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Abstract. This paper proves a preliminary step in what we hope will
be a splitter theorem for internally 4-connected binary matroids. In par-
ticular, we show that, provided M or M∗ is not a cubic Möbius or planar
ladder or a certain coextension thereof, an internally 4-connected binary
matroid M with an internally 4-connected proper minor N either has
a proper internally 4-connected minor M ′ with an N -minor such that
|E(M)−E(M ′)| ≤ 3 or has, up to duality, a triangle T and an element
e of T such that M\e has an N -minor and has the property that one
side of every 3-separation is a fan with at most four elements.

1. Introduction

When dealing with matroid connectivity, it is often useful in inductive
arguments to be able to remove a small set of elements from a matroid
M to obtain a minor M ′ that maintains the connectivity of M . Results
that guarantee the existence of such removal sets are referred to as chain
theorems. Tutte [16] proved that, when M is 2-connected, if e ∈ E(M), then
M\e or M/e is 2-connected. More significantly, when M is 3-connected,
Tutte [16] proved the Wheels-and-Whirls Theorem which shows that M
has a proper 3-connected minor M ′ such that |E(M) − E(M ′)| = 1 unless
r(M) ≥ 3 and M is a wheel or a whirl. A 3-connected matroid is internally
4-connected if, for every 3-separation (X,Y ), either X or Y is a triangle or
a triad. In [2], we proved a chain theorem for binary internally 4-connected
matroids showing that such a matroid M has an internally 4-connected
proper minor M ′ with |E(M) − E(M ′)| ≤ 3 unless M or its dual is the
cycle matroid of a planar or Möbius quartic ladder, or a 16-element graphic
matroid that is a variant of such a planar ladder.

Seymour’s Splitter Theorem [15] extends the Wheels-and-Whirls Theorem
for 3-connected matroids by showing that if such a matroid M has a proper
3-connected minor N , then M has a proper 3-connected minor M ′ that has
an N -minor and satisfies |E(M) − E(M ′)| = 1 unless r(M) ≥ 3 and M is
a wheel or a whirl. The current paper is the third in a series whose aim is
to extend our chain theorem for binary internally 4-connected matroids to a
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splitter theorem for such matroids. Our overall goal is to obtain a theorem
that says if M and N are internally 4-connected binary matroids, and M
has a proper N -minor, then M has a minor M ′ such that M ′ is internally 4-
connected with an N -minor, and M ′ can be produced from M by a bounded
number of simple operations.

Johnson and Thomas [8] showed that, even for graphs, a splitter theo-
rem in the internally 4-connected case must take account of some special
examples. For n ≥ 3, let G2n+2 be the biwheel with 2n+ 2 vertices, that is,
G consists of a 2n-cycle v1, v2, . . . , v2n, v1, the rim, and two additional hub
vertices, u and w, both of which are adjacent to every vi. Thus the dual of
G2n+2 is a cubic planar ladder. Let M be the cycle matroid of G2n+2 for
some n ≥ 3 and let N be the cycle matroid of the graph that is obtained by
proceeding around the rim of G2n+2 and alternately deleting the edges from
the rim vertex to u and to w. Both M and N are internally 4-connected
but there is no internally 4-connected proper minor of M that has a proper
N -minor. We can modify M slightly and still see the same phenomenon.
Let G+

n+2 be obtained from Gn+2 by adding a new edge a joining the hubs u

and w. Let ∆n+1 be the binary matroid that is obtained from M(G+
n+2) by

deleting the edge vn−1vn and adding the third element on the line spanned
by wvn and uvn−1. This new element is also on the line spanned by uvn and
wvn−1. For r ≥ 3, Mayhew, Royle, and Whittle [9] call ∆r the rank-r trian-
gular Möbius matroid and note that ∆r\a is the dual of the cycle matroid
of a cubic Möbius ladder.

In [3], we proved a splitter theorem when M is a 4-connected binary ma-
troid and N is an internally 4-connected proper minor of M . In particular,
we showed that, unless M is a certain 16-element non-graphic matroid, we
can find an internally 4-connected matroid M ′ with |E(M) − E(M ′)| = 1
such that M ′ has an N -minor. In view of this result, we are now able to
assume that M is an internally 4-connected matroid having a triangle or a
triad. But we know nothing about how this triangle or triad relates to the
N -minors of M . Our second step towards the desired splitter theorem was
to consider the case when M is internally 4-connected and all triangles and
triads of M are retained in N . In this case, we have proved [4, Theorem 1.2]
the following result.

Theorem 1.1. Let M and N be internally 4-connected binary matroids such
that |E(N)| ≥ 7, and N is isomorphic to a proper minor of M . Assume that
if T is a triangle of M and e ∈ T , then M\e does not have an N -minor.
Dually, assume that if T ∗ is a triad of M and f ∈ T ∗, then M/f does not
have an N -minor. Then M has an internally 4-connected minor M ′ of M
such that M ′ has an N -minor and 1 ≤ |E(M)− E(M ′)| ≤ 2.

In view of this theorem, we are now able to assume, by replacing M by
its dual if necessary, that M has a triangle T that contains an element e for
which M\e has an N -minor. When we were proving our chain theorem for
a binary internally 4-connected matroid M , we began by finding a triangle
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that either formed part of a very special type of substructure of M , or that
had an element whose deletion satisfied a weaker form of connectivity than
internal 4-connectivity (see Theorem 3.1). The only 3-separations allowed
in an internally 4-connected matroid have a triangle or a triad on one side.
A 3-connected matroid M is (4, 4, S)-connected if, for every 3-separation
(X,Y ) of M , one of X and Y is a triangle, a triad, or a 4-element fan, that
is, a 4-element set {x1, x2, x3, x4} that can be ordered so that {x1, x2, x3} is
a triangle and {x2, x3, x4} is a triad.

The following is the main result of the paper.

Theorem 1.2. Let M be an internally 4-connected binary matroid with an
internally 4-connected proper minor N such that |E(M)| ≥ 15 and |E(N)| ≥
6. Then

(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′

is internally 4-connected with an N -minor; or
(ii) for some (M0, N0) in {(M,N), (M∗, N∗)}, the matroid M0 has a

triangle T that contains an element e such that M0\e is (4, 4, S)-
connected having an N -minor; or

(iii) M or M∗ is isomorphic to M(G+
r+1), M(Gr+1), ∆r or ∆r\z for

some r ≥ 5.

To complete the derivation of our desired splitter theorem, we begin by
building detailed structure around the triangle T in (ii). We have already
completed the next step in this process [5] and observe here that, while it has
considerable additional difficulties posed by the need to retain an N -minor,
this process has much in common with the analysis used to prove the chain
theorem [2].

The proof of Theorem 1.2 will be given in Section 6. Before that, we
give some basic definitions and preliminary results in Section 2 where we
also state a weaker form of our main theorem (Theorem 2.1) that will be be
very helpful in deriving the main theorem. We begin to work towards the
proof of Theorem 2.1 in Section 3, and we prove a major step towards the
theorem in Section 4. We complete the proof of Theorem 2.1 in Section 5
before finishing the proof of the main theorem.

2. Preliminaries

The matroid terminology used here will follow Oxley [11]. We shall some-
times write N � M to indicate that M has an N -minor, that is, a minor
isomorphic to the matroid N . We will denote by C2

3 the graph that is ob-
tained from K3 by adding a new edge in parallel to each existing edge. A
quad in a matroid is a 4-element set that is both a circuit and a cocircuit.
The property that a circuit and a cocircuit in a matroid cannot have exactly
one common element will be referred to as orthogonality. It is well known
([11, Theorem 9.1.2]) that, in a binary matroid, a circuit and cocircuit must
meet in an even number of elements.
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Let M be a matroid with ground set E and rank function r. The con-
nectivity function λM of M is defined on all subsets X of E by λM (X) =
r(X) + r(E −X)− r(M). Equivalently, λM (X) = r(X) + r∗(X)− |X|. We
will sometimes abbreviate λM as λ. For a positive integer k, a subset X
or a partition (X,E − X) of E is k-separating if λM (X) ≤ k − 1. A k-
separating partition (X,E−X) is a k-separation if |X|, |E−X| ≥ k. If n is
an integer exceeding one, a matroid is n-connected if it has no k-separations
for all k < n. This definition has the attractive property that a matroid is
n-connected if and only if its dual is. Moreover, this matroid definition of n-
connectivity is relatively compatible with the graph notion of n-connectivity
when n is 2 or 3. For example, if G is a graph with at least four vertices
and with no isolated vertices, M(G) is a 3-connected matroid if and only if
G is a 3-connected simple graph. But the link between n-connectivity for
matroids and graphs breaks down for n ≥ 4. In particular, a 4-connected
matroid with at least six elements cannot have a triangle. Hence, for r ≥ 3,
neither M(Kr+1) nor PG(r − 1, 2) is 4-connected. This motivates the con-
sideration of other types of 4-connectivity in which certain 3-separations are
allowed. Let n and k be integers with n ≥ 3 and k ≥ 2. A matroid M
is (n, k)-connected if M is (n − 1)-connected and, whenever (X,Y ) is an
(n− 1)-separating partition of E(M), either |X| ≤ k or |Y | ≤ k. In partic-
ular, a matroid is (4, 3)-connected if and only if it is internally 4-connected.
A graph G without isolated vertices is internally 4-connected if M(G) is
internally 4-connected.

A k-separating set X or a k-separation (X,E −X) is exact if λM (X) =
k−1. A k-separation (X,E−X) is minimal if |X| = k or |E−X| = k. It is
well known (see, for example, [11, Corollary 8.2.2]) that if M is k-connected
having (X,E −X) as a k-separation with |X| = k, then X is a circuit or a
cocircuit of M . In a matroid M , the local connectivity uM (X,Y ) between
sets X and Y is r(X)+r(Y )−r(X∪Y ). In particular, uM (X,E(M)−X) =
λM (X) = λM (E(M)−X).

Let M be a matroid. A subset S of E(M) is a fan in M if
|S| ≥ 3 and there is an ordering (s1, s2, . . . , sn) of S such that
{s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn} alternate between triangles and
triads. We call (s1, s2, . . . , sn) a fan ordering of S. We will be mainly con-
cerned with 4-element and 5-element fans. For convenience, we shall always
view a fan ordering of a 4-element fan as beginning with a triangle and we
shall use the term 4-fan to refer to both the 4-element fan and such a fan
ordering of it. Moreover, we shall use the terms 5-fan and 5-cofan to refer to
the two different types of 5-element fan where the first contains two triangles
and the second two triads. The central element of a 5-cofan is the element
that is in both triads. This element will always be the third element in any
fan ordering of the 5-cofan. Fans are examples of sequential 3-separating sets
in M . A subset X of E(M) is sequential if it has a sequential ordering, that
is, an ordering (x1, x2, . . . , xk) such that {x1, x2, . . . , xi} is 3-separating for
all i in {1, 2, . . . , k}. It is straightforward to check that, when M is binary,
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a sequential set with 3, 4, or 5 elements is a fan. A 3-connected matroid
M is (4, k, S)-connected if M is (4, k)-connected and, for every 3-separation
(X,Y ), at least one of X and Y is sequential.

At this point, we introduce yet another form of connectivity. To motivate
this, we return to the example in the introduction letting M be the cycle
matroid of the biwheel G2n+2 and N be the cycle matroid of the graph that
is obtained by proceeding around the rim of G2n+2 and alternately deleting
the edges from the rim vertex to u and to w. Each triangle of M has an
element whose deletion has an N -minor but every such deletion has a 5-
fan. We call a 3-connected matroid (4, 5, S,+)-connected if, whenever it has
(X,Y ) as a 3-separation, one of X and Y is a triangle or a triad, a 4-fan,
or a 5-fan. As a very useful preliminary step towards Theorem 1.2, we shall
first prove the following result.

Theorem 2.1. Let M be an internally 4-connected binary matroid with an
internally 4-connected proper minor N such that |E(M)| ≥ 15 and |E(N)| ≥
6. Then

(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′

is internally 4-connected with an N -minor; or
(ii) for some (M0, N0) in {(M,N), (M∗, N∗)}, the matroid M0 has a

triangle T that contains an element e such that M0\e is (4, 5, S,+)-
connected having an N -minor.

Although we do not retain internal 4-connectivity in (ii), the example de-
scribed above means that we cannot expect to do better than get (4, 5, S,+)-
connectivity. A 3-separation (X,Y ) of a 3-connected matroid M is a (4, k)-
violator if |X|, |Y | ≥ k + 1. In this case, we may also refer to X as a
(4, 3)-violator. Evidently M is internally 4-connected if and only if it has no
(4, 3)-violators. It is well known and easy to check that if (X,Y ) is a (4, 3)-
violator in a 3-connected binary matroid, and |X| = 4, then X is either a
quad or a 4-fan. If a matroid M is (4, k)-connected or (4, k, S)-connected,
then M∗ is, respectively, (4, k)-connected or (4, k, S)-connected However,
(4, 5, S,+)-connectivity allows the presence of 5-fans but not 5-cofans, so a
matroid M may be (4, 5, S,+)-connected even if M∗ is not. A (4, 5, S,+)-
violator is a 3-separation (X,Y ) of M such that either min{|X|, |Y |} ≥ 6,
or min{|X|, |Y |} ≤ 5 and neither X nor Y is a triangle, a triad, a 4-fan, or
a 5-fan.

Johnson and Thomas’s [8] work towards finding a splitter theorem for
internally 4-connected graphs revealed, using the example given in the in-
troduction, that we can be forced to remove arbitrarily many elements to
recover internal 4-connectivity while maintaining a copy of a specified minor.
By controlling the presence of biwheels and ladders, Johnson and Thomas [8]
were able to prove a type of splitter theorem for internally 4-connected
graphs. In their result, each intermediate graph is obtained from its prede-
cessor by removing, via deletion or contraction, at most two edges, and the
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cycle matroid of each such intermediate graph is (4, 4)-connected satisfying
some additional constraints.

Geelen and Zhou [6] proved an analogue of Johnson and Thomas’s the-
orem for internally 4-connected binary matroids. Subsequently, Zhou [18]
proved a stronger theorem showing that, with the exception of various ma-
troids related to biwheels and ladders, when one begins with an internally
4-connected binary matroid M having an internally 4-connected minor N ,
one can remove at most two elements from M to get a matroid that has an
N -minor and is (4, 4)-connected. Both this theorem and the graph result
of Johnson and Thomas have the advantage that, except in known special
cases, each step involves removing only one or two elements. But the ma-
jor disadvantage of each is that, in removing these elements, one may lose
internal 4-connectivity. We have already seen that we may be forced to
remove arbitrarily many elements to recover internal 4-connectivity while
maintaining a copy of a certain minor. Consider a modification of the ex-
ample given earlier. Begin with two non-adjacent edges u0v0 and unvn in a
large complete graph. Add disjoint paths u0, u1, . . . , un and v0, v1, . . . , vn to-
gether with the edges u1v1, u2v2, . . . , un−1vn−1. This produces an internally
4-connected graph H. Now add the edges u0v1, u1v2, . . . , un−1vn to produce
another internally 4-connected graph G. Certainly H is a minor of G, but
there is no internally 4-connected graph that lies properly between G and
H in the minor order. To get a splitter theorem for internally 4-connected
matroids, Geelen (private communication) proposed that one should allow,
as a single move, the conversion of a quartic ladder into a cubic ladder as
occurs when one goes from G to H. We know of another related move that
will also be required to get the desired theorem.

The paper of Zhou cited above contains three results that will be very
useful here. The first is the following lemma [18, Lemma 2.13]. The second
is the subsequent lemma, and the third is stated as Lemma 4.1.

Lemma 2.2. Let N be an internally 4-connected minor of a 3-connected
binary matroid M with |E(N)| ≥ 10. Let (X,Y ) be a 3-separation of M
such that X contains a triangle T and X −T is either a triangle or a triad.

