ 6= {2, 3}. We now apply Lemma 6.3.
As {1, 2, 3} is not the central triangle of a quasi rotor, M\1 is (4, 4, S)-
connected. Moreover, by symmetry, we may assume that M has a triangle
{2, 5, 7} and a cocircuit {1, 2, 7, 8} where |{1, 2, . . . , 8}| = 8; that is, M con-
tains the structure in Figure 9(a).

Assume that M\1 has a unique 4-element fan. Then, by Lemma 10.3, M
contains either the structure in Figure 9(b) or that in Figure 9(c). Suppose
first that M contains the structure in Figure 9(b). Then, by Lemma 10.6, M
contains either the structure in Figure 10(a) or that in Figure 10(b). In the
latter case, by Lemma 10.8, M\11/12 or M/12 is internally 4-connected. We
deduce that we may assume that if M contains the structure in Figure 9(b),
then it contains the structure in Figure 10(a).

Now assume that M contains the structure in Figure 9(c). Then, by
Lemma 10.11, as M\1 has a unique 4-element fan, M contains the structure
in Figure 7(a). We deduce that if M\1 has a unique 4-element fan, then M
contains either the structure in Figure 10(a) or the structure in Figure 7(a).
On the other hand, if M\1 has more than one 4-element fan, then, by
Lemma 10.7, M contains the structure in Figure 10(a) with 1 taking the
place of 7.

We conclude that we may assume that M contains the structure in Fig-
ure 7(a) since, by Lemma 10.9, it contains this structure if it contains the
structure in Figure 10(a). Now Lemma 10.13 establishes that, since M con-
tains the structure in Figure 7(a), it contains the structure in Figure 7(b).
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Then, by Lemma 10.15, M is the cycle matroid of a terrahawk so the theo-
rem holds. �

11. Rings of Bowties

Recall that a string of bowties is a sequence T1,D
∗
1 , T2,D

∗
2, . . . ,D

∗
n−1, Tn

such that T1, T2, . . . , Tn are pairwise disjoint triangles, each D∗
i is a 4-

cocircuit contained in Ti ∪ Ti+1, and |D∗
j ∩ D∗

j+1| = 1 for all j with
1 ≤ j ≤ n − 2. Theorem 10.1 deals with the case when we have a bowtie
(T1, T2,D

∗
1) that cannot be incorporated into a string T0,D

∗
0 , T1,D

∗
1 , T2 of

bowties. In this section, we deal with the complementary case, proving the
following result.

Theorem 11.1. Let M be an internally 4-connected binary matroid with
|E(M)| ≥ 13. Assume that

(i) M contains no quasi rotor;
(ii) no restriction of M is isomorphic to M(K4);
(iii) M has a bowtie and every bowtie (T1, T2,D

∗
1) belongs to a string

T0,D
∗
0 , T1,D

∗
1, T2 of bowties.

Then M has a proper internally 4-connected minor N with |E(M)| −
|E(N)| ≤ 3 unless M is isomorphic to the cycle matroid of a quartic lad-
der or a quartic Möbius ladder. In the exceptional cases, M has a proper
internally 4-connected minor N with |E(M)| − |E(N)| = 4.

Before beginning the proof of this theorem, we prove two lemmas which
we shall use in its proof.

Lemma 11.2. Let T0,D
∗
0 , T1,D

∗
1 , T2 be a string of bowties in an internally

4-connected binary matroid M . If no triangle of M is the central triangle of
a quasi rotor, then M has no triangle that meets each of T0, T1, and T2.

Proof. Assume that M has a triangle T that meets each of T0, T1, and T2.
By orthogonality, T must contain the element of D∗

0 ∩D∗
1 together with one

element of T0 ∩D∗
0 and one element of T2 ∩D∗

1. Then, by Lemma 2.11, T1

is the central triangle of a quasi rotor. �

Lemma 11.3. Let M be an internally 4-connected binary ma-
troid having {12, 10, 11}, {10, 11, 1, 3}, {1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6} and
{1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6}, {4, 6, 13, 14}, {13, 14, 15} as strings of bowties.
Assume also that M has {2, 5, 7} as a triangle and {1, 2, 7, 8} and {5, 6, 7, 9}
as cocircuits where {7, 8, 9} ∩

(

{1, 2, . . . , 6} ∪ {10, 11, . . . , 15}
)

= ∅. Assume
that M has no M(K4)-restriction and that M contains no quasi rotor.
Then

(i) M/8 or M/9 is internally 4-connected; or
(ii) M has a 4-circuit {7, 8, 9, y2} and triads {z1, y2, 8} and {y1, y2, 9}

where {y1, y2, z2} ∩ {1, 2, . . . , 15} = ∅, and M/8, 9\7 is internally
4-connected; or
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(iii) M has triangles {1, 8, a} and {6, 9, b} where a and b are distinct
elements that are in {10, 11} and {13, 14}, respectively.