(i) If X − T is a triangle, then M\x has an N -minor for all x in X.
(ii) If X−T is a triad and uM (T,X−T ) = 2, then M\t has an N -minor

for all t in T .

The case when |E(N)| ≥ 7 in the next result is implicit in Zhou [18]. We
include the proof here for completeness.

Lemma 2.3. Let M be an internally 4-connected binary matroid having a
proper internally 4-connected minor N where |E(M)| ≥ 15 and |E(N)| ≥ 6.
Then M has a proper internally 4-connected minor N ′ with an N -minor
such that |E(N ′)| ≥ 10.

Proof. The result is immediate if |E(N)| ≥ 10 as we may take N ′ = N .
Now assume that 7 ≤ |E(N)| ≤ 9. In that case, by [6, Lemma 2.1], N is
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isomorphic to one of F7, F
∗
7 ,M(K3,3), or M∗(K3,3). Zhou [17] proved that

an internally 4-connected binary matroid with a proper F7-minor has a mi-
nor isomorphic to one of five internally 4-connected binary matroids each
of which has ten or eleven elements. Thus if N ∼= F7, then we can find
N ′ with |E(N ′)| in {10, 11}. Geelen and Zhou [6] proved that an internally
4-connected binary matroid with a proper M(K3,3)-minor has a minor iso-
morphic to one of eight internally 4-connected binary matroids each of which
has at least ten and at most fourteen elements. Thus if N ∼= M(K3,3), then
we can find N ′ with |E(N ′)| in {10, 11, 12, 13, 14}. Since |E(M)| ≥ 15, the
lemma follows when 7 ≤ |E(N)| ≤ 9.

Finally, suppose that |E(N)| = 6. Then N ∼= M(K4). Now every 3-
connected binary matroid with at least six elements has an M(K4)-minor.
Hence, to prove the result in this case, we need only show that M has an
internally 4-connected minor M ′ with |E(M ′)| in {10, 11, 12, 13, 14}. This
follows by repeatedly applying the main result of [2]. �

We close this section with one final lemma whose elementary proof is
omitted.

Lemma 2.4. Let (X,Y ) be a (4, 3)-violator of a 3-connected binary matroid
M that has no 4-fans. Then neither X nor Y is sequential. Moreover, if
some element x of X is in the closure or coclosure of Y , then (X−x, Y ∪x)
is a (4, 3)-violator of M .

3. Developing structure

In this section, we develop some more tools that will be needed in the
proof of the main theorem.

In [7], Geelen and Zhou introduced the following structure. Let M be an
internally 4-connected matroid. A rotor with central triangle {a, b, c} is a
9-tuple (a, b, c, d, e, Ta, Tc, A, Z) such that the following hold:

(i) E(M) = {a, b, c, d, e} ∪ Ta ∪ Tc ∪ A ∪ Z and A ∪ Z = E(M) −
({a, b, c, d, e} ∪ Ta ∪ Tc);

(ii) a, b, c, d, and e are distinct, and Ta, Tc, and {a, b, c} are disjoint tri-
angles with d in Ta and e in Tc;

(iii) Ta∪{b, e} and Tc∪{b, d} are 3-separating in M\a and M\c, respec-
tively;

(iv) Ta and Tc are 2-separating in M\a, b and M\b, c, respectively; and
(v) A and Z are disjoint and non-empty, and Ta ∪ a ∪A is 3-separating

in M\b.
We use the following result [2, Theorem 5.1].

Theorem 3.1. Let T be a triangle of an internally 4-connected binary ma-
troid M with |E(M)| ≥ 13. Then either

(i) T is the central triangle of a rotor; or
(ii) T contains an element e such that M\e is (4, 4, S)-connected.
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Let (X,Y ) be an exact 3-separation of a simple binary matroid M . Since
binary matroids are uniquely representable over GF (2), we can view E(M)
as a restriction of PG(r − 1, 2), where r = r(M). Let clP be the closure
operator of PG(r − 1, 2). Then

r(X ∪ Y ) + r(clP (X) ∩ clP (Y )) = r(X) + r(Y ) = r(M) + 2 = r(X ∪ Y ) + 2

Thus clP (X) ∩ clP (Y ) is a line of PG(r − 1, 2), that is, a triangle with
some element set {a, b, c}. We call {a, b, c} the guts line of the 3-separation
(X,Y ). Let M and M ′ be matroids such that E(M) ∩ E(M ′) = {a, b, c}.
Suppose that {a, b, c} is a triangle of both matroids and that M ′ is isomor-
phic to M(K4). Then ∆{a,b,c}(M) denotes the matroid obtained from M by
performing a ∆-Y exchange on {a, b, c}, that is, ∆{a,b,c}(M) is obtained by
deleting {a, b, c} from P{a,b,c}(M

′,M), the generalized parallel connection of
M ′ and M across the triangle {a, b, c} [11, p.449].

Lemma 3.2. Let (X,Y ) be an exact 3-separation of a simple, cosimple
binary matroid M of rank r and let N be an internally 4-connected minor
of M with at least seven elements. Then min{|E(N)∩X|, |E(N)∩Y |} ≤ 3.
Suppose |E(N) ∩X| ≤ 3 and {a, b, c} is the guts line of (X,Y ). Then N is
isomorphic to a minor of either PG(r − 1, 2)|(Y ∪ {a, b, c}) or the matroid
obtained from this matroid by performing a ∆-Y exchange on the triangle
{a, b, c}.

Proof. Suppose first that |X| = 3. Then X is a triangle or triad in M .
In the first case, X = {a, b, c} and M = PG(r − 1, 2)|(Y ∪ {a, b, c}), as
required. In the second case, PG(r−1, 2)|(X∪{a, b, c}) ∼= M(K4). Suppose
|X∩E(N)| = 3. Then X is a triad of N . Moreover, no element of {a, b, c} is
in E(N), otherwise N contains a 4-element fan; a contradiction. In this case,
N is isomorphic to a minor of the matroid obtained from PG(r− 1, 2)|(Y ∪
{a, b, c}) by performing a ∆-Y exchange on {a, b, c}. Hence we may assume
that |X ∩E(N)| < 3. Then some element x of X is not in E(N). Now N is
a minor of M\x or M/x. In the former case, if X − x = {y, z}, then {y, z}
is a cocircuit of M\x, so, without loss of generality, y is not in E(N) and
N is a minor of M\x/y. Thus we may assume that N is a minor of M/x.
Then PG(r − 1, 2)|(Y ∪ {a, b, c}) has an N -minor, as required.

We may now assume that |X|, |Y | ≥ 4. Then, by [11, Propositions
9.3.4 and 11.4.16], letting PG(r − 1, 2)|(E(M) ∪ {a, b, c}) = M ′, we have
that M ′ is P{a,b,c}(MX ,MY ), the generalized parallel connection of MX

and MY across the triangle {a, b, c} where MX = M ′|(X ∪ {a, b, c}) and
MY = M ′|(Y ∪ {a, b, c}). Since N is a minor of M , it is also a minor of
M ′. Now |X ∩ E(N)| ≤ 3. Each element of X − E(N) is deleted or con-
tracted from M ′ to produce N . Let D be the set of such elements that
are deleted and C be the set of such elements that are contracted. Then
M ′\D = P{a,b,c}(MX\D,MY ). If clMX

(C) meets {a, b, c}, then it is not dif-
ficult to see that N is isomorphic to a minor of MY . Thus we may assume
that clMX

(C) avoids {a, b, c}. Then M ′\D/C = P{a,b,c}(MX\D/C,MY ).
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Now, |E(N) ∩ E(MX\D/C)| ≤ 3, so |E(MX\D/C)| ≤ 6. No element of
E(N)∩E(MX\D/C) is in a 1- or 2-element cocircuit of M ′\D/C. It follows
that either r(MX\D/C) = 2 or MX\D/C ∼= M(K4). In the first case, N
is isomorphic to a minor of MY . In the second, N is isomorphic to a minor
of the matroid that is obtained from MY by performing a ∆-Y exchange on
{a, b, c}. �

Let N be an internally 4-connected minor of a simple, cosimple binary
matroid M and (X,Y ) be an exact 3-separation of M with |X ∩E(N)| ≤ 3.
Let {a, b, c} be the guts line of (X,Y ). By the last result, N is isomorphic
to a minor of either PG(r−1, 2)|(Y ∪{a, b, c}) or the matroid obtained from
PG(r − 1, 2)|(Y ∪ {a, b, c}) by performing a ∆-Y exchange on {a, b, c}. In
these cases, we say that N is isomorphic to a minor of the matroid obtained
by replacing X by a triangle or a triad on the guts line of (X,Y ). We also
say that we can get an N -minor of the matroid obtained by putting a triangle
or a triad on the guts of (X,Y ).

The next two lemmas establish properties of M when M has a 4-fan or a
quad. The first is [4, Lemma 2.2]; the second follows easily from [3, Lemma
2.2].

Lemma 3.3. Let (1, 2, 3, 4) be a 4-element fan in a binary matroid M that
has an internally 4-connected minor N such that N has at least eight ele-
ments. Then M\1 or M/4 has an N -minor. Also, if (1, 2, 3, 4, 5) is a 5-fan
in M , then either M\1, 5 has an N -minor, or both M/2\1 and M/4\5 have
N -minors. In particular, both M\1 and M\5 have N -minors.

Lemma 3.4. Let Q be a quad in a 3-connected binary matroid M that has
an internally 4-connected minor N such that N has at least eight elements.
Then either M\x has an N -minor for all x in Q, or M/x has an N -minor
for all x in Q. Moreover, if M\y has an N -minor for some y in Q, then
M\y has an N -minor for all y in Q; and if M/y has an N -minor for some
y in Q, then M/y has an N -minor for all y in Q.

1

2

3 5 7

4 6
8

9

Figure 1. A rotor structure, where {2, 3, 4, 5} and
{5, 6, 7, 8} are cocircuits.
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The next theorem proves a strengthening of the main result in the case
that M has a triangle T such that M\e has an N -minor for all e in T .

Theorem 3.5. Let T be a triangle of an internally 4-connected binary ma-
troid M with |E(M)| ≥ 13. Let N be an internally 4-connected minor of
M . If, for all t in T , the matroid M\t has an N -minor, then either

(i) M has an internally 4-connected proper minor M ′ with |E(M) −
E(M ′)| ≤ 3 such that M ′ has an N -minor; or

(ii) for some element e of T , the matroid M\e is (4, 4, S)-connected hav-
ing an N -minor.

Proof. Assume that the theorem fails. Then, by Theorem 3.1, T is the
central triangle of a rotor. By [7], this means that the rotor can be labelled
as in Figure 1 where T = {4, 5, 6}, and both {2, 3, 4, 5} and {5, 6, 7, 8} are
cocircuits of M . We call 5 the central element of the rotor. Now, as M\4
has an N -minor and has (1, 2, 3, 5, 7) as a fan, it follows from Lemma 3.3
that each of M\1 and M\7 have N -minors. By symmetry, so do each of
M\9 and M\3. As M\e has an N -minor for all e in {3, 5, 7}, by using
Theorem 3.1, we may assume that {3, 5, 7} is the central triangle of a rotor.
Then M has triangles X and Y where X = {x1, x2, x3} and Y = {y1, y2, y3}
such that X,Y , and {3, 5, 7} are disjoint. Moreover, by [3, Lemma 2.10], for
some labelling {a, b, c} of {3, 5, 7}, we have {x2, x3, a, b} and {b, c, y1, y2} as
cocircuits, while {x3, b, y1} is a triangle.

The following is shown in [2, Lemma 6.4].

3.5.1. The only triangles of M containing 5 are {4, 5, 6} and {3, 5, 7},
while the only 4-cocircuits of M contained in {1, 2, . . . , 9} are {2, 3, 4, 5}
and {5, 6, 7, 8}.

We show next that

3.5.2. b = 5.

Assume b 6= 5. Then we may assume that (a, b, c) = (5, 3, 7). Applying
3.5.1 to the rotor with central triangle {5, 3, 7} and central element 3 gives
that the only triangles containing 3 are {5, 3, 7} and {x3, 3, y1}. But {1, 2, 3}
is a triangle, so (x3, y1) is either (1, 2) or (2, 1). In the first case, {x2, 1, 3, 5}
is a cocircuit of M . By orthogonality with the triangle {4, 5, 6}, we see
that x2 ∈ {4, 6}, so M has a 4-cocircuit contained in {1, 2, . . . , 9} other
than {2, 3, 4, 5} or {5, 6, 7, 8}; a contradiction. We may now assume that
(x3, y1) = (2, 1). Then the cocircuit {1, 3, 7, y2} implies, by orthogonality
with the triangle {7, 8, 9}, that y2 ∈ {8, 9}. Again we get a 4-cocircuit
contained in {1, 2, . . . , 9} other than {2, 3, 4, 5} or {5, 6, 7, 8}. Hence 3.5.2
holds.

Next we show the following.

3.5.3. M has triangles {2, 4, 11} and {6, 8, 10} such that |{1, 2, . . . , 11}| =
11.
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By 3.5.1, we may assume that x3 = 4 and y1 = 6. Then the cocircuit
{x2, x3, a, b} is {x2, 4, a, 5}. By orthogonality, this cocircuit contains 3 or
7. In the latter case, by orthogonality again, it also contains 8 or 9, and
we have a 4-cocircuit contained in {1, 2, . . . , 9} other than {2, 3, 4, 5} or
{5, 6, 7, 8}. We deduce that (x2, x3, a, b) is (2, 4, 3, 5) or (3, 4, 2, 5). But
a ∈ {3, 5, 7}, so (x2, x3, a, b) = (2, 4, 3, 5). Thus c = 7, so (b, c, y1, y2) =
(5, 7, 6, 8). Hence M has disjoint triangles {2, 4, 11} and {6, 8, 10}, neither
of which meets {3, 5, 7}. Thus |{1, 2, . . . , 11}| = 11 unless {10, 11} meets
{1, 9}. As {2, 4, 11} and {1, 2, 3} are triangles, 11 6= 1. By symmetry,
it suffices to show that 11 6= 9. If 11 = 9, then {1, 2, . . . , 9} is spanned
by {2, 3, 4, 5}, and so λ({1, 2, . . . , 9}) ≤ 2; a contradiction. We conclude
that 3.5.3 holds.

3.5.4. Both M\1/2 and M\3, 4/5 have N -minors.

Assume first that M/4 has no N -minor. As M\5 has an N -minor having
(1, 3, 2, 4, 11) as a 5-fan, and M/4 has no N -minor, M\5/4 has no N -minor,
so, by Lemma 3.3, M\5\{1, 11} has an N -minor. Now we may assume that
M\1 is not internally 4-connected otherwise (i) holds. Thus, by [2, Lemma
6.5], M has a 4-cocircuit C∗ meeting {1, 2, . . . , 9} in {1, 2}. The triangle
{2, 4, 11} implies that 11 ∈ C∗. Thus M\5\{1, 11} has a 2-cocircuit {2, z}
where C∗ = {1, 2, 11, z}. Hence M\{5, 1, 11}/2 has an N -minor and there-
fore so do each of M\1/2 and M/2; hence M/2\3, 4 does also. But M\3, 4
has {2, 5} as a cocircuit. Thus M\3, 4/5 has an N -minor. Hence 3.5.4 holds
when M/4 has no N -minor.

Now suppose that M/4 does have an N -minor. Clearly 2 and 5 are in
distinct parallel classes of M/4. Hence M/4\2, 5 has an N -minor. But
M/4\2, 5 has (3, 6, 7, 8, 9) as a 5-fan, so M/4\2, 5, 3 has an N -minor. Thus
M\2, 3 has an N -minor and, as {4, 5} is a cocircuit in this matroid, M\2, 3/5
has an N -minor. Thus so do M/5 and M/5\3, 4. As M\3, 4/5 ∼= M\3, 4/2,
we deduce that M/2 has an N -minor and so does M/2\1. We conclude
that 3.5.4 holds.

By [2, Theorem 6.1], one of M\1, M\9, M\1/2,M\9/8, or M\3, 4/5 is
internally 4-connected. By 3.5.4 and symmetry, each of these five matroids
has an N -minor. Thus the theorem holds. �

The first part of the next lemma is in [13, Lemma 6.1], so we omit the
proof. The second part will be used repeatedly throughout the rest of the
paper. In particular, we shall need the two corollaries of the lemma that are
proved following it.

Lemma 3.6. Let {e, f, g} be a triangle in an internally 4-connected binary
matroid M having at least eight elements. Then

(i) M\e is 3-connected; and
(ii) M\e, f is (3, 3)-connected.

Proof. Let (X,Y ) be a 2-separation of M\e, f with |X|, |Y | ≥ 4. As M is
internally 4-connected and e is in a triangle, M\e is 3-connected. Without
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loss of generality, g ∈ Y . Now (X,Y ∪ f) is a 3-separation of M\e since the
last matroid is 3-connected. Hence (X,Y ∪ {e, f}) is a 3-separation of M ,
contradicting the fact that M is internally 4-connected. �

Corollary 3.7. Let {e, f, g} be a triangle in an internally 4-connected binary
matroid M having at least eight elements. Let X be a 2-separating set of
M\e, f where 2 ≤ |X| ≤ |E(M\e, f) − X|. Then either X is a 2-cocircuit
of M\e, f and X ∪ {e, f} is a cocircuit of M , or X is a triangle and, for
some {x1, x2} ⊆ X, the set {x1, x2} is a cocircuit of M\e, f .

Proof. By Lemma 3.6, |X| ≤ 3. If |X| = 2, then, as M is simple, X is a
2-cocircuit of M\e, f ; and, as M is internally 4-connected, X ∪ {e, f} is a
cocircuit of M .

Now let |X| = 3. Then r(X) + r∗M\e,f (X) − 3 = 1. If r(X) = 3, then

r∗M\e,f (X) = 1. But M\e is 3-connected and binary, so M\e, f has no series

classes of size more than two. Thus r(X) = 2, so r∗M\e,f (X) = 2. Hence

X is a triangle. Since M is binary, X is not a triad. Thus X contains a
2-cocircuit, and the corollary holds. �

Corollary 3.8. Let {e, f, g} be a triangle in an internally 4-connected bi-
nary matroid M having at least eight elements. Then si(co(M\e, f)) is 3-
connected and no parallel class of co(M\e, f) has more than two elements.

Proof. The fact that si(co(M\e, f)) is 3-connected is an immediate conse-
quence of the last corollary. Now assume that co(M\e, f) has a parallel
class of size at least three. Then M\e, f has triangles {1, 2, 3} and {1, 4, 5}
such that {2, 3} and {4, 5} are cocircuits. Then {2, 3, e, f} and {4, 5, e, f}
are cocircuits of M . Hence so is {2, 3, 4, 5}. But {2, 3, 4, 5} is also a cir-
cuit of M , so M has a quad, contradicting the fact that M is internally
4-connected. �

The next lemma will be used frequently.

Lemma 3.9. Let e be an element of an internally 4-connected matroid M .

(i) If (U, V ) is a (4, k)-violator of M\e for some k ≥ 3 and C is a circuit
of M containing e, then C meets both U and V .

(ii) If (U, V ) is a (4, 4)-violator or a (4, 4, S)-violator of M\e and Z
is a circuit or a cocircuit of M\e such that V ∪ Z spans e, then
|Z ∩ U | ≥ 2.

Proof. For (i), suppose C−e ⊆ U . Then e ∈ cl(U) and (U ∪e, V ) is a (4, 3)-
violator of M ; a contradiction. Thus (i) holds. For (ii), observe first that U
must meet Z otherwise (U, V ∪ e) is a (4, 3)-violator of M ; a contradiction.
Now either U is a quad, or |U | ≥ 5. If U is a quad, then, by orthogonality,
|Z ∩ U | ≥ 2 as desired. Thus we may assume that |U | ≥ 5. Suppose that U
contains a single element, say z, of Z. Then z is in the closure or coclosure of
V in M\e. Hence (U −z, V ∪z∪e) is a (4, 3)-violator of M ; a contradiction.
We conclude that |Z ∩ U | ≥ 2. �
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Next we prove a lemma that extracts some common features from two of
the longer proofs in the paper, those of Lemma 4.3 and Theorem 2.1

Lemma 3.10. Let {e, f, g} be a triangle of an internally 4-connected
matroid M . Let (Xe, Ye) and (Xf , Yf ) be 3-separations of M\e and
M\f , respectively, where f ∈ Xe and e ∈ Xf . Suppose that
min{|Xe|, |Ye|, |Xf |, |Yf |} ≥ 4. Then the following hold:

(i) g ∈ Ye ∩ Yf ;
(ii) either e ∈ cl(Xf − e), or Xf is a 4-element fan of M\f ;
(iii) either f ∈ cl(Xe − f), or Xe is a 4-element fan of M\e;
(iv) if Xf is not a 4-element fan of M\f and Xe is not a 4-element fan

of M\e, then
(a) e ∈ cl(Xf − e) and f ∈ cl(Xe − f);
(b) λM (Xe ∩ Yf ) + λM (Xf ∩ Ye) ≤ 4;
(c) λM\e,f (Xe ∩Xf ) + λM (Ye ∩ Yf ) ≤ 4; and
(d) |Ye ∩ Yf | ≥ 2 unless Ye is a 4-element fan of M\e and Yf is a

4-element fan of M\f .

Proof. Part (i) is an immediate consequence of Lemma 3.9(i). To prove (ii),
assume that e /∈ cl(Xf − e). Then e ∈ cl∗M\f (Yf ). Thus (Xf − e, Yf ∪ e) is

a 3-separation of M\f . But f ∈ cl(Yf ∪ e), so (Xf − e, Yf ∪ e ∪ f) is a 3-
separation of M . As M is internally 4-connected, it follows that |Xf−e| = 3.
Hence Xf is a 4-element sequential 3-separating set so Xf is a 4-element fan.
Thus (ii) holds. Hence, by symmetry, so does (iii).

Part (iv)(a) is immediate from (ii) and (iii). Now 2 = λM\f (Xf ) =
λM\f,e(Xf − e). Likewise, λM\e,f (Ye) = 2. Thus

2+2 = λM\e,f (Xf−e)+λM\e,f (Ye) ≥ λM\e,f ((Xf−e)∪Ye)+λM\e,f ((Xf−e)∩Ye).
Hence

(1) 4 ≥ λM\e,f (Yf ∩Xe) + λM\e,f (Xf ∩ Ye).

As Yf ∩Xe avoids Xf − e, and e ∈ cl(Xf − e), we have

λM\e,f (Yf ∩Xe) = λM\f (Yf ∩Xe) = λM (Yf ∩Xe)

where the last step follows as {e, g} ⊆ E(M\f)− (Yf ∩Xe). Therefore, by
(1) and symmetry,

(2) 4 ≥ λM (Yf ∩Xe) + λM (Xf ∩ Ye) = λM\f (Yf ∩Xe) + λM\e(Xf ∩ Ye).

Hence (iv)(b) holds.
To prove (iv)(d), suppose |Ye ∩ Yf | < 2. Then, by (i), Ye ∩ Yf = {g}.

Thus min{|Xe ∩ Yf |, |Xf ∩ Ye|} ≥ 3. Hence, by (2), λM\f (Yf ∩ Xe) = 2 =
λM\e(Xf ∩ Ye), so λM\f (Yf ∩Xe) = λM\f (Yf ). But Yf − (Yf ∩Xe) = {g}.
Thus g ∈ cl(Yf ∩ Xe) or g ∈ cl∗M\f (Yf ∩ Xe). The first possibility gives
the contradiction that e ∈ cl(Xe) since f ∈ Xe. Thus g ∈ cl∗M\f (Yf ∩Xe)
so g ∈ cl∗M ((Xe ∩ Yf ) ∪ f). Hence g ∈ cl∗M (Xe) so g ∈ cl∗M\e(Xe). Thus
(Xe∪g, Ye−g) is a 3-separation of M\e, so (Xe∪g∪e, Ye−g) is a 3-separation
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of M . Hence |Ye − g| = 3. Thus Ye − g is a triangle or a triad of M and
hence of M\e. As g ∈ cl∗M\e(Ye−g) and M is binary, we deduce that Ye−g
is a triangle of M\e, and Ye is a 4-element fan of M\e. By symmetry, Yf is
a 4-element fan of M\f , and (iv)(d) holds.

Next, we note that

2 + 2 = λM\e,f (Xe − f) + λM\e,f (Xf − e)
≥ λM\e,f (Xe ∩Xf ) + λM\e,f ((Xe − f) ∪ (Xf − e))
= λM\e,f (Xe ∩Xf ) + λM (Xe ∪Xf ).

Thus (iv)(c) holds. �

In the next lemma, we will assume the following.

Hypothesis I. No triangle of M contains two elements e and f such that
M\e and M\f each have an N -minor, and no triad of M contains two
elements e′ and f ′ such that M/e′ and M/f ′ each have an N -minor.

Recall that the matroid M(C2
3 ) is obtained from a triangle by adding a

new element in parallel to each existing element.

Lemma 3.11. Let M be a binary internally 4-connected matroid and N be
an internally 4-connected proper minor of M with at least eight elements. If
Hypothesis I holds, then either

(i) M has a triangle T such that M\e is (4, 5, S,+)-connected with an
N -minor for some e ∈ T ; or

(ii) M∗ has a triangle T such that M∗\e is (4, 5, S,+)-connected with an
N∗-minor for some e ∈ T ; or

(iii) M has an internally 4-connected minor M ′ having an N -minor such
that |E(M)− E(M ′)| ≤ 3.

Proof. By Theorem 1.1 and duality, we may assume that M has a triangle
{e, f, g} such that M\e has an N -minor. We may also assume that M\e is
not (4, 5, S,+)-connected, so M\e has a (4, 5, S,+)-violator (X,Y ). Then
|X|, |Y | ≥ 4, and neither X nor Y is a 4-fan or a 5-fan, although either
may be a 5-cofan. Since e is in neither cl(X) nor cl(Y ), we may assume
that f ∈ X and g ∈ Y . Let {a, b, c} be the guts line of (X,Y ). Then
M\e = P{a,b,c}(MX ,MY )|E(M\e) where MX = PG(r − 1, 2)|(X ∪ {a, b, c})
and MY = PG(r−1, 2)|(Y ∪{a, b, c}). Note that f ∈ E(MX)−{a, b, c} and
g ∈ E(MY )− {a, b, c}. As (E(N) ∩X,E(N) ∩ Y ) is not a (4, 3)-violator of
N , we may also assume that |E(N) ∩X| ≤ 3. Thus, by Lemma 3.2, MY or
∆{a,b,c}(MY ) has an N -minor. As M is internally 4-connected, it is easily
shown [15, (4.3)] that MX is 3-connected.

We show first that

3.11.1. MX is graphic.

Suppose MX is not graphic. Then, by Asano, Nishizeki, and Seymour [1],
MX has a minor M ′X isomorphic to F7 or M∗(K3,3) that uses {a, b, c}.
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Suppose f ∈ E(M ′X). Then M ′X/f has an M(C2
3 )-minor using the tri-

angle {a, b, c}. Moreover, M ′X\f has an M(K4)-minor using the triangle
{a, b, c}. Since MY or ∆{a,b,c}(MY ) has an N -minor, we deduce that M\e\f
or M\e/f has an N -minor. Indeed, this assertion holds in general since
it also holds when f 6∈ E(M ′X). Thus the triangle {e, f, g} of M contains
distinct elements x and y such that M\x and M\y have N -minors. This
contradiction to Hypothesis I completes the proof of 3.11.1.

Next we show that

3.11.2. co(MX\f) is 3-connected up to parallel classes of size 2. Moreover,
{a, b, c} is a triangle in co(MX\f).

Let (U, V ) be a 2-separation of MX\f . We may assume that |U ∩
{a, b, c}| ≥ 2. Then (U ∪ {a, b, c}, V − {a, b, c}) is a 2-separation of MX\f .
It follows easily that ((U ∪E(MY )) ∩E(M), V − {a, b, c}) is a 2-separation
in M\e, f . Corollary 3.7 shows that either V − {a, b, c} is a 2-cocircuit in
M\e, f , or V − {a, b, c} is a triangle that contains a 2-cocircuit. Using this,
it is not difficult to show that one side of every 2-separation of MX\f is
either a 2-cocircuit, or a triangle that contains a 2-cocircuit. This implies
that co(MX\f) is 3-connected up to parallel classes of size 2.

Suppose that {a, b, c} is not a triangle in co(MX\f). Then it contains a
2-cocircuit in MX\f . Thus MX has a triad that contains f and two elements
of {a, b, c}. By possibly relabelling, we may assume that {a, b, f} is a triad
in MX . As MY is connected, it has a cocircuit that contains {a, b}, and
therefore avoids c. Hence MY has a hyperplane that meets {a, b, c} in {c}.
The union of this hyperplane with E(MX) − {a, b, f} is a hyperplane of
P{a,b,c}(MX ,MY ). Thus there is a cocircuit of P{a,b,c}(MX ,MY ) contained
in E(MY ) ∪ f that contains {a, b, f}. Assume that |E(MX)− {a, b, c}| ≥ 5.
Then (E(MX)−{a, b, c, f}, E(MY )∪f) is a 3-separation of P{a,b,c}(MX ,MY ),
and (X −{a, b, c, f}, Y ∪ (E(M)∩{a, b, c, f})) is a 3-separation in M\e. As
Y contains g, it follows that (X−{a, b, c, f}, Y ∪ (E(M)∩{a, b, c, e, f})) is a
(4, 3)-violator of M . This contradiction shows that |E(MX)−{a, b, c}| ≤ 4.
Hence |E(MX)| ≤ 7, so MX is isomorphic to F7 or M(K4). But MX is
graphic. Thus MX is isomorphic to M(K4), and X = E(MX), otherwise
(X,Y ) is not a (4, 5, S,+)-violator in M\e. If ∆{a,b,c}(MY ) has an N -minor,
then deleting any element of {a, b, c} from M produces a matroid with an
N -minor, contradicting Hypothesis I. Therefore N � MY , so N � M/f .
Hence both M\e and M\g have N -minors. This contradiction shows that
3.11.2 holds.

Let G be a graph such that MX = M(G). We show next that M has
elements x, y, w, and z such that if G0 is the graph shown in Figure 2(a),
where the edges of the outside face are labelled a, b, and c, then

3.11.3. MX = M(G0).

Let H denote the graph obtained from G\f by suppressing degree-2 ver-
tices. Thus M(H) = co(MX\f). By 3.11.2, the parallel classes in H have



16 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

(e) G4
h

f
f

h

i

f

w x

y z

(a) G0

v

f

(c) G2

f
v

(b) G1

(d) G3

Figure 2.

at most two edges. Moreover, H has at most two non-trivial parallel classes
as G is simple.

As co(MX\f) contains the triangle {a, b, c}, its rank is at least two. Sup-
pose first that r(co(MX\f)) ≥ 3. As si(co(MX\f)) is 3-connected with rank
at least three, it also has corank at least three. From [10, Corollary 3.7], we
see that si(co(MX\f)), and hence co(MX\f), has an M(K4)-minor using the
triangle {a, b, c}. By Hypothesis I, M\f has no N -minor, so ∆{a,b,c}(MY )
has no N -minor. Thus N �MY .