Proof. Suppose that neither M/8 nor M/9 is internally 4-connected. We
apply Lemma 8.2, supposing first that (iv) of that lemma holds; that is, M
has a circuit {x2, x3, 1, 8} and a triad {x1, x2, x3}. The cocircuit {1, 3, 10, 11}
implies that {x2, x3} meets {3, 10, 11}; a contradiction since {x1, x2, x3} is a
triad. Next assume that (i) of Lemma 8.2 holds, that is, M has a triangle T
containing {1, 8}. Then, by orthogonality with {1, 3, 10, 11}, we may assume
that T = {1, 8, 10}.

Now apply Lemma 8.2 relative to the element 9, rather than relative to 8.
From above, (iv) of that lemma does not hold. Moreover, (iii) of Lemma 8.2
does not hold, otherwise 8 is in a triad. Hence (i) of Lemma 8.2 holds, that
is, M has a triangle T ′ containing {6, 9}. The cocircuit {4, 6, 13, 14} implies
that T ′ contains 13 or 14. Hence (iii) of Lemma 11.3 holds.

We may now assume that (iii) of Lemma 8.2 holds relative to the element 8
and also relative to 9. Then M has circuits {y2, 7, 8, 9} and {z2, 7, 8, 9}, and
M has triads {y1, y2, 9} and {z1, z2, 8} where {y1, y2, z1, z2}∩{1, 2, . . . , 9} =
∅. Evidently z2 = y2. Moreover, as M is internally 4-connected, none of
z1, y1, or y2 is in {1, 2, . . . , 15}.

Because 8 is in a triad, M/8 is 3-connected. The last matroid has a
maximal fan containing {7, 9, y2, y1} that has 7 as an end that is in a tri-
angle. Thus M/8\7 is 3-connected. Since this matroid has a maximal fan
containing {9, 5, 6, 4} that has 9 as an end that is in a triad, M/8\7/9 is
3-connected.

In M/8, 9, the elements y2 and 7 are parallel, so M/8, 9\7 ∼= M/8, 9\y2.
Thus, to complete the proof of the lemma, it suffices to show that M/8, 9\y2
is internally 4-connected. Assume that it is not, letting (X,Y ) be a (4, 3)-
violator of M/8, 9\y2. Then rM (X ∪ {8, 9}) + rM (Y ∪ {8, 9}) = r(M) + 4.
Without loss of generality, we may assume that 7 ∈ X. If {z1, y1} ⊆ X,
then r(Y ∪ {8, 9}) = r(Y ) + 2 and so (X ∪ {8, 9, y2}, Y ) is a 3-separation of
M ; a contradiction. We deduce that

11.3.1. {z1, y1} ∩ Y 6= ∅.

Next we observe that if {1, 2, 5, 6, 7} ⊆ X, then (X ∪ {8, 9, y2}, Y ) is a
3-separation of M . Thus

11.3.2. {1, 2, 5, 6, 7} 6⊆ X.

Now suppose that {2, 7, 5} ⊆ X. Assume also that 1 ∈ X. Then, by
(11.3.2), 6 ∈ Y . Suppose that 4 ∈ X. As (X ∪ 6, Y − 6) ∼= (X,Y ), we have
that Y is a 4-element fan of M/8, 9\y2 containing a triangle {g2, g3, 6} and a
triad {g1, g2, g3}. Then, since {y1, 7, 5, 6} is a cocircuit of M/8, 9\y2, it fol-
lows that y1 ∈ {g1, g2}, so we may assume that y1 = g3. Now {g1, g2, y1} or
{g1, g2, y1, y2} is a cocircuit of M . As {7, 8, 9, y2} is a circuit of M and
{g1, g2, y1} ∩ {7, 8, 9} = ∅, we deduce by orthogonality that {g1, g2, y1}
is a cocircuit of M . Now {g2, y1, 6} is a triangle of M/8, 9. It follows
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that {g2, y1, 6, 9} is a circuit of M . By orthogonality with the cocircuit
{4, 6, 13, 14}, we obtain a contradiction since neither g2 nor y1 is in a trian-
gle of M .