Suppose that si(co(MX\f)) has at least seven elements. As si(co(MX\f))
is 3-connected, [15, (4.1)] implies that si(co(MX\f)), and hence MX\f ,
has an M(C2

3 )-minor in which {a, b, c} is a triangle. Now it follows easily
that M\e, f has a minor isomorphic to MY . Thus M\f has an N -minor,
which contradicts Hypothesis I. Therefore si(co(MX\f)) is a 3-connected
binary matroid with rank at least three, and at most six elements. Hence
si(co(MX\f)) is isomorphic to M(K4). Thus the graph H is obtained from
K4 by possibly adding parallel edges.

Assume that a, b, or c is in a non-trivial parallel class in H. Then
co(MX\f), and hence MX\f , has an M(C2

3 )-minor in which {a, b, c} is a
triangle. This implies that M\e, f has a minor isomorphic to MY , and so
has a minor isomorphic to N . As this violates Hypothesis I, we deduce that
none of a, b, and c is in a non-trivial parallel class in H. If H is simple, then
G is one of the graphs G1 or G2, shown in Figure 2 where, as with G0, the
edges in the outside face are labelled with a, b, and c. As H has at most
two non-trivial parallel classes, if H is non-simple, then G is either G3 or
G4, where the dashed edge in G4 may be either present or absent.

If G is G1 or G2, the set T ∗ of edges that are incident with the vertex v is
a triad of M\e that meets a triangle of M\e. As this triad does not contain
f or g, it follows, by orthogonality, that T ∗ is a triad in M . Thus M has



A SPLITTER THEOREM FOR INTERNALLY 4-CONNECTED BINARY MATROIDS III17

a 4-element fan; a contradiction. Now suppose that H is isomorphic to G3

or G4. Then each of G3/h/f and G4/h/i/f has {a, b, c} as a triangle and
has edges a′, b′, and c′ parallel to a, b, and c, respectively. Then M\e/f has
a minor isomorphic to MY , so N � M/f . Thus N � M\e and N � M\g,
contradicting Hypothesis I. We conclude that r(co(MX\f)) 6≥ 3.

We now know that r(co(MX\f)) = 2. Then H is obtained from the
triangle {a, b, c} by adding parallel edges, and no vertex of H has degree
two. It follows easily that G = G0, that is, 3.11.3 holds.

Next we show the following.

3.11.4. N �MY , no element of {a, b, c} is in E(M), and all of {f, w, y, e},
{f, x, z, e}, and {w, x, y, z} are cocircuits of M . Moreover, both M\e/y and
M/y are 3-connected.

Since MX = M(G0), if N � ∆{a,b,c}(MY ), then, as K4 � G0/f , we have
that N � M/f , so N � M\g; a contradiction. Thus N � MY . Suppose
E(M) meets {a, b, c}. Then MX/f has a rank-2 minor that uses the triangle
{a, b, c} and contains a triangle all of whose elements are in E(M)− {e, f}.
Thus N � M/f , so M\g has an N -minor; a contradiction. It follows that
E(M) avoids {a, b, c}. Since {f, x, w} is not in a 4-element fan of M , we
deduce that {f, w, y, e} and {f, x, z, e} are cocircuits ofM . Hence {w, x, y, z}
is a cocircuit of M .

As (y, w, f, x, z) is a 5-cofan in M\e, the dual of Lemma 3.3 implies that
M/y has an N -minor. Now (y, w, f, x, z) is a maximal fan in M\e as E(M)∩
{a, b, c} = ∅. Hence M\e/y is 3-connected. Thus M/y is 3-connected,
otherwise {e, y} is in a triangle of M and we contradict Hypothesis I since
N �M/y. Hence 3.11.4 holds.

We shall assume that M/y is not internally 4-connected, otherwise (iii)
holds. We now show that

3.11.5. M/y has a triad {i, j, k} such that {w, y, i, j} is a circuit in M .

Assume that 3.11.5 fails. Suppose that M/y has a 4-fan, (x1, x2, x3, x4).
Then {y, x1, x2, x3} is a circuit of M . By orthogonality with {e, f, w, y}, we
see that {x1, x2, x3} and {e, f, w} intersect in exactly one element. In fact,
as e, f , and w are all in triangles of M , none is contained in any triads of M .
Therefore x1 is in {e, f, w}. Assume that x1 ∈ {e, f}. Then orthogonality
between {y, x1, x2, x3} and {w, x, y, z} requires that x2 or x3 is equal to x
or z. As x is in a triangle of M , and is therefore in no triad, it follows
that z ∈ {x2, x3}. By symmetry, we may assume that z = x2. Note that
MX/y, z is isomorphic to M(C2

3 ), and {a, b, c} is a triangle in this minor. As
N �MY , it follows that M\e/y, z, and hence M/y, z, has an N -minor. As
{x1, x3} is a circuit of M/y, z, we see that M/y, z\x3, and hence M\x3, has
an N -minor. But {x2, x4} is a 2-cocircuit in M\x3. Hence {x2, x3, x4} is a
triad of M that contains two elements whose contractions have N -minors.
This contradiction to Hypothesis I shows that x1 = w. But now {x2, x3, x4}



18 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

is a triad of M/y, and {y, w, x2, x3} is a circuit of M . This contradicts our
assumption that 3.11.5 fails. Thus we may assume that M/y has no 4-fans.

Using Lemma 2.4, we deduce that M/y has a (4, 3)-violator (U, V ) such
that {f, w, x} ⊆ U . If e ∈ U , then y ∈ cl∗M (U), because of the cocircuit
{e, f, w, y}. This implies (U ∪ y, V ) is a (4, 3)-violator of M , so e is in V .
Similarly, as {w, x, y, z} is a cocircuit in M , and w, x ∈ U , it follows that
z ∈ V . If g is in U , then, by using Lemma 2.4 again, we see that (U∪e, V −e)
is a (4, 3)-violator of M/y, and (U ∪ {e, y}, V − e) is a (4, 3)-violator of M .
Thus g ∈ V . Now (U − f, V ∪ f) is a (4, 3)-violator of M/y as {e, f, g}
is a triangle and e, g ∈ V . The cocircuit {e, f, x, z} shows that x is in
cl∗M (V ∪ f). Hence (U − {f, x}, V ∪ {f, x}) is a (4, 3)-violator of M/y. Now
w is in clM (V ∪{f, x}), so (U −{f, w, x}, V ∪{f, w, x}) is a (4, 3)-violator in
M/y, and the cocircuit {w, x, y, z} shows that (U−{f, w, x}, V ∪{f, w, x, y})
is a (4, 3)-violator in M . This contradiction completes the proof of 3.11.5.

3.11.6. {i, j, k} ∩ {e, f, w, x, y, z} = ∅.

To prove this, note that, as each of e, f , w, and x is in a triangle, none
can be in the triad {i, j, k}. As {i, j, k} remains a triad in M/y, we see
that if 3.11.6 fails, then z ∈ {i, j, k}. In this case, by orthogonality between
{i, j, w, y} and {e, f, x, z}, we see that z = k. Then the 3-connected matroid
M\e/y has {x, f, z} and {i, j, z} as cocircuits and has {x, f, w} and {i, j, w}
as circuits. Thus M\e/y has {x, f, i, j} as a quad containing f . Lemma 3.4
now implies that M\f or M/f has an N -minor. In each case, we get a
contradiction to Hypothesis I. Thus 3.11.6 holds.

We show next that

3.11.7. M/k has an N -minor.

Since M\e is 3-connected, {i, j, k} is a triad in M\e. Hence (w, i, j, k) is
a 4-fan of M\e/y. By applying Lemma 3.3, we see that N is a minor of
M\e/y/k, or of M\e/y\w. In the latter case, N �M\e\w. As {f, y} is a 2-
cocircuit in M\e\w, this implies N �M/f , and this leads to a contradiction
to Hypothesis I. Thus N �M\e/y/k �M/k, so 3.11.7 holds.

Since M∗\k has an N∗-minor, we complete the proof of Lemma 3.11 by
showing that M∗\k is (4, 5, S,+)-connected. First note that, by Lemma 3.6,
M/k is 3-connected since k is in a triad of M . Assume that M∗\k is not
(4, 5, S,+)-connected. Then M/k has a 3-separation (U, V ) where |U |, |V | ≥
4 and neither U nor V is a 4-fan or a 5-cofan.

3.11.8. If (U, V ) is a (4, 5, S,+)-violator of M∗\k, then neither U nor V
contains {i, j}.

This is immediate, otherwise (U ∪ k, V ) or (U, V ∪ k) is a (4, 3)-violator
in M .

3.11.9. If (U, V ) is a (4, 5, S,+)-violator of M∗\k such that i ∈ U and
j ∈ V , then neither U nor V contains {w, y}.
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To prove this, assume that {w, y} ⊆ P where {P,Q} = {U, V }. Let
{p, q} = {i, j}, where p ∈ P and q ∈ Q. Because {p, q, w, y} is the circuit
{i, j, w, y} of M , it follows that (P ∪q,Q−q) is a 3-separation in M∗\k. Now
k ∈ cl∗M (P ∪ q), because {k, p, q} is a triad of M , so (P ∪ {p, k}, Q− q) is a
3-separation in M∗. Thus |Q− q| ≤ 3. Since (P,Q) is a (4, 5, S,+)-violator
in M∗\k, this means that |Q| = 4, so Q is a quad in M∗\k. However, this
is impossible, as q is in the coclosure of P in M∗\k. Hence 3.11.9 holds.

3.11.10. There is a (4, 5, S,+)-violator, (U, V ), of M∗\k such that
{e, f, g} ⊆ U .

Let (U, V ) be a (4, 5, S,+)-violator of M∗\k, and assume that |U ∩
{e, f, g}| ≥ 2. If (U ∪ {e, f, g}, V − {e, f, g}) is a (4, 5, S,+)-violator of
M∗\k, there is nothing left to prove. Therefore we assume that V contains
a single element, α, of {e, f, g}, and that (U ∪α, V −α) is not a (4, 5, S,+)-
violator of M∗\k. This means that |V − α| ≤ 5, so |V | ≤ 6. If V contains
a quad in M/k, then α is not in this quad, by orthogonality with {e, f, g},
so, in this case, V − α contains a quad of M/k, and (U ∪ α, V − α) is a
(4, 5, S,+)-violator of M∗\k. Hence V does not contain a quad of M/k, so
|V | > 4. Thus |V | ∈ {5, 6}.

Suppose |V | = 5. Then V is a 5-element fan of M/k. It must contain two
triangles in M/k, otherwise it is a 5-fan of M∗\k, which contradicts the fact
that (U, V ) is a (4, 5, S,+)-violator. Let (v′1, v

′
2, . . . , v

′
5) be a fan ordering of

V in M/k, where {v′1, v′2, v′3} is a triangle. Since α is in a triangle of M , it
is not in the triad {v′2, v′3, v′4}. Therefore, by replacing (v′1, v

′
2, . . . , v

′
5) with

(v′5, v
′
4, . . . , v

′
1) as necessary, we may assume that α = v′1.

Next assume that |V | = 6. Then V − α is a 5-element fan in M/k with
two triads, otherwise V − α is a 5-cofan in M∗\k, which is impossible as
(U ∪ α, V − α) is not a (4, 5, S,+)-violator. Let (v1, v2, . . . , v5) be a fan
ordering of V −α in M/k, where {v1, v2, v3} is a triad. Now it easy to see by
orthogonality that {v1, v2, v4, v5} is independent in M/k and spans V − α.
It must also span α, for otherwise (U ∪ α, V − α) is a 2-separation in M/k.
Orthogonality shows that one of {v1, v2, α}, {v4, v5, α}, or {v1, v2, v4, v5, α}
is a circuit in M/k. In the second case, we can reverse the fan (v1, v2, . . . , v5),
and assume that {v1, v2, α} is a circuit.

Let us assume that either |V | = 5, or |V | = 6 and {v1, v2, α} is a circuit.
Next we shall eliminate these two cases. In the first case, (α, v′2, v

′
3, v
′
4, v
′
5) is

a fan with two triangles in M/k, and, in the second case, (α, v1, v2, v3, v4) is.
In both cases, M/k has a 5-fan (α,w1, w2, w3, w4). Thus {α,w1, w2, k} and
{w2, w3, w4, k} are circuits of M and {w1, w2, w3} is a triad. Orthogonality
with the triad {i, j, k}, and the fact that V contains only one element of
{i, j}, means that w2 ∈ {i, j}. Thus {w1, w2, w3} is a triad of M that meets
the circuit {i, j, w, y}. Since |V ∩ {i, j}| = 1, and w is in no triads of M , we
deduce that y ∈ {w1, w3}. Therefore {α,w1, w2, k} or {w2, w3, w4, k} is a 4-
element circuit, C, of M that contains k, y, and a single element from {i, j}.
Thus, by orthogonality between C and the cocircuit {e, f, w, y}, it follows
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by 3.11.6 that C is {k, y, α, i} or {k, y, α, j}. Then C meets the cocircuit
{w, x, y, z} in a single element. This contradiction to orthogonality elimi-
nates the two targeted cases. We deduce that |V | = 6, and {v1, v2, v4, v5, α}
is a circuit in M/k. By taking the symmetric difference of this circuit with
{v2, v3, v4}, and using the fact that M/k is simple, we see that {v1, v3, v5, α}
is a circuit in M/k.

By the dual of Lemma 3.3, either M/{k, v1, v5} or M/k\v2/v1 has an
N -minor. Assume that N � M/{k, v1, v5}. As {α, v3} is a 2-circuit in
M/{k, v1, v5}, it follows that N � M\v3. Now {v1, v2, v3} is a triad in
M/k, and hence in M , so {v1, v2} is a 2-cocircuit in M\v3. Thus M/v1
and M/v2 have N -minors, and Hypothesis I is contradicted. It follows that
N �M/k\v2/v1 �M\v2. But {v1, v3} is a 2-cocircuit in M\v2, and we get
exactly the same contradiction. Hence 3.11.10 holds.

Now we let (U, V ) be a (4, 5, S,+)-violator of M∗\k, where {e, f, g} ⊆ U .
By 3.11.8 and 3.11.9, we can let {u, v} = {i, j} and {u′, v′} = {w, y}, where
u, u′ ∈ U and v, v′ ∈ V . Because {e, f, u′, v′} is a cocircuit in M/k, it follows
that (U ∪ v′, V − v′) is 3-separating in M/k. Now {u, v, u′, v′} is a circuit in
M/k, so (U ∪ {v, v′}, V − {v, v′}) is 3-separating in M/k. As {k, u, v} is a
triad, (U ∪ {k, v, v′}, V − {v, v′}) is 3-separating in M , so |V − {v, v′}| ≤ 3.
Thus |V | ≤ 5 and V is sequential.

As (U, V ) is a (4, 5, S,+)-violator of M∗\k, we see that V is a 5-fan in
M/k. This gives a contradiction to orthogonality between the cocircuit
{e, f, u′, v′} and one of the triangles of M/k contained in V . This completes
the proof of Lemma 3.11. �

The next result is helpful in identifying N -minors of M .

Lemma 3.12. Let (X,Y ) be a 3-separation of a 3-connected binary matroid
M with |X| = 6 and |Y | ≥ 6. Let N be an internally 4-connected minor of
M having at least seven elements. Suppose r(X) = 3 and |X − cl(Y )| = 3.
Let T = X ∩ cl(Y ). Then M |X ∼= M(K4) and has T as a triangle and
M = PT (M |X,M |cl(Y )). Moreover, either

(i) for all x in X ∩ cl(Y ), the matroid M\x has an N -minor; or
(ii) for all y in X − cl(Y ), both M\y and M/y have an N -minor.

Proof. Since |X−cl(Y )| = 3, the set X−cl(Y ) is a triad of M . As r(X) = 3,
it follows that X ∩ cl(Y ) is the guts line of the 3-separation (X,Y ) of M .
Thus X ∩ cl(Y ) is a triangle of M and M |X ∼= M(K4). Now N is internally
4-connected with at least seven elements and so has no 4-element fans. Thus
either M\T has an N -minor or M |cl(Y ) has an N -minor, and so (i) or (ii)
holds. �

4. A big step

The goal of this section is to prove Lemma 4.3. When that result is
combined with the next two lemmas, it proves Theorem 2.1 when we replace
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(4, 5, S,+)-connectivity by (4, 5)-connectivity. We begin the section with a
result of Zhou [18, Lemma 2.15].