We may now assume that 4 ∈ Y . We show first that we may suppose
that 3 ∈ X. If 3 ∈ Y , then, as (X ∪ 3, Y − 3) ∼= (X,Y ), we can replace
(X,Y ) by (X ∪ 3, Y − 3) unless Y − 3 is a triad of M\y2 containing {6, 4}.
In the exceptional case, (Y − 3) ∪ y2 is a cocircuit of M that meets the
circuit {7, 8, 9, y2} in one element; a contradiction. We conclude that we
may indeed suppose that 3 ∈ X. Then (X ∪ 4, Y − 4) ∼= (X,Y ). Thus we
have reduced to the case in the previous paragraph unless |Y | = 4 and Y
contains a triad T ∗ of M\y2 containing 4. Then T ∗ ∪ y2 is a cocircuit of M
meeting {7, 8, 9, y2} in one element; a contradiction.

We have now eliminated the case when {2, 7, 5} ⊆ X and 1 ∈ X. We
assume next that {2, 7, 5} ⊆ X and 1 ∈ Y . By symmetry, we may also
suppose that 6 ∈ Y . Assume that 3 ∈ X. Then (X,Y ) ∼= (X ∪ 1, Y − 1)
and we have reduced to an earlier case unless Y − 1 is a triad of M\y2
containing 6. Since neither Y − 1 nor (Y − 1) ∪ y2 is a cocircuit of M , we
conclude that 3 ∈ Y . By symmetry, 4 ∈ Y . Then {2, 5, 7} ⊆ clM/8,9\y2(Y ),
so |X| ≥ 6. Then (X − 2, Y ∪ 2) ∼= (X,Y ). But 5 ∈ cl∗M/8,9\y2(Y ∪ 2) and
so (X − 2− 5, Y ∪ 2 ∪ 5) is a 2-separation of M/8, 9\y2; a contradiction.

We may now assume that X does not contain {2, 7, 5}. Suppose that
{2, 7} ⊆ X and 5 ∈ Y . Then (X ∪ 5, Y − 5) ∼= (X,Y ) and we reduce to an
earlier case unless Y is a 4-element fan in M/8, 9\y2 containing a triangle
{g2, g3, 5}. Consider the exceptional case. As {2, 3, 4, 5} is a cocircuit of
M/8, 9\y2, we deduce that {g2, g3} meets {3, 4}. Thus {g1, g2, g3, y2} is a
cocircuit of M meeting {7, 8, 9, y2} in a single element; a contradiction. This
eliminates the case when {2, 7} ⊆ X and 5 ∈ Y . By symmetry, this means
that we may assume that 7 ∈ X and {2, 5} ⊆ Y . Then (X,Y ) ∼= (X−7, Y ∪
7) and, again, we have reduced to an earlier case unless X is a 4-element fan
of M/8, 9\y2 containing a triangle {g2, g3, 7} and a triad {g1, g2, g3}. Now
M/8, 9\y2 has {5, 6, 7, y1} and {1, 2, 7, z1} as cocircuits. Hence {g2, g3}meets
both {5, 6, y1} and {1, 2, z1}. If {g2, g3}meets {1, 2, 5, 6}, then {g1, g2, g3, y2}
is a cocircuit meeting {7, 8, 9, y2} in just one element. Thus {g2, g3} =
{z1, y1}. Hence {z1, y1, 7, 8, 9} is a circuit of M . But so is {7, 8, 9, y2}. Thus
{y2, z1, y1} is a triangle of M ; a contradiction. �

We are now ready to begin the proof of the main result of this section.

Proof of Theorem 11.1. Assume that the hypotheses of the theorem hold.
We show first that we can build a string of bowties that wraps around on
itself.

Lemma 11.4. For some n ≥ 3, the matroid M has a string
T1,D

∗
1 , T2,D

∗
2, . . . ,D

∗
n−1, Tn of bowties and either

(i) M has a 4-cocircuit D∗
n contained in Tn∪T1 such that |D∗

n−1∩D∗
n| =

1 = |D∗
n ∩D∗

1|; or
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a1

b1

c1 a2

b2

c2 a3

b3

c3 a4

b4

c4

z2

Figure 11. The initial configuration in Lemma 11.5.

(ii) M has a triangle Tn+1 and a 4-cocircuit D∗
n contained in Tn ∪ Tn+1

such that |D∗
n−1 ∩D∗

n| = 1 and Tn+1 ∩ (T1 ∪ T2 ∪ · · · ∪ Tn) consists
of a single element that is in T1 but not in either D∗

1 or D∗
n.

Proof. Take a maximum-length string T1,D
∗
1 , T2,D

∗
2, . . . ,D

∗
n−1, Tn of

bowties in M . By the hypothesis of the theorem, n ≥ 3. Moreover,
the bowtie (Tn−1, Tn,D

∗
n−1) belongs to a string Tn−1,D

∗
n−1, Tn,D

∗
n, Tn+1

of bowties. Because T1,D
∗
1 , T2,D

∗
2, . . . ,D

∗
n−1, Tn has maximum length, it

follows that Tn+1 meets at least one of T1, T2, . . . , Tn−2.
For all i, let Ti = {ai, bi, ci} and D∗

i = {bi, ci, bi+1, ai+1}. Let j be the
largest integer in {1, 2, . . . , n − 2} such that Tn+1 ∩ Tj 6= ∅. If Tj meets
{an+1, bn+1}, then, by orthogonality, Tj contains {an+1, bn+1}, so Tj = Tn+1.
If Tn+1 meets {bj , cj}, then Tn+1 contains {bj , cj}, so Tj = Tn+1. Thus either

(a) Tj = Tn+1; or
(b) Tj ∩ Tn+1 = {aj} = {cn+1}.

In the latter case, suppose that j > 1. Then Tn+1 meets D∗
j−1, so Tn+1

meets {bj−1, cj−1}. Hence an+1 or bn+1 is in Tj−1, that is, D
∗
n meets Tj−1.

But Tn ∩ Tj−1 = ∅, so {an+1, bn+1} ⊆ Tj−1. Thus Tn+1 = Tj−1. Hence
Tn+1 ∩ Tj = ∅; a contradiction. We deduce that if (b) holds, then j = 1 and
(ii) of the lemma holds.

We may now assume that (a) holds, that is, Tj = Tn+1. If {aj , bj}
or {aj , cj} is contained in D∗

n, then (i) of the lemma holds for the string
Tj,D

∗
j , Tj+1,D

∗
j+1, . . . ,D

∗
n−1, Tn of bowties and the cocircuit D∗

n. The re-

maining possibility is that {bj , cj} is contained in D∗
n. Then D∗

n △D∗
j is a

cocircuit of M contained in Tn∪Tj+1. If j = n−2, then λ(Tn−1∪Tn) ≤ 2; a
contradiction. Hence j ≤ n − 3. Then (i) of the lemma holds for the string
Tj+1,D

∗
j+1, Tj+2,D

∗
j+2, . . . ,D

∗
n−1, Tn of bowties and the cocircuit D∗

n △D∗
j

since (D∗
n△D∗

j )∩D
∗
j+1 = D∗

j ∩D
∗
j+1 and (D∗

n△D∗
j )∩D

∗
n−1 = D∗

n∩D
∗
n−1. �

Lemma 11.5. For each j in {1, 2}, let Tj ,D
∗
j , Tj+1,D

∗
j+1, Tj+2 be a string of

bowties. For all i, let Ti = {ai, bi, ci} and D∗
i = {bi, ci, bi+1, ai+1}. Suppose

that M has a triangle {c2, z2, a3}. Then either

(i) M has cocircuits {z1, a2, c2, z2} and {z2, a3, c3, z3} and triangles
{e1, a2, z1} and {c3, z3, e4} where e1 ∈ {b1, c1} and e4 ∈ {a4, b4},
and z1, z2, and z3 are distinct elements that avoid T1 ∪ T2 ∪ T3 ∪ T4;
or

(ii) M has a proper internally 4-connected minor N such that |E(M)|−
|E(N)| ≤ 3.
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Proof. First we show that