Lemma 4.1. Let N be an internally 4-connected proper minor of an inter-
nally 4-connected binary matroid M with |E(N)| ≥ 7. Suppose that M\e
has an N -minor and a 5-element 3-separating set A. If A is not a 5-fan or
a 5-cofan, then either M has a triangle T such that M\x has an N -minor
for all x in T , or M has a triad T ∗ such that M/y has an N -minor for all
y in T ∗.

The next lemma follows from Lemma 4.1, Theorem 3.5, and duality.

Lemma 4.2. Let N be an internally 4-connected proper minor of an inter-
nally 4-connected binary matroid M such that |E(N)| ≥ 7 and |E(M)| ≥ 13.
Suppose e ∈ E(M) and {M\e,M/e} contains a member that has an N -
minor and a 5-element 3-separating set A. Then either A is a 5-fan or a
5-cofan, or one of the following holds.

(i) M has an internally 4-connected proper minor that has an N -minor
and has at least |E(M)| − 3 elements; or

(ii) for some a in a triangle of M , the matroid M\a is (4, 4, S)-connected
having an N -minor; or

(iii) for some z in a triad of M , the matroid M/z is (4, 4, S)-connected
having an N -minor.

The following is the main result of this section.

Lemma 4.3. Let M be an internally 4-connected binary matroid with
|E(M)| ≥ 15 and let T be a triangle {e, f, g} of M . Let N be an inter-
nally 4-connected matroid with |E(N)| ≥ 6. Suppose that both M\e and
M\f have N -minors and have (4, 5)-violators. Then

(i) M has an internally 4-connected proper minor M ′ with |E(M) −
E(M ′)| ≤ 3 such that M ′ has an N -minor; or

(ii) M has a triangle T such that M\z has an N -minor for all z in T ;
or

(iii) M has a triad T ∗ such that M/z has an N -minor for all z in T ∗.

Proof. In view of Lemma 2.3, we may assume that |E(N)| ≥ 10. Let (Xe, Ye)
and (Xf , Yf ) be (4, 5)-violators of M\e and M\f , respectively, where f ∈ Xe

and e ∈ Xf . Then min{|Xe|, |Ye|, |Xf |, |Yf |} ≥ 6. By Lemma 3.10,

4.3.1. g ∈ Ye ∩ Yf and e ∈ cl(Xf − e) and f ∈ cl(Xe − f).

The following are immediate consequences of Lemma 3.10(iv)(b).

4.3.2. (a) If |Xe ∩ Yf | ≥ 4, then |Xf ∩ Ye| ≤ 1.
(b) If |Xe ∩ Yf | ∈ {2, 3}, then |Xf ∩ Ye| ≤ 3.
(c) If |Xf ∩ Ye| ≥ 4, then |Xe ∩ Yf | ≤ 1.
(d) If |Xf ∩ Ye| ∈ {2, 3}, then |Xe ∩ Yf | ≤ 3.

Since M is internally 4-connected and M\e, f is (3, 3)-connected, the
following is immediate from Lemma 3.10(iv)(c).
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4.3.3. If |Xe ∩Xf | ≥ 4, then |Ye ∩ Yf | ≤ 3.

Next we show the following.

4.3.4. Either |Xe| ≤ |Ye| and |Xf | ≤ |Yf |; or |Xe| ≥ |Ye| and |Xf | ≥ |Yf |.

By symmetry, suppose that |Ye| < |Xe| and |Xf | < |Yf |. As |E(M)| ≥ 15,
we deduce that |Xe| ≥ 8 and |Yf | ≥ 8. Suppose |Xf ∩ Ye| ≥ 4. Then,
by 4.3.2(c), |Xe ∩ Yf | ≤ 1. Since |Xe| ≥ 8, it follows that |Xe ∩ Xf | ≥ 6.
Thus, by 4.3.3, |Ye ∩ Yf | ≤ 3. Hence |Yf | ≤ 4; a contradiction. We deduce
that |Xf ∩ Ye| ≤ 3.

Suppose |Xf ∩Ye| ∈ {2, 3}. Then, by 4.3.2(d), |Xe∩Yf | ≤ 3. As |Yf | ≥ 8,
it follows that |Ye ∩Yf | ≥ 5. Thus, by 4.3.3, |Xe ∩Xf | ≤ 3. Hence |Xe| ≤ 7;
a contradiction. Finally, suppose that |Xf ∩Ye| ≤ 1. Then, as |Ye|, |Xf | ≥ 6,
we have |Ye ∩ Yf | ≥ 5 and |Xf ∩ Xe| ≥ 4. This contradicts 4.3.3, so 4.3.4
holds.

4.3.5. |Xe| ≤ |Ye| and |Xf | ≤ |Yf |.

Assume that this fails. Then, by 4.3.4, |Ye| ≤ |Xe| and |Yf | ≤ |Xf |.
Moreover, we may assume that equality does not hold for both of these,
so, without loss of generality, |Ye| < |Xe|. Suppose |Xe ∩ Xf | ≤ 3. As
|Xe|, |Xf | ≥ 6, it follows that |Xe ∩ Yf |, |Xf ∩ Ye| ≥ 2. Thus, by 4.3.2,
|Xf ∩ Ye|, |Xe ∩ Yf | ≤ 3. Hence |Xe| ≤ 7. As |Ye| < |Xe|, it follows that
|E(M)| ≤ 14; a contradiction.

We may now assume that |Xe ∩ Xf | ≥ 4. Then, by 4.3.3, |Ye ∩ Yf | ≤
3. As |Ye| ≥ 6, if |Ye ∩ Yf | ≤ 2, then |Xe ∩ Yf |, |Xf ∩ Ye| ≥ 4 and we
contradict 4.3.2. Thus |Ye ∩ Yf | = 3 and |Xe ∩ Yf |, |Xf ∩ Ye| ≥ 3. Hence, by
4.3.2, |Xe ∩Yf | = 3 = |Xf ∩Ye|. By Lemma 3.10(iv)(c), if λM (Ye ∩Yf ) = 3,
then λM\e,f (Xe ∩ Xf ) ≤ 1, so |Xe ∩ Xf | ≤ 3; a contradiction. Hence
λM (Ye ∩ Yf ) = 2, so Ye ∩ Yf is a triangle or a triad of M . But g ∈ Ye ∩ Yf ,
so, by orthogonality, Ye ∩ Yf is a triangle.

As |Xe ∩ Yf | = 3 = |Xf ∩ Ye|, it follows by Lemma 3.10(iv)(b) that each
of Xe ∩ Yf and Xf ∩ Ye is a triangle or a triad of M . If one of these is a
triangle, then, by Lemma 2.2, M\x has an N -minor for each element x in
this triangle and (ii) holds. Thus we may assume that Xf ∩ Ye and Xe ∩ Yf
are triads of M .

Applying Lemma 2.2 to M\e taking Ye∩Yf to be T , we deduce that either
(ii) holds, or uM\e(Ye∩Yf , Ye∩Xf ) 6= 2. In the latter case, as r(Ye∩Yf ) = 2,
it follows that r(Ye ∩Xf ) 6= r(Ye), so

(3) r(Ye) ≥ 4.

Similarly, applying the dual of Lemma 2.2 to (M\e)∗ taking Xf ∩ Ye to be
T , we deduce that either (iii) holds, or u(M\e)∗(Xf ∩Ye, Ye∩Yf ) 6= 2. In the
latter case, as r(M\e)∗(Xf ∩ Ye) = 2, it follows that

(4) r∗M\e(Ye) ≥ 4.
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We may now assume that (3) and (4) hold. As Ye is 3-separating in M\e,
we have that r(Ye) + r∗M\e(Ye) = 8, so

(5) r(Ye) = r∗M\e(Ye) = 4.

Let Ye ∩ Yf = {1, 2, 3} and Xf ∩ Ye = {4, 5, 6}. Now {4, 5, 6} is a triad of
M and {1, 2, 3} is a triangle. Clearly {4, 5, 6} is contained in a basis B of Ye.
As |B| = 4, we may assume that 3 ∈ B. Let C be the fundamental circuit
CM |Ye

(1, B). This circuit does not contain the triad {4, 5, 6}. Moreover,
|C| > 3, as M has no 4-element fans. As |B| = 4, we deduce that |C| = 4.
Hence |C ∩ {1, 2, 3}| = 2, so C 4 {1, 2, 3} is a triangle of M that meets the
triad {4, 5, 6}; a contradiction to the fact that M is internally 4-connected.
We conclude that 4.3.5 holds.

Since |Xe| ≤ |Ye| and |Xf | ≤ |Yf |, we have that

|Xe ∩Xf |+ |Xe ∩ Yf |+ 1 ≤ |Xf ∩ Ye|+ |Yf ∩ Ye|
and

|Xf ∩Xe|+ |Xf ∩ Ye|+ 1 ≤ |Xe ∩ Yf |+ |Ye ∩ Yf |.
Adding these two inequalities and simplifying, we get

(6) |Xe ∩Xf |+ 1 ≤ |Ye ∩ Yf |
From this and 4.3.3, it follows that |Xe ∩Xf | ≤ 3. If |Xe ∩Xf | ≤ 1, then
|Xe ∩ Yf |, |Xf ∩ Ye| ≥ 4, which contradicts 4.3.2(a). Hence

(7) |Xe ∩Xf | ∈ {2, 3}.
As |Xe|, |Xf | ≥ 6, we have

(8) min{|Xe ∩ Yf |, |Xf ∩ Ye|} ≥ 6− (1 + |Xe ∩Xf |) ≥ 2.

Thus, by 4.3.2,

(9) max{|Xe ∩ Yf |, |Xf ∩ Ye|} ≤ 3.

As |E(M)| ≥ 15, we have |Ye ∩ Yf | ≥ 4. Hence, by Lemma 3.10(iv)(c),

(10) λM\e,f (Xe ∩Xf ) = 1.

Next we show the following.

4.3.6. The lemma holds when |Xe ∩Xf | = 2.

Assume that |Xe ∩ Xf | = 2. Then Xe ∩ Xf is a 2-element cocircuit
{1, 2} of M\e, f so {1, 2, e, f} is a cocircuit of M . By (9) and the first
inequality in (8), |Xf ∩ Ye| = 3 = |Xe ∩ Yf |. Let Xf ∩ Ye = {3, 4, 5} and
Xe ∩ Yf = {6, 7, 8}. Then each of {3, 4, 5} and {6, 7, 8} is a triangle or a
triad of M by Lemma 3.10(iv)(b).

Suppose {3, 4, 5} is a triad of M . Then {3, 4, 5} and {1, 2, e} are triads
of M\f . By applying the dual of Lemma 2.2 to M\f , we deduce that (iii)
holds. Thus we may assume that both {3, 4, 5} and {6, 7, 8} are triangles.
If rM\f (Xf ) = 3 or rM\e(Xe) = 3, then, by applying Lemma 2.2 to M\f or
M\e, we get that (ii) holds. By duality, if r∗M\f (Xf ) = 3 or r∗M\e(Xe) = 3,
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then (iii) holds. Hence we may assume, since rM\e(Xe) + r∗M\e(Xe) = 8

and rM\f (Xf ) + r∗M\f (Xf ) = 8, that rM\e(Xe) = r∗M\e(Xe) = rM\f (Xf ) =

r∗M\f (Xf ) = 4.

As |E(N)| ≥ 10, we have that |Xf ∩ E(N)| ≤ 3. Let L be the guts line
of the 3-separation (Xf , Yf ) of M\f . Let MX be the matroid obtained by
extending M |Xf by the elements of L − Xf . Then MX is a 3-connected
matroid of rank 4. Moreover, as M\f has {1, 2, e} as a cocircuit, so does
MX . Thus MX\{1, 2, e} is a plane P that contains L and {3, 4, 5}. As M is
binary, L∩{3, 4, 5} is non-empty, so we may assume that L∩{3, 4, 5} = {3}.
Let L′ be the guts line of the triad {1, 2, e} of MX . Then, viewing M as a
restriction of a binary projective geometry, we see that L′ lies in the plane of
the projective geometry that is spanned by P . As r(Xf ) = 4, the lines L′ and
{3, 4, 5} are distinct. Moreover, L 6= L′ otherwise {4, 5} is a 2-cocircuit of
MX ; a contradiction. Thus, letting t be the point where L′ meets {3, 4, 5}, we
have thatMX has (t, u, v, w) as a 4-fan where {u, v, w} = {1, 2, e}. Moreover,
we may assume that t is 3 or 5. Thus MX is isomorphic to S8 or M(W4).
In the first case, MX is the rank-4 tipped cotipped binary spike with 3 as
the tip and w as the cotip. Hence {w, 4, 5} is a cocircuit of MX and so of
M\f . As M has no 4-element fans, it follows that {f, w, 4, 5} is a cocircuit
of M so, by orthogonality with the circuit {e, f, g}, we deduce that w = e.
Thus, when MX

∼= S8, we have that MX/e ∼= F7. Consider the second
case, when MX

∼= M(W4). Then MX has {u, 4, 5} as a cocircuit, so M
has {f, u, 4, 5} as a cocircuit and, by orthogonality, u = e. In this case,
si(MX/e) is isomorphic to M(K4) and uses the line L.

Now N is isomorphic to a minor of the matroid that is obtained by re-
placing Xf by a triangle or a triad on the guts line L of (Xf , Yf ). For both
of the choices of MX , we see that M\f/e has an N -minor when we need to
replace Xf by a triangle on L and when we need to replace it by a triad. We
conclude that M/e\g has an N -minor and, therefore, so does M\g. Thus
the lemma holds and so we have proved 4.3.6.

By 4.3.6 and (7), we may now assume that |Xe ∩ Xf | = 3. By (10)
and Corollary 3.7, Xe ∩ Xf is a triangle {0, 1, 2} containing a 2-element
cocircuit, say {1, 2}, of M\e, f . Moreover, as |Xf ∩ Ye| ∈ {2, 3}, it follows
that |Xf | ∈ {6, 7}. By symmetry, |Xe| ∈ {6, 7}.

We show next that we may assume, by possibly interchanging e and f ,
that

4.3.7. |Xf ∩ E(N)| ≤ 3.

Since |E(N)| ≥ 10, this is immediate if |Xf | = 6. Now suppose that
|Xf | = 7, but that 4.3.7 fails. Then |Yf ∩E(N)| ≤ 3, so |E(N)| ≤ 10. Thus
|Xf ∩ E(N)| = 7 and |E(N)| = 10. Now |Xe ∩ E(N)| ≥ 4 otherwise we
can interchange e and f to get that 4.3.7 holds. Thus |Ye ∩ E(N)| ≤ 3.
Hence |Xe ∩ E(N)| = 7. Therefore E(N) ⊇ Xe ∪Xf so |E(N)| ≥ 11. This
contradiction completes the proof of 4.3.7.



A SPLITTER THEOREM FOR INTERNALLY 4-CONNECTED BINARY MATROIDS III25

Suppose r(Xf ) = 4. Let L be the guts line of the 3-separation (Xf , Yf ) of
M\f . Let MX be the matroid obtained by extending M |Xf by the elements
of L − Xf . As M\f is 3-connected, so is MX . Now {1, 2, e} is a cocircuit
of M\f and so is a cocircuit of MX . As co(MX\e) is not simple, Bixby’s
Lemma implies that si(MX/e) is 3-connected. We note that e is not on the
line L. The matroid MX/e has rank 3 and both L and {0, 1, 2} span lines of
MX/e. These lines either coincide or meet in a single point. In each case,
si(MX/e) has M(K4) as a restriction. It follows that we can put either a
triangle or triad on L in M\f/e. Thus M/e\g has an N -minor, and so does
M\g. Hence the lemma holds if r(Xf ) = 4.