11.5.1. M has cocircuits {z1, a2, c2, z2} and {z2, a3, c3, z3} where
{z1, z2, z3} ∩ (T1 ∪ T2 ∪ T3 ∪ T4) = ∅.

By Lemma 8.4, M has a 4-cocircuit {a2, c2, v1, v2} where {v1, v2} avoids
T1 ∪ T2 ∪ T3. By orthogonality with the circuit {c2, z2, a3}, we deduce
that z2 ∈ {v1, v2}, so we let (z1, z2) = (v1, v2). By symmetry, M has a
4-cocircuit {a3, c3, z2, z3} and {z2, z3} ∩ (T2 ∪ T3 ∪ T4) = ∅. If {z1, z2} meets
T4, then, by orthogonality, T4 contains {z1, z2}; a contradiction. It follows
that {z1, z2, z3} ∩ (T1 ∪ T2 ∪ T3 ∪ T4) = ∅. Thus (11.5.1) holds.

The lemma now follows immediately by Lemma 11.3. �

If the situation in (i) of Lemma 11.4 arises, we shall say that
T1,D

∗
1 , T2,D

∗
2, . . . ,D

∗
n−1, Tn,D

∗
n is a ring of bowties. The next lemma com-

pletes the proof of Theorem 11.1 when M has such a ring.

Lemma 11.6. Let T1,D
∗
1, T2,D

∗
2 , . . . ,D

∗
n−1, Tn,D

∗
n be a ring of bowties in

M . Then either

(i) M has a proper internally 4-connected minor N such that |E(M)|−
|E(N)| ≤ 3; or

(ii) M is isomorphic to the cycle matroid of a quartic ladder.

Proof. For all i, let Ti = {ai, bi, ci} and D∗
i = {bi, ci, bi+1, ai+1} where all

subscripts are interpreted modulo n. Assume that (i) fails. By Lemma 8.4
and symmetry, we may assume that M has a triangle {c2, a3, z2}. Then, by
Lemma 11.5, M has cocircuits {z1, a2, c2, z2} and {z2, a3, c3, z3} and trian-
gles {e1, a2, z1} and {c3, z3, e4} where e1 ∈ {b1, c1} and e4 ∈ {a4, b4}, and
z1, z2, and z3 are distinct elements that avoid T1 ∪ T2 ∪ T3 ∪ T4. By orthog-
onality between {e1, a2, z1} and D∗

0, and using Lemma 11.2, we deduce that
e1 = c1. Likewise, e4 = a4. By repeating this argument, we get that, for
all i in {1, 2, . . . , n}, the matroid M has {ci, zi, ai+1} as a triangle and has
{zi−1, ai, ci, zi} as a cocircuit. Moreover, using orthogonality and induction,
we get that z1, z2, . . . , zn are distinct and avoid T1 ∪ T2 ∪ · · · ∪ Tn.

Now let A = T1∪T2∪· · ·∪Tn∪{z1, z2, . . . , zn}. Then |A| = 4n. Moreover,
A is spanned by {a1, c1, a2, c2, . . . , an, cn}, so r(A) ≤ 2n. Also A contains
2n cocircuits of M of one of the forms {bi, ci, bi+1, ai+1} or {zi−1, ai, ci, zi}.
Since the symmetric difference of any proper collection of these cocircuits
is non-empty, we deduce that r∗(A) ≤ |A| − (2n − 1) = 2n + 1. Thus
λ(A) = r(A) + r∗(A) − |A| ≤ 2n + (2n + 1) − 4n = 1. Hence λ(A) =
|E(M) −A| ∈ {0, 1}. In the event that E(M)− A is non-empty, we denote
its unique member by α. By orthogonality with the known 4-cocircuits in
M , we deduce that {a1, c1, a2, c2, . . . , an, cn} is either a basis or a spanning
circuit of M .

Suppose first that {a1, c1, a2, c2, . . . , an, cn} is a spanning circuit. Then
r(A) = 2n − 1 and α does not exist. The known triangles give that M is
represented by the matrix [I2n−1|D] where D is as shown in Figure 12.
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























b1 z1 b2 z2 · · · bn−1 zn−1 cn bn zn
a1 1 0 0 0 · · · 0 0 1 1 0
c1 1 1 0 0 · · · 0 0 1 1 1
a2 0 1 1 0 · · · 0 0 1 1 1
c2 0 0 1 1 · · · 0 0 1 1 1
...

...
...

...
...

. . .
...

...
...