Next suppose that r(Xf ) ∈ {5, 6} and |Xf | = r(Xf ) + 1. Then
r∗M\f (Xf ) = 3, so (M\f)∗|Xf is isomorphic to M(K4) or F7 and has {1, 2, e}
as a triangle. Moreover, (M\f)∗|Xf has a triangle, T1, that avoids e and
contains 1. By orthogonality, T1 is a triad ofM meeting the triangle {0, 1, 2}.
Thus M has a 4-fan; a contradiction.

Now assume that r(Xf ) = 5 and |Xf | = 7. Then r∗M\f (Xf ) = 4 and

|Xf ∩ Ye| = 3. Let Xf ∩ Ye = {3, 4, 5}. Then {3, 4, 5} is a triangle or
triad of M . Assume it is a triangle. Then M |Xf has e as a coloop; a
contradiction to 4.3.1. Thus {3, 4, 5} is a triad of M . Since r∗M\f (Xf ) = 4,

the set Xf contains at least three cocircuits of M\f . Two of these are
{1, 2, e} and {3, 4, 5}. Let C∗ be a third such cocircuit. If C∗ ⊆ {0, 1, 2, e},
then λM\f ({0, 1, 2, 3}) ≤ 1; a contradiction. We deduce that C∗ meets
{3, 4, 5}. If |C∗ ∩ {3, 4, 5}| = 2, then C∗ 4 {3, 4, 5} is a cocircuit meeting
{3, 4, 5} in just one element. Hence we may assume that C∗∩{3, 4, 5} = {3}.
As {1, 2, e} is a cocircuit and {0, 1, 2} is a circuit of M\f , we may assume
that C∗ is {3, e, 0, 1} or {3, 0, 1}. Since {3, e, 0, 1} 4 {1, 2, e} = {3, 0, 2}, we
may assume that either {3, 0, 1} or {3, 0, 2} is a cocircuit of M\f and hence
of M . In each case, we obtain a 4-element fan of M ; a contradiction.

It remains to consider the case when r(Xf ) = 3. Since {1, 2, e} is a
cocircuit of M\f , it follows that |Xf | = 6 and Xf − {1, 2, e} is a triangle T
that equals the guts line L of the 3-separation (Xf , Yf ) of M\f . Then, by
Lemma 3.12, either M\f/e has an N -minor, so M\g has an N -minor and
the lemma holds; or, for all z in T , the matroid M\z has an N -minor and the
lemma follows by Theorem 3.5. This completes the proof of Lemma 4.3. �

5. Proof of Theorem 2.1

The purpose of this section is to prove the last major step towards the
proof of the main result of the paper.

Proof of Theorem 2.1. By Lemma 2.3, we may assume that |E(N)| ≥ 10.
Suppose that the theorem does not hold. By Lemma 3.11, Hypothesis I does
not hold for M and we may assume, up to duality, that M has a triangle
{e, f, g} such that N � M\e and N � M\f . Then M\e and M\f have
(4, 5, S,+)-violators (Xe, Ye) and (Xf , Yf ), respectively, such that e ∈ Xf
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and f ∈ Xe. By Lemma 3.10(i), g ∈ Ye ∩ Yf . Without loss of generality, we
may assume that

(11) min{|Xe|, |Ye|} ≤ min{|Xf |, |Yf |}.
We now show that this implies that

5.1.1. (Xe, Ye) is not a (4, 5)-violator.

Assume the contrary. Then, by Lemma 4.3 and Theorem 3.5, (Xf , Yf ) is
not a (4, 5)-violator otherwise the theorem holds. Hence min{|Xf |, |Yf |} ≤ 5.
It follows by (11) that min{|Xe|, |Ye|} ≤ 5; a contradiction.

Next we observe the following.

5.1.2. Either Xe or Ye is a 5-cofan or a quad in M\e. Moreover, if
Z ∈ {Xh, Yh} for some h in {e, f} and |Z| ≤ 5, then Z is a 5-cofan or
a quad in M\h. In particular, if Z is a 5-cofan (v, w, x, y, z) in M\h, then
{v, w, x, y, z} ∩ {e, f, g} = {x} and {h, x, v, w} and {h, x, y, z} are cocircuits
of M .

Since (Xe, Ye) is not a (4, 5)-violator but is a (4, 5, S,+)-violator,
Lemma 4.2 implies that Xe or Ye is a 5-cofan or a quad in M\e. Using
the same lemma, we also see that if |Z| = 5 for some Z in {Xe, Ye, Xf , Yf},
then Z is a 5-cofan. The rest of 5.1.2 follows by using orthogonality and the
fact that M has no 4-fans.

By Theorem 3.5,

5.1.3. N is not a minor of M\g.

By Lemma 3.10,

5.1.4. e ∈ clM\f (Xf − e) and f ∈ clM\e(Xe − f).

Now, none of (Xe, Ye ∪ e), (Xf ∪ f, Yf ), or (Xe ∪ e, Ye) is a 3-separation of
M , so

5.1.5. ∅ 6∈ {Xe ∩Xf , Xe ∩ Yf , Xf ∩ Ye}.

By Lemma 3.10(iv)(c),

5.1.6. 4 ≥ λM (Ye ∩ Yf ) + λM\e,f (Xe ∩Xf ).

Next we show the following.

5.1.7. If |Xe| ≥ |Ye|, then |Ye ∩ Yf | ≤ 3.

Assume that |Ye∩Yf | ≥ 4. As |Ye| ≤ 5, it follows, by 5.1.5, that |Xf∩Ye| =
1 and |Ye| = 5. Since min{|Xe|, |Ye|} ≤ min{|Xf |, |Yf |}, we deduce that
|Xf | ≥ 5. Now λM (Ye ∩ Yf ) ≥ 3 otherwise M has a (4, 3)-violator. Thus by
5.1.6, λM\e,f (Xe∩Xf ) ≤ 1. Hence, by Lemma 3.6, |Xe∩Xf | ≤ 3, so |Xf | = 5
and |Xe ∩Xf | = 3. Therefore, by 5.1.2, Xf is a 5-cofan of M\f . Moreover,
by Corollary 3.7, Xe ∩Xf is a triangle. But, by 5.1.4, e ∈ cl(Xf − e). This
contradicts the fact that Xf is a 5-cofan of M\f . Thus 5.1.7 holds.

We break up the rest of the proof into the following four cases.
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(I) |Xe| ≥ |Ye| and |Xf | ≥ |Yf |.
(II) |Xe| ≥ |Ye| and |Xf | < |Yf |.

(III) |Xe| < |Ye| and |Xf | ≥ |Yf |.
(IV) |Xe| < |Ye| and |Xf | < |Yf |.
The first of these cases is the most difficult.

Case I: |Xe| ≥ |Ye| and |Xf | ≥ |Yf |.
In this case, we first observe that 5.1.7 immediately gives that

5.1.8. |Ye ∩ Yf | ≤ 3.

We now know, by Lemma 3.10(iv)(d), that |Ye ∩ Yf | is 2 or 3. Each of
these cases will require a very detailed analysis. We begin with the following
case.

(I)(A) Ye ∩ Yf = {z, g}.
First we show that

5.1.9. Ye is a quad of M\e and Yf is a quad of M\f .

Suppose that |Xf ∩ Ye| = 3. Then, by 5.1.2, Ye is a 5-cofan with g as
its central element. Hence g is in the coclosure of Xf ∩ Ye in M\e, so g is
in the coclosure of Xf in M\f . Thus (Xf ∪ g, Yf − g) is a 3-separation of
M\f , so (Xf ∪ g ∪ f, Yf − g) is a 3-separation of M . Thus Yf is a 4-element
sequential 3-separating set in M\f , so Yf is a 4-fan in M\f ; a contradiction.
We deduce that |Xf ∩ Ye| = 2. Thus Ye is a quad in M\e, so Ye is a circuit
of M , and Ye ∪ e is a cocircuit of M . Since {z, g} ⊆ Yf and {e, f, g} is a
triangle, it follows that

λM\f (Xf ) = λM\f (Xf ∪ {z, g}) = λM (Xf ∪ {z, g, f}).
Thus Yf − {z, g} is a 3-separating set in M . Hence |Yf | ≤ 5 so, by 5.1.2,
Yf is a quad or a 5-cofan in M\f . Suppose Yf is a 5-cofan of M\f . Then
g is its central element, so g is in two triads of M\f that are contained in
Yf . By orthogonality with the circuit Ye, each of these triads contains z.
Hence M\f has a 2-cocircuit, so M has a triad containing f and therefore
has a 4-fan; a contradiction. We conclude that Yf is a quad of M\f , so 5.1.9
holds.

Now M has the structure shown in Figure 3, where Ye = {a, b, g, z} and
Yf = {c, d, g, z} while the 5-element cocircuits Ye ∪ e and Yf ∪ f have been
circled. Observe that {a, b, c, d}, the symmetric difference of the circuits Ye
and Yf , is itself a circuit of M . We now show that

5.1.10. M has no triad meeting {a, b, c, d, e, f, g, z}.

As M is internally 4-connected, no triad contains e, f , or g. Suppose
x is in a triad T ∗ for some x in {a, b, c, d, z}. Without loss of general-
ity, we may assume that x ∈ {a, b, z}. By orthogonality with the cir-
cuit {a, b, g, z}, we know that two elements of T ∗ are in {a, b, g, z}. Thus
T ∗ ⊆ cl∗M ({a, b, g, z}). As e is not in a triad ofM , we know that e /∈ T ∗. Thus
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Figure 3.

T ∗ ⊆ cl∗M\e({a, b, g, z}). Hence {a, b, g, z} ∪ T ∗ is a 5-element 3-separating

set of M\e that is not a fan, and the result follows by Lemma 4.2. We
conclude that 5.1.10 holds.

Next we show that

5.1.11. M/z is 3-connected having an N -minor.

We know that N is internally 4-connected, N �M\e, and g is in a quad
of M\e. Thus, by Lemma 3.4, N �M\e, g or N �M\e/g. The first option
contradicts 5.1.3, so the second occurs. Since g is in a quad with z in M\e,
it follows, by Lemma 3.4, that N �M/z.

As M\e is 3-connected having {a, b, g, z} as a quad, as noted in [12,
Lemma 2.9], it is routine to check that si(M\e/z) is 3-connected. It fol-
lows that M/z is 3-connected unless z is in a triangle T of M . In the
exceptional case, since {a, b, e, g, z} and {c, d, f, g, z} are cocircuits of M , it
follows by orthogonality that T meets each of {a, b, e, g} and {c, d, f, g} in
a single element. Suppose g 6∈ T . Then it is straightforward to check that
λ({a, b, c, d, e, f, g, z}) = 2. This is a contradiction since |E(M)| ≥ 15. We
deduce that g ∈ T . Let h be the element of T −{z, g}. Then (Xf−h, Yf ∪h)
is a (4, 5, S,+)-violator for M\f with |Yf∪h| = 5. But Yf∪h is not a 5-cofan,
so 5.1.2 fails; a contradiction. We conclude that 5.1.11 holds.

We may assume that M/z is not internally 4-connected otherwise the
theorem holds. We show next that

5.1.12. M has a circuit {z, g, v1, v2} and a triad {v1, v2, v3} such that
{a, b, c, d, e, f, g, z} ∩ {v1, v2, v3} = ∅.

As M/z is not internally 4-connected, it has a (4, 3)-violator (Uz, Vz) such
that |Uz ∩ {e, f, g}| ≥ 2. We show next that we may assume that

5.1.13. {e, f, g} ⊆ Uz.

Assume not. Then (Uz ∪ {e, f, g}, Vz − {e, f, g}) is not a (4, 3)-violator
of M/z. Thus Vz − {e, f, g} is a triad {v1, v2, v3} of M/z and hence of M .
Hence, by 5.1.10, {a, b, c, d} ⊆ Uz. Now {e, g, a, b, z} and {f, g, c, d, z} are
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cocircuits of M . Thus, as |Uz ∩ {e, f, g}| ≥ 2, it follows that {e, f} ⊆ Uz

and g ∈ Vz otherwise (Uz ∪ z, Vz) is a (4, 3)-violator of M ; a contradiction.
Then Vz is a 4-fan (g, v1, v2, v3) in M/z, so {z, g, v1, v2} is a circuit of M
and 5.1.12 holds. We deduce that 5.1.13 holds.

If {a, b} or {c, d} is contained in Uz, then (Uz∪z, Vz) is a (4, 3)-violator of
M ; a contradiction. Thus, without loss of generality, we may assume that
{b, d} ⊆ Vz. Suppose a ∈ Uz. Then b ∈ clM/z(Uz), so (Uz ∪ b ∪ z, Vz − b) is
a 3-separation of M . Since d ∈ Vz − b, by 5.1.10, Vz − b is not a triad of M .
Thus (Uz∪b∪z, Vz−b) is a (4, 3)-violator of M ; a contradiction. We deduce
that a 6∈ Uz, so a ∈ Vz. The circuit {a, b, c, d} implies that c ∈ cl(Vz), so
(Uz − c, Vz ∪ c) is a (4, 3)-violator of M/z unless Uz − c is a triad containing
{e, f, g}; a contradiction. Thus we may assume that {a, c} ⊆ Vz.

Now λM/z(Vz) = λM/z(Vz ∪ g) = λM/z(Vz ∪ g ∪ {e, f}), where the second
equality holds since {e, f, g} is a circuit of M/z and {e, f, a, b, c, d} is a cocir-
cuit of M/z. Thus |Uz−{e, f, g}| ≤ 3 otherwise (Uz−{e, f, g}, Vz∪{e, f, g}∪
z) is a (4, 3)-violator of M ; a contradiction. Suppose |Uz − {e, f, g}| = 3.
Then, as Uz − g is a 5-element 3-separating set in M/z, the theorem follows
by Lemma 4.2 unless Uz − g is a 5-fan or a 5-cofan. In the exceptional case,
by 5.1.10, (e, u1, u2, u3, f) is a 5-fan of M/z where {e, u1, u2} is a triangle
of M/z that meets the cocircuit {a, b, c, d, e, f} of M/z in a single element;
a contradiction. Suppose next that |Uz − {e, f, g}| = 2. Then Uz is a 5-
element 3-separating set in M/z and we again apply Lemma 4.2 to obtain
the desired result because Uz is neither a 5-fan nor a 5-cofan otherwise e, f ,
or g is in a triad of M ; a contradiction to 5.1.10. We may now assume
that |Uz − {e, f, g}| = 1. Then Uz is a 4-fan in M/z containing the triangle
{e, f, g} of M . Thus M has a 4-fan; a contradiction. We deduce that 5.1.12
holds.

We now show that

5.1.14. (M/v3)
∗ is (4, 5, S,+)-connected with an N∗-minor.

Now M/z has an N -minor, and M/z has (g, v1, v2, v3) as a 4-fan. By
Lemma 3.3, M\g or M/v3 has an N -minor. The first possibility contra-
dicts 5.1.3, so N �M/v3.

Next we show that M/v3 is 3-connected. This is certainly true if M/z/v3
is 3-connected so assume it is not. Then we have a 5-fan (g, vi, vj , v3, v4)
in M/z where {i, j} = {1, 2}. Thus {z, vj , v3, v4} is a circuit of M . By
orthogonality with the cocircuits {a, b, g, z, e} and {c, d, g, z, f} of M , we
deduce from 5.1.10 that v4 = g; a contradiction. Hence M/v3 is indeed
3-connected.

Let (Uv3 , Vv3) be a (4, 5, S,+)-violator of M∗\v3. We may assume that
v1 ∈ Uv3 and v2 ∈ Vv3 . Now v1 6∈ clM/v3(Vv3), otherwise Uv3 − v1 is a
(4, 3)-violator of M ; a contradiction. Likewise, v2 /∈ clM/v3(Uv3). As each of
{z, g, v1, v2}, {a, b, v1, v2}, and {c, d, v1, v2} is a circuit of M , we may assume
that {a, c, g} ⊆ Uv3 and {b, d, z} ⊆ Vv3 because of the symmetry between a
and b, and between c and d.
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Suppose that {e, f} ⊆ Vv3 . Then we obtain the contradiction that (Uv3 −
g − v1, Vv3 ∪ g ∪ v1 ∪ v3) is a (4, 3)-violator of M unless |Uv3 − g − v1| ≤ 3.
But, in the exceptional case, Uv3 is a sequential 3-separating set that is
contained in cl∗M/v3(Vv3) and again we have a contradiction. We deduce
that {e, f} 6⊆ Vv3 .

Since we have maintained symmetry between e and f , we may assume
that e ∈ Uv3 . Now (Uv3 ∪ f, Vv3 − f) is a (4, 5, S,+)-violator in M∗\v3
because Vv3 − f is not a 4-fan or a 5-fan of M∗\v3, otherwise b, z, or d is
in a triad of M ; a contradiction to 5.1.10. Therefore we may assume that
f ∈ Uv3 . Then, because M has {a, b, c, d} as a circuit and {a, b, c, d, e, f} as a
cocircuit, and Uv3 contains {a, c, e, f}, it follows that λM/v3(Uv3∪{b, d}) = 2.
Thus (Uv3 ∪ {b, d} ∪ v2 ∪ v3, Vv3 − {b, d} − v2) is 3-separating in M . Thus
|Vv3 | ≤ 6. Suppose |Vv3 | = 4. Then Vv3 is a quad in M/v3, so {b, d, z, v2}
and {b, d, z, v2, v3} are a cocircuit and a circuit, respectively, of M . Thus,
letting Z = {a, b, c, d, e, f, g, z, v1, v2, v3}, we have that λM (Z) = r(Z) +
r∗(Z) − |Z| ≤ 6 + 7 − 11 = 2. Hence |E(M)| ≤ 14; a contradiction. Next
suppose |Vv3 | = 5. Then, by Lemma 4.2, Vv3 is a 5-fan or a 5-cofan of
M/v3, so b, d, or z is in a triad of M ; a contradiction to 5.1.10. We conclude
that |Vv3 | = 6 and Vv3 − {b, d} is a 4-fan of M/v3 with z in its triad; a
contradiction to 5.1.10. This completes the proof in case I(A).

α1

α2 α3

gy

z

Figure 4.

To complete the proof of case I, it remains to consider the following.

(I)(B) Ye ∩ Yf = {y, z, g}.

As |E(M)| ≥ 15 and |Xf | ≥ |Yf |, we must have that |Xf | ≥ 7. But
|Ye| ∈ {4, 5}, so |Ye ∩Xf | ≤ 2. Hence |Xe ∩Xf | ≥ 4. Thus, by Lemma 3.6,
λM\e,f (Xe∩Xf ) ≥ 2. Hence, by 5.1.6, λM (Ye∩Yf ) ≤ 2, so λM (Ye∩Yf ) = 2
and {y, z, g} is a triangle or a triad of M . As g is in a triangle of M , we
know that {y, z, g} is not a triad, so it is a triangle. By 5.1.2, Ye is a 5-cofan
(x1, y, g, z, x2) in M\e and {e, g, y, x1} and {e, g, z, x2} are cocircuits of M .
We have λM\f (Xf ) = 2. Thus λM\f (Xf ∪z) ≤ 3, so λM\f (Xf ∪z∪g) ≤ 3 as
g ∈ cl∗M\f ({e, x2, z}). Hence λM\f (Xf ∪ {y, z, g}) ≤ 2, as y ∈ clM\f ({z, g})
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and y ∈ cl∗M\f ({e, g, x1}). Thus λM (Xf ∪ {y, z, f, g}) ≤ 2, so |Yf ∩Xe| ≤ 3.

Moreover, by 5.1.2, as Ye ∩ Yf is a triangle, |Yf | ≥ 5, so |Yf ∩Xe| ∈ {2, 3}.
We show next that

5.1.15. |Yf ∩Xe| = 2.

Suppose |Yf ∩ Xe| = 3. Then Yf ∩ Xe is a triangle or a triad of M . If
Yf ∩Xe is a triangle, then, by Lemma 2.2, M\f has a triangle T such that
M\f\t, and hence M\t, has an N -minor for each element t in T ; and we can
apply Theorem 3.5 to obtain the desired result. We deduce that Yf ∩Xe is a
triad. By Lemma 2.2, the result follows if r(Yf ) = 3. Thus we may assume
that r(Yf ) ≥ 4. If r(Yf ) = 5, then r∗M\f (Yf ) = 3, so (M\f)∗|Yf ∼= M(K4).

Hence, in M\f , we know that Yf is as depicted in Figure 4, where circled
vertices correspond to cocircuits of M\f . By orthogonality, {z, y, α2} is a
triad of M , so M has a 4-fan; a contradiction. We deduce that r(Yf ) = 4.

Now Yf∩Xe is a triad ofM and it spans the guts line L′ of the 3-separation
(Yf ∩ Xe, E(M) − (Yf ∩ Xe)) of M . As r(Yf ) = 4, we must have that L′

meets {y, z, g}. Since M is binary, we deduce that the triad Yf ∩Xe is in a
4-fan with an element of {y, z, g} ∩ L′; a contradiction. Hence 5.1.15 holds.

e

f

Xe Ye
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g

y
z

x1

x2

w1

w2

Figure 5.

We may now assume that we are dealing with the situation shown
in Figure 5. By 5.1.2, we may also assume that (x1, y, g, z, x2) is
a 5-cofan in M\e and (w1, y, g, z, w2) is a 5-cofan in M\f . Thus
{e, g, y, x1}, {e, g, z, x2}, {f, g, y, w1}, and {f, g, z, w2} are cocircuits of M .
Therefore M contains the two rank-4 structures shown in Figure 6, where
some elements are common to the two structures and each circled set is a co-
circuit of M . Observe that {y, z, x1, x2}, {y, z, w1, w2}, and their symmetric
difference, {x1, x2, w1, w2}, are also cocircuits of M .

By Lemma 3.3, M\e/x1 has an N -minor. Thus N � M/x1. Likewise,
M/x2, M/w1, and M/w2 has an N -minor. We will show next that

5.1.16. (M/x1)
∗, (M/x2)

∗, (M/w1)
∗, and (M/w2)

∗ are (4, 5, S,+)-
connected.

By symmetry, it suffices to prove that (M/x1)
∗ is (4, 5, S,+)-connected.

First we show that this matroid is 3-connected. Since M\e has
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(x1, y, g, z, x2) as a 5-cofan, by Bixby’s Lemma, as co(M\e\x1) is not 3-
connected, either {x1, y} is contained in a triangle of M\e, or M\e/x1 is
3-connected. Suppose first that {x1, y} is contained in a triangle with some
element t. Then {x1, y, t} meets both of the cocircuits {y, w1, g, f} and
{y, w1, z, w2}, so t = w1. Then, letting Z = {e, f, g, y, z, x1, x2, w1, w2}, we
have λM (Z) = r(Z) + r∗(Z) − |Z| ≤ 6 + 5 − 9 = 2; a contradiction. Hence
{x1, y} is not in a triangle.

We may now assume that M\e/x1 is 3-connected. Then M/x1 is 3-
connected unless {x1, e} is contained in a triangle T of M . In the exceptional
case, by orthogonality, T must meet each of {g, y, w1} and {g, z, w2}, so
T = {x1, e, g} contradicting the fact that {e, f, g} is a triangle. We conclude
that M/x1 is 3-connected.

Suppose that (M/x1)
∗ has a (4, 5, S,+)-violator (U, V ). We may assume

that

(12) |U ∩ {y, z, g}| ≥ 2.

Thus {y, z, g} ⊆ clM/x1
(U). Then (U ∪{y, z, g}, V −{y, z, g}) is 3-separating

in (M/x1)
∗, and |V − {y, z, g}| ≥ 4. If e or x2 is in U , then, as {e, g, y, x1}

and {y, z, x1, x2} are cocircuits of M , it follows that (U ∪ {y, z, g} ∪ x1, V −
{y, z, g}) is a (4, 3)-violator of M ; a contradiction. Thus {e, x2} ⊆ V .

We show next that

5.1.17. {e, x2, f} ⊆ V .

From above, we need only show that f ∈ V . Suppose that f ∈ U .
Then (U ∪ {y, z, g} ∪ e, V − {y, z, g, e}) is 3-separating in M/x1. Thus
|V − {y, z, g, e}| ≤ 3 otherwise we obtain the contradiction that (U ∪
{y, z, g} ∪ e ∪ x1, V − {y, z, g, e}) is a (4, 3)-violator of M . Hence V is a
5-fan (v1, v2, v3, v4, e) of M/x1 with v1 in {y, z, g} and x2 in {v2, v3, v4}.
Since M is internally 4-connected, neither {v1, v2, v3} nor {v3, v4, e} is a cir-
cuit of M . Hence both {v1, v2, v3, x1} and {v3, v4, e, x1} are circuits. By
orthogonality between the last circuit and the cocircuit {y, z, x1, x2}, we
deduce that x2 ∈ {v3, v4}.

Suppose x2 = v4. Then, by orthogonality, {v1, v2, v3} meets both
{y, z} and {g, y}. As {v2, v3} ∩ {y, z, g} = ∅, we deduce that v1 = y.
The cocircuit {f, g, y, w1} and the circuits {y, v2, v3, x1} and {e, x2, v3, x1}
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imply that w1 ∈ {v2, v3} and w1 6= v3, so w1 = v2. Now
λM\e,f ({y, z, g}) ≤ 2, so λM\e,f ({y, z, g, x1, x2, w1, w2}) ≤ 2. Hence
λM\e({y, z, g, x1, x2, w1, w2, f}) ≤ 3, so λM ({y, z, g, x1, x2, w1, w2, f, e}) =
3. But v3 ∈ cl∗({w1, x2}) and v3 ∈ cl({y, w1, x1}), so we ob-
tain the contradiction that λM ({y, z, g, x1, x2, w1, w2, f, e, v3}) = 2 unless
v3 ∈ {y, z, g, x1, x2, w1, w2, f, e}. In the exceptional case, v3 = w2 so
{y, w1, w2, x1} is a circuit meeting the cocircuit {x1, x2, w1, w2} in exactly
three elements; a contradiction. We deduce that x2 6= v4.

We may now assume that x2 = v3. Then {v1, v2, x1, x2} and {x1, x2, v4, e}
are circuits of M . Recall that {y, g, z} ∩ {v1, v2, v3, v4, e} = {v1}. By or-
thogonality between the circuit {v1, v2, x1, x2} and the cocircuits {x1, y, g, e}
and {x1, y, z, x2}, we deduce that v1 ∈ {y, g} but v1 6= y. Hence v1 = g.
The symmetric difference of the circuits {g, v2, x1, x2}, {x1, x2, v4, e}, and
{e, f, g} is {v2, v4, f}, which must be a triangle of M . As this triangle meets
the triad {v2, v3, v4}, we have a contradiction. Hence 5.1.17 holds.

As {x1, x2, w1, w2} is a cocircuit of M , it follows that {w1, w2} 6⊆ V
otherwise (U, V ∪x1) is a (4, 3)-violator of M ; a contradiction. Therefore w1

or w2 is in U . Thus f ∈ cl∗M/x1
(U∪{y, z, g}) and e ∈ clM/x1

(U∪{y, z, g, f}),
so (U ∪ {y, z, g, f, e} ∪ x1, V − {y, z, g, f, e}) is 3-separating in M . Hence

(13) |V | ≤ 6.

Now, in the 3-separation (U, V ) of M∗\x1, we know that V contains
{e, f, x2}. Thus the triangle {e, f, g}, the cocircuit {e, g, x2, z}, and the
triangle {y, g, z} of M imply that (U−g−z−y, V ∪g∪z∪y) is 3-separating in
M∗\x1. As M∗ has {y, x1, z, x2} as a circuit, (U−{g, z, y}, V ∪{g, z, y}∪x1)
is 3-separating in M . Thus |U | ≤ 6. But, by (13), |V | ≤ 6, so |E(M)| ≤ 13; a
contradiction. We conclude that (M/x1)

∗ is (4, 5, S,+)-connected, so 5.1.16
holds.

We will now show that x1, x2, w1, or w2 is in a triad of M , and conclude
that (ii) of the theorem holds, or that contracting one of these elements in
M yields an internally 4-connected matroid, in which case (i) holds. Assume
neither of these occurs. Suppose (J,K) is a (4, 3)-violator of M/x1. Then,
without loss of generality, |J∩{y, z, g}| ≥ 2. Then (J∪{y, z, g},K−{y, z, g})
is a (4, 3)-violator of M/x1 unless K − {y, z, g} is a triad of M . In the
exceptional case, {w1, w2, x2} ⊆ J . But {w1, w2, x1, x2} is a cocircuit of M ,
so (J ∪ x1,K) is a (4, 3)-violator of M ; a contradiction. We conclude that
we may assume that {y, z, g} is contained in J . As no triad of M meets
this triangle, it follows, by 5.1.16, that K is a 4-fan or a 5-cofan of M/x1.
Now {e, g, y, x1} and {y, z, x1, x2} are cocircuits of M . Hence if e or x2
is in J , then (J ∪ x1,K) is a (4, 3)-violator of M ; a contradiction. Thus
{e, x2} ⊆ K. But, at most one element of K is not in a triad of M/x1, and
we have assumed that x2 is not in a triad of M . Thus e is in a triad of M .
This contradiction completes the proof of case I.

Case II: |Xe| ≥ |Ye| and |Xf | < |Yf |.
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Since |E(M\f)| ≥ 14, it follows that

(14) |Yf | ≥ 8.

Suppose that |Xf ∩ Ye| ≥ 2. Then λM (Xf ∩ Ye) ≥ 2. Thus, by Lemma
3.10(iv)(b), λM (Xe ∩ Yf ) ≤ 2, so |Xe ∩ Yf | ≤ 4. This is a contradiction
as |Yf | ≥ 8 yet, by 5.1.7, |Ye ∩ Yf | ≤ 3. We deduce that |Xf ∩ Ye| ≤ 1.
Hence |Xf ∩ Ye| = 1 and |Ye ∩ Yf | = 3, so Ye is a quad of M\e. Thus
Ye ∩Yf is neither a triangle nor a triad in M , so λM (Ye ∩Yf ) ≥ 3. Thus, by
Lemma 3.10(iv)(a), λM\e,f (Xe ∩Xf ) = 1, so, by Lemma 3.6, |Xe ∩Xf | ≤ 3.
Therefore |Xf | ≤ 5 so, by 5.1.2, Xf is a quad or a 5-cofan of M\f . Thus
the unique element of Xf ∩ Ye is in a cocircuit of M\f that is contained in
Xf . This cocircuit meets the circuit Ye in a single element; a contradiction.
We conclude that case II does not arise.

Case III: |Xe| < |Ye| and |Xf | ≥ |Yf |.

First we show that

5.1.18. |Xe| = 5.

We know that |Xe| ∈ {4, 5}. Suppose that |Xe| = 4. By 5.1.2, Xe is a
quad of M\e. Then |Ye| ≥ 10 and, as |Xe ∩ Yf | ≥ 1 and |Xf | ≥ |Yf |, we
deduce that |Ye∩Xf | ≥ 4. Thus λM (Ye∩Xf ) ≥ 3, so, by Lemma 3.10(iv)(b),
λM (Xe ∩ Yf ) ≤ 1. Hence, by 5.1.5, |Xe ∩ Yf | = 1 so |Xe ∩Xf | = 2. Suppose
|Ye ∩ Yf | ≥ 4. Then λM (Ye ∩ Yf ) = 3, so λM\e,f (Xe ∩ Xf ) = 1. Thus
Xe ∩ Xf is a 2-cocircuit {a, b} in M\e, f . Then {a, b, f} is a cocircuit of
M\e properly contained in the quad Xe; a contradiction. We conclude that
|Ye ∩ Yf | ≤ 3, so |Yf | = 4. Thus Yf is a quad of M\f . Then Yf is a circuit
of M that meets cocircuit Xe ∪ e in a single element; a contradiction to
orthogonality. We conclude that 5.1.18 holds.