...
...

an−1 0 0 0 0 · · · 1 0 1 1 1
cn−1 0 0 0 0 · · · 1 1 1 1 1
an 0 0 0 0 · · · 0 1 1 0 1

























Figure 12. The matrix D.

One easily checks that M [I2n−1|D] is the cycle matroid of a quartic ladder
labelled as in Figure 13.

bn b1

b2

zn−1 zn

z1

an cn a1
c1

Figure 13. A labelled quartic ladder.

We may now suppose that {a1, c1, a2, c2, . . . , an, cn} is a basis of M . Then
M |A is represented by the matrix [I2n|D

′] where D′ is as shown in Figure 14.
Thus M |A ∼= M(W2n). But the last matroid is not internally 4-connected.
Hence, in this case, α exists. Moreover, to prevent M from having any 4-
element fans, the column corresponding to α must consist entirely of ones.
Now adjoin this column to [I2n|D

′] and then pivot on the entry in the top
right corner of the resulting matrix. After deleting the first row and last
column of the resulting matrix and performing a suitable column permuta-
tion, we obtain a matrix of the same form as in Figure 12. We deduce that
M/α is isomorphic to the cycle matroid of a quartic ladder. Hence M/α is
internally 4-connected and the lemma holds. �

The last lemma treated outcome (i) of Lemma 11.4. Next we treat out-
come (ii).

Lemma 11.7. Suppose that, for some n ≥ 3, the matroid M has a string
T1,D

∗
1 , T2,D

∗
2, . . . ,D

∗
n−1, Tn of bowties. Assume, in addition, that M has a

triangle Tn+1 and a 4-cocircuit D∗
n contained in Tn∪Tn+1 such that |D∗

n−1∩
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
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



b1 z1 b2 z2 · · · zn−1 bn zn
a1 1 0 0 0 · · · 0 0 1
c1 1 1 0 0 · · · 0 0 0
a2 0 1 1 0 · · · 0 0 0
c2 0 0 1 1 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

cn−1 0 0 0 0 · · · 1 0 0
an 0 0 0 0 · · · 1 1 0
cn 0 0 0 0 · · · 0 1 1

























.

Figure 14. The matrix D′.

D∗
n| = 1 and Tn+1 ∩ (T1 ∪ T2 ∪ · · · ∪ Tn) is a single element that is in T1 but

not in either D∗
1 or D∗

n. Then either

(i) M has a proper internally 4-connected minor N such that |E(M)|−
|E(N)| ≤ 3; or

(ii) M is isomorphic to the cycle matroid of a quartic Möbius ladder.

Proof. Assume that (i) does not hold. For all i, let Ti = {ai, bi, ci} and
D∗

i = {bi, ci, bi+1, ai+1}. Then cn+1 = a1. Now the bowtie (T1, T2,D
∗
1) can

be extended to a string Sn, E
∗
n, T1,D

∗
1 , T2 of bowties. We may assume that

E∗
n∩T1 = {a1, c1}. Then E∗

n meets Tn+1, so we may suppose that an+1 ∈ E∗
n.

Thus an+1 ∈ Sn. Since bn+1 6∈ Sn, it follows that cn or bn is in Sn. Now
{cn−1, bn−1, an, bn} is a cocircuit. Suppose bn is in Sn. Then Sn contains
cn−1 or bn−1. Thus Sn meets Tn+1, Tn, and Tn−1, so we have a contradiction
to Lemma 11.2.

a n
−
1

c
n
−
1 a n

c
n

a n
+
1 a

1 b 1

b
2 c 2

b
3bn−1 bn bn+1

zn c1 a2

a3

Figure 15

We may now assume that cn ∈ Sn (see Figure 15). By orthogonality with
D∗

1,D
∗
2, . . . ,D

∗
n−1, we deduce that the element zn of Sn − {an+1, cn} is not

in T1∪T2∪ · · · ∪Tn+1. Moreover, E∗
n contains zn, so E∗

n = {zn, an+1, a1, c1}.
Next we extend the bowtie (Sn, T1, E

∗
n) to a string Sn−1, E

∗
n−1, Sn, E

∗
n, T1.

Now E∗
n−1 ∩ Sn 6= E∗

n ∩ Sn. Thus cn ∈ E∗
n−1, so an or bn is in E∗

n−1. If
bn ∈ E∗

n−1, then the cocircuits D∗
n and D∗

n−1 imply that Sn−1 contains bn+1

and either bn−1 or cn−1. This contradicts Lemma 11.2. Hence an ∈ E∗
n−1.

Thus an ∈ Sn−1, so bn−1 or cn−1 is in Sn−1. But bn−1 6∈ Sn−1 otherwise Sn−1

meets Tn−2, Tn−1, and Tn contradicting Lemma 11.2. Thus cn−1 ∈ Sn−1.
Let zn−1 be the element of Sn−1 − {an, cn−1}. Then, by orthogonality,
zn−1 6∈ T1 ∪ T2 ∪ · · · ∪ Tn+1 ∪ zn, and E∗

n−1 = {zn−1, an, cn, zn}.



INTERNALLY 4-CONNECTED BINARY MATROIDS 63

Next we apply Lemma 11.5 to Tn+1,D
∗
n, Tn,D

∗
n−1, Tn−1 and

Tn,D
∗
n−1, Tn−1,D

∗
n−2, Tn−2 to get a cocircuit {zn−1, cn−1, an−1, zn−2}

and a triangle {an−1, zn−2, en−2} where en−2 ∈ {bn−2, cn−2}. Provided
n − 2 ≥ 2, the cocircuit D∗

n−3 implies that en−2 = cn−2. By repeating
this argument, we obtain, for all i in {3, 4, . . . , n}, a cocircuit E∗

i−1, which
equals {zi, ci, ai, zi−1}, and a triangle {ai, zi−1, ci−1}. Moreover, using
orthogonality and induction, we get that z2, z3, . . . , zn are distinct and
avoid T1 ∪ T2 ∪ · · · ∪ Tn+1.

Now the bowtie (Tn, Tn+1,D
∗
n) extends to a string Tn,D

∗
n, Tn+1, E

∗
0 , S1

of bowties. If {zn, c1} ⊆ S1, then the 4-cocircuits meeting {zn, c1} give a
contradiction. Thus

11.7.1. {zn, c1} 6⊆ S1.

Since Tn+1 ∩E∗
0 6= Tn+1 ∩D∗

n, we have a1 ∈ E∗
0 , so an+1 or bn+1 is in E∗

0 .
We show next that

11.7.2. an+1 6∈ E∗
0 .

Suppose an+1 ∈ E∗
0 . Then, as cn 6∈ E∗

0 , it follows that E∗
0 contains

{a1, an+1, zn}, which is contained in E∗
n. Thus E∗

0 = E∗
n, so S1 contains

{zn, c1}, contradicting (11.7.1).
We now know that bn+1 ∈ E∗

0 . Since a1 ∈ E∗
0 , either b1 or c1 is in E∗

0 . If
c1 ∈ E∗

0 , then c1 ∈ S1, so, by orthogonality with E∗
n, we deduce that zn ∈ S1

and we contradict (11.7.1). Thus b1 ∈ E∗
0 , so b1 ∈ S1. Thus b2 or a2 is in S1.

If b2 ∈ S1, then it follows that S1 meets T3, T2, and T1; a contradiction to
Lemma 11.2. Thus a2 ∈ S1. Let z1 be the element of S1 − {b1, a2}. Then
E∗

0 = {bn+1, a1, b1, z1}. By Lemma 8.4, M has a 4-cocircuit E∗
1 containing

{a2, c2} but otherwise avoiding T1 ∪ T2 ∪ T3. Orthogonality implies that
E∗

1 = {z1, a2, c2, z2}.
Now let Z = {a1, a2, . . . , an+1} ∪ {b1, b2, . . . , bn+1} ∪ {c1, c2, . . . , cn} ∪

{z1, z2, . . . , zn}. Then |Z| = 4n+2. Let S = {a1, c1, a2, c2, . . . , an, cn, bn+1}.
Then S spans Z, so r(Z) ≤ 2n + 1. The cocircuits D∗

1,D
∗
2 , . . . ,D

∗
n and

E∗
0 , E

∗
1 , . . . , E

∗
n, which are all contained in Z and have symmetric difference

equal to the empty set, imply that r∗(Z) ≤ |Z| − ((2n + 1) − 1) = 2n + 2.
Thus λ(Z) = |E(M) − Z| ∈ {0, 1}. When E(M) − Z is non-empty, we let
its unique element be ζ.

The known 4-cocircuits of M imply that S is either a basis or a spanning
circuit. Suppose first that S is a spanning circuit. Then r(Z) = 2n and ζ
does not exist. As in the proof of the previous lemma, the known triangles
determine a representation [I2n|D

′] for M , where D′ is shown in Figure 17.
One easily checks that M is the cycle matroid of a quartic Möbius ladder
labelled as in Figure 18.

Now suppose that S is a basis for M . Then M |S has a representation
of the form [I2n+1|D] where D is as shown in Figure 16. Since n ≥ 3 and
M |S has many 4-element fans, we deduce that ζ must exist. Indeed, since
every row of the indicated matrix, except the first, has two ones, the column
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

b1 z1 b2 z2 b3 · · · bn−1 zn−1 bn zn an+1

a1 1 1 0 0 0 · · · 0 0 0 1 1
c1 1 1 0 0 0 · · · 0 0 0 0 0
a2 0 1 1 0 0 · · · 0 0 0 0 0
c2 0 0 1 1 0 · · · 0 0 0 0 0
a3 0 0 0 1 1 · · · 0 0 0 0 0
c3 0 0 0 0 1 · · · 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
an−1 0 0 0 0 0 · · · 1 0 0 0 0
cn−1 0 0 0 0 0 · · · 1 1 0 0 0
an 0 0 0 0 0 · · · 0 1 1 0 0
cn 0 0 0 0 0 · · · 0 0 1 1 0
bn+1 0 0 0 0 0 · · · 0 0 0 1 1
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Figure 16. The matrix D.

corresponding to ζ must have ones in all rows except possibly the first.
The first row implies that {a1, b1, z1, zn, an+1} or {a1, b1, z1, zn, an+1, ζ} is
a cocircuit C∗ of M . By taking the symmetric difference of C∗ with the
cocircuits {a1, c1, an+1, zn} and {a1, b1, bn+1, z1}, we get {a1, c1, bn+1, ζ} or
{a1, c1, bn+1} depending on whether ζ is or is not in C∗. As a1 is not in a
triad, we deduce that ζ ∈ C∗, so the column corresponding to ζ consists of
all ones. By adjoining this column to [I2n+1|D] and then pivoting on the
entry in the top right corner, we get that M/ζ is represented by [I2n|D

′]
where D′ is as shown in Figure 17. Thus M/ζ is the cycle matroid of a
quartic Möbius ladder labelled as in Figure 18. As the cycle matroid of
a quartic Möbius ladder is internally 4-connected, the lemma holds in this
case and hence the proof is completed. �

For the reader familiar with the paper of Mayhew, Royle, and Whittle [8],
we observe that, at the end of the last proof, the matroid M for which M/ζ
is a quartic Möbius ladder is actually the dual of a triadic Möbius matroid.

All but the last sentence of Theorem 11.1 follows immediately by combin-
ing Lemmas 11.4, 11.6, and 11.7. With |E(M)| ≥ 13, if M is the cycle ma-
troid of a quartic ladder or a quartic Möbius ladder, then M has as a minor
the next smallest quartic ladder or the next smallest quartic Möbius ladder,
so M has an internally 4-connected minor N with |E(M)| − |E(N)| = 4.
Moreover, it is straightforward to check that M has no proper internally
4-connected minor N ′ with |E(M)| − |E(N ′)| < 4. �
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b1 z1 b2 z2 b3 · · · bn−1 zn−1 bn zn an+1 a1
c1 0 0 0 0 0 · · · 0 0 0 1 1 1
a2 1 0 1 0 0 · · · 0 0 0 1 1 1
c2 1 1 1 1 0 · · · 0 0 0 1 1 1
a3 1 1 0 1 1 · · · 0 0 0 1 1 1
c3 1 1 0 0 1 · · · 0 0 0 1 1 1
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...
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...
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...
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an−1 1 1 0 0 0 · · · 1 0 0 1 1 1
cn−1 1 1 0 0 0 · · · 1 1 0 1 1 1
an 1 1 0 0 0 · · · 0 1 1 1 1 1
cn 1 1 0 0 0 · · · 0 0 1 0 1 1
bn+1 1 1 0 0 0 · · · 0 0 0 0 0 1
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Figure 17. The matrix D′.
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Figure 18. A labelled quartic Möbius ladder.
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