By 5.1.18, |Ye| ≥ 9. Moreover, by (11), |Yf | ≥ |Xe|. It follows that
|Yf | ≥ 5. By 5.1.2, Xe is a 5-cofan with f as its central element. For
each triad T ∗ of M\e contained in Xe, the set T ∗ ∪ e is a cocircuit of M .
The symmetric difference of the two such cocircuits, which is Xe − f , is a
cocircuit of M . Suppose Xe ∩ Yf contains a single element, say z. Then,
since Xe ∩ Xf = Xe − {f, z}, we deduce that z ∈ cl∗M\f (Xe ∩ Xf ), so
(Xf ∪ z, Yf − z) is a 3-separation of M\f . Hence (Xf ∪ z ∪ f, Yf − z) is
a (4, 3)-violator of M ; a contradiction. Thus |Xe ∩ Yf | ≥ 2. It follows
that |Xe ∩ Xf | ≤ 2 and λM (Xe ∩ Yf ) ≥ 2. Thus, by Lemma 3.10(iv)(b),

λM (Xf ∩Ye) ≤ 2, so |Xf ∩Ye| ≤ 3. But |Xf | ≥ |Yf |, so |Xf | ≥ |E(M\f)|
2 ≥ 7.

Hence |Xf ∩ Ye| ≥ 4; a contradiction. We conclude that case III does not
arise.

Case IV: |Xe| < |Ye| and |Xf | < |Yf |.

Since |E(M\f)| ≥ 14, we deduce that

(15) |Yf | ≥ 8.
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By 5.1.2, since |Xe| ∈ {4, 5}, either Xe is a quad of M\e, or Xe is 5-
cofan of M\e with f as its central element. By 5.1.5, Xe ∩Xf 6= ∅. Hence
|Xe ∩Yf | ≤ 3. As |Yf | ≥ 8, it follows that |Ye ∩Yf | ≥ 5, so λM (Ye ∩Yf ) ≥ 3.
Hence

(16) λM\e,f (Xe ∩Xf ) ≤ 1.

We show next that

5.1.19. |Xe ∩ Yf | ≥ 2 and |Xf ∩ Ye| ≤ 3.

Suppose |Xe ∩ Yf | ≤ 1. Then, by 5.1.5, we may assume that Xe ∩ Yf
contains a single element, say z. Suppose Xe is a quad of M\e. Then
|Xe ∩ Xf | = 2 so, by Corollary 3.7, Xe ∩ Xf is a 2-cocircuit of M\e, f .
Thus (Xe ∩ Xf ) ∪ {e, f} is a cocircuit of M that is properly contained in
the cocircuit Xe ∪ e of M . Hence Xe is not a quad of M\e. Thus Xe is a
5-cofan of M\e. It follows, by arguing as in case III, that (Xf ∪ z, Yf − z)
is a 3-separation of M\f , so (Xf ∪ z ∪ f, Yf − z) is a (4, 3)-violator of M ; a
contradiction. Thus |Xe ∩ Yf | ≥ 2. Hence λM (Xe ∩ Yf ) ≥ 2, so, by Lemma
3.10(iv)(b), λM (Xe ∩ Yf ) ≤ 2. Thus |Xf ∩ Ye| ≤ 3 and 5.1.19 holds.

Next we show that

5.1.20. |Xe ∩Xf | = 1.

Suppose that |Xe ∩ Xf | ≥ 2. Then, as |Xe| ≤ 5, we deduce that |Xe ∩
Xf | = 2 and Xe is a 5-cofan of M\e having f as its central element. As
λM\e,f (Xe ∩ Xf ) ≤ 1, it follows that Xe ∩ Xf is a 2-cocircuit {a, b} of
M\e, f . Thus {a, b, f} is a cocircuit of M\e. Hence we may assume that
Xe = (a, b, f, y, z) where {y, z} = Xe ∩ Yf . Thus {a, b, f, e} and {y, z, f, e}
are cocircuits of M . Therefore e ∈ cl∗M\f (Yf ). Thus, as |Xf | ≥ |Xe| = 5,
we deduce that (Xf − e, Yf ∪ e∪f) is a (4, 3)-violator of M ; a contradiction.
Hence 5.1.20 holds.

Let Xe ∩Xf = {a}. We show next that

5.1.21. Xe is a quad of M\e.

Assume 5.1.21 is false. Then Xe is a 5-cofan (x1, x2, f, x3, x4) in M\e
and {x1, x2, f, e} and {x3, x4, f, e} are cocircuits of M . Thus the symmetric
difference, {x1, x2, x3, x4}, of these two cocircuits is a cocircuit of M con-
taining a. Hence (Xf − a, Yf ∪ a) is a 3-separation of M\f , and Xf is not
a quad of M\f , so |Xf | ≥ 5. The circuit {x2, f, x3} of M implies that
(Xf − a, Yf ∪ a ∪ f) is a (4, 3)-violator of M ; a contradiction. Hence 5.1.21
holds.

We now show that

5.1.22. Xf is a quad of M\f .

Assume that this is false. Then, by 5.1.19, |Xf | = 5, so Xf is a
5-cofan (x1, x2, e, x3, x4) in M\f . Thus {x1, x2, e, f}, {x3, x4, e, f}, and
{x1, x2, x3, x4} are cocircuits of M . The last of these meets the circuit
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Xe of M in a single element. This contradiction to orthogonality establishes
5.1.22.

e
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a

Figure 7.

We may now assume that Xe∩Yf = {y, z} and Ye∩Xf = {b, c}, as shown
in Figure 7. Then Xe ∪Xf = {a, b, c, e, f, y, z}. Note that {a, b, c, e, f} and
{a, y, z, e, f} are cocircuits of M . Hence so is their symmetric difference,
{b, c, y, z}. Next we show that

5.1.23. M has no triangle other than {e, f, g} meeting {a, b, c, e, f, y, z}.

Suppose 5.1.23 does not hold. Then, without loss of generality, some
element of {a, b, c, f} is in a triangle T of M , where T 6= {e, f, g}. By
orthogonality with the cocircuit {a, b, c, e, f}, we know that T contains ex-
actly two elements in {a, b, c, e, f}. If T ⊆ Xe ∪ Xf , then λM (Xe ∪ Xf ) =
r(Xe ∪Xf ) + r∗(Xe ∪Xf ) − |Xe ∪Xf | ≤ 4 + 5 − 7 = 2, contradicting the
fact that M is internally 4-connected. Hence |T ∩ (Xe ∪ Xf )| = 2. By
orthogonality with the cocircuit {b, c, y, z}, either T contains {b, c}, or T
contains two elements of {a, e, f}. As T 6= {e, f, g}, we deduce that T con-
tains {b, c}, {a, e}, or {a, f}. Thus T is contained in clM\e(Xe) or clM\f (Xf ),
so M\e or M\f has a 5-element 3-separating set that is not a 5-fan or a
5-cofan. By Lemma 4.2, we have a contradiction. Thus 5.1.23 holds.

As M\e has an N -minor and a quad {a, f, z, y}, by Lemma 3.4, M\e, f
or M\e/f has an N -minor. If M/f has an N -minor, then M/f\g has
an N -minor, as {e, g} is a circuit in M/f ; a contradiction to 5.1.3. Thus
N �M\e, f , and so, as M\e, f ∼= M\e, a, it follows that N �M\a.

We show next that

5.1.24. M\a is 3-connected.

First we show that M\a has no 2-cocircuits. Assume M\a has a 2-
cocircuit S. Then S ∪ a is a triad of M which, by orthogonality, must be
contained in Xe∪Xf . Since Xe∪Xf also contains two 5-element cocircuits,
r∗(Xe ∪Xf ) ≤ 4 and hence λM (Xe ∪Xf ) ≤ 2; a contradiction. Thus M\a
has no 2-cocircuits. Hence every 2-separation of M\a is non-minimal. Let
(X,Y ) be such a 2-separation. Then we may assume that |X ∩ {e, f, g}| ≥
2, so (X ∪ {e, f, g}, Y − {e, f, g}) is a 2-separation of M\a. As M\a has



A SPLITTER THEOREM FOR INTERNALLY 4-CONNECTED BINARY MATROIDS III37

{e, f, b, c} and {e, f, y, z} as cocircuits, and M has {e, b, c, a} and {f, y, z, a}
as circuits, it is not difficult to see that {b, c, y, z} ⊆ Y . Thus (X∪{e, f, g}∪
a, Y − {e, f, g}) is a 3-separation and hence is a (4, 3)-violator of M ; a
contradiction. We conclude that 5.1.24 holds.

If M\a is internally 4-connected, then the theorem holds. Thus we may
assume that M\a has a (4, 3)-violator (U, V ) with |{e, f, g} ∩ U | ≥ 2. Then
(U ∪ {e, f, g}, V − {e, f, g}) is a (4, 3)-violator of M\a unless V is a 4-fan
(x, v1, v2, v3) having {x, v1, v2} as a triangle and {v1, v2, v3} as a triad and
with x ∈ {e, f, g}. In the exceptional case, by 5.1.23, we deduce that x = g.
As M is internally 4-connected, {v1, v2, v3, a} is a cocircuit of M . By orthog-
onality with the circuits {a, f, y, z} and {a, b, c, e}, we get that two elements
in {y, z, b, c} are in {v1, v2, v3}; a contradiction to 5.1.23 as {g, v1, v2} is a
triangle other than {e, f, g}.

We may now assume that {e, f, g} ⊆ U . If U contains {b, c} or {y, z},
then (U ∪ a, V ) is a (4, 3)-violator of M ; a contradiction. Without loss of
generality, we may assume that {c, z} ⊆ V . If b ∈ U , then (U ∪ c∪ a, V − c)
is a (4, 3)-violator of M unless V − c is a triangle of M containing z; a
contradiction to 5.1.23. Thus b ∈ V and, likewise, y ∈ V . Therefore

5.1.25. {e, f, g} ⊆ U and {b, c, y, z} ⊆ V .

The symmetric difference {a, b, c, e}4{a, f, y, z}4{e, f, g}, which equals
{b, c, y, z, g}, is a circuit of M , so

2 = λM\a(V ) = λM\a(V ∪g) = λM\a(V ∪g∪{e, f}) = λM (V ∪g∪{e, f}∪a).

Thus 4 ≤ |U | ≤ 6.
Suppose that |U | = 6. Then |U − g| is a 5-element 3-separating set in

M\a. By Lemma 4.2, this 3-separating set is a 5-fan or a 5-cofan of M\a.
If U − g is a 5-fan, then e or f is in a triangle of M that is not {e, f, g};
a contradiction to 5.1.23. Thus U − g is 5-cofan (e, u1, u2, u3, f) of M\a
and {a, e, u1, u2} is a cocircuit of M ; a contradiction to orthogonality with
{e, f, g}. Thus |U | 6= 6.

Suppose next that |U | = 5. By Lemma 4.2, this 3-separating set is a
5-fan or a 5-cofan of M\a. By 5.1.10, as before, we deduce that U is a
5-cofan (u1, u2, u3, u4, u5) in M\a where {u2, u3, u4} = {e, f, g}. Moreover,
{a, u1, u2, u3} and {u3, u4, u5, a} are cocircuits of M . By orthogonality with
the circuits {a, f, y, z} and {a, e, b, c}, we deduce that {u1, u2, u3} meets
{f, y, z} and {e, b, c}. But {u1, u2, u3} avoids {y, z, b, c}, so {u1, u2, u3} con-
tains {f, e}. By symmetry, {u3, u4, u5} contains {f, e}; a contradiction.
Hence |U | 6= 5.

We may now assume that |U | = 4. Then U−g is a triad of M\a containing
{e, f} but avoiding g. Hence M has a 4-cocircuit C∗ containing {e, f, a}.
Thus M\e, f has a 2-cocircuit, {a, x} say. Moreover, x ∈ Ye ∩ Yf otherwise
λM (Xe∪Xf ) ≤ 2; a contradiction. Clearly (Xe∪x, Ye−x) is a 3-separation
of M\e. Thus, by Lemma 4.2, Xe ∪ x is a 5-fan or a 5-cofan of M\e
contradicting 5.1.21. This completes the proof of the theorem. �
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6. Proof of the main theorem

In this section, we prove the main result of the paper, Theorem 1.2. To
do this, we shall use two more lemmas.

Lemma 6.1. Let M and N be internally 4-connected binary matroids with
|E(M)| ≥ 15. Let {e, f, g} be a triangle of M such that M\e has an N -
minor and is (4, 5, S,+)-connected. Let (1, 2, 3, 4, 5) be a 5-fan in M\e. If
M\5 has a quad, then 4 ∈ {f, g} and either

(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′

is internally 4-connected with an N -minor; or
(ii) M\1 is (4, 4, S)-connected having an N -minor.

Proof. Assume that the lemma fails. We see that N �M\e\1, so N �M\1.
Thus M\1 is not (4, 4, S)-connected. As M is binary, {2, 3, 4} contains a
single element of f and g, say f . Let Q be a quad of M\5. Then Q ∪ 5 is a
cocircuit of M as M has no quads. Hence, by orthogonality with the triangle
{3, 4, 5}, we deduce that Q contains 3 or 4. Indeed, since M is binary, Q
contains exactly one of 3 and 4.

Now M has {2, 3, 4, e} as a cocircuit. This cocircuit meets the circuit Q
in two or four elements. But {3, 4} 6⊆ Q, so |Q ∩ {2, 3, 4, e}| = 2. Next we
show the following.

6.1.1. If e 6∈ Q, then Q = {2, 3, q3, q4} for some q3, q4 not in {1, 2, 3, 4, 5, e}.
Moreover, 4 = f .

Assume e 6∈ Q. Then Q meets the cocircuit {2, 3, 4, e} in {2, 4} or {2, 3}.
First suppose that Q ∩ {2, 3, 4, e} = {2, 4}. Then, as Q ∪ 5 is a cocircuit of
M and {1, 2, 3} is a circuit, it follows, by orthogonality, that 1 ∈ Q. Thus Q
is {1, 2, 4, z}. Hence {1, 2, 3, 4, 5, z} is 3-separating in M\e; a contradiction
to the fact that this matroid is (4, 5, S,+)-connected. We deduce that Q ∩
{2, 3, 4, e} = {2, 3}.

Now let Q = {2, 3, q3, q4}. Then M has {1, q3, q4} as a circuit. Hence,
as M\e is (4, 5, S,+)-connected, {q3, q4} ∩ {1, 2, 3, 4, 5, e} = ∅. Suppose
f ∈ {2, 3}. Then g ∈ {q3, q4}. Let Z = {1, 2, 3, 4, 5, e, q3, q4}. Then r(Z) ≤
4. Moreover, r∗(Z) ≤ |Z| − 2 as Z contains the cocircuits {2, 3, 4, e} and
{2, 3, q3, q4, 5}. Hence λ(Z) ≤ 2; a contradiction as |E(M)| ≥ 15. Thus
f = 4, so 6.1.1 holds.

6.1.2. If e 6∈ Q, then M\1 is (4, 4)-connected.

Let (U, V ) be a (4, 4)-violator for M\1. Then |U |, |V | ≥ 5. The triangles
{1, 2, 3} and {1, q3, q4} imply that we may assume that {2, q3} ⊆ U and
{3, q4} ⊆ V . By Lemma 3.9(ii), {4, e} 6⊆ U and {4, e} 6⊆ V .

Suppose 4 ∈ U and e ∈ V . Then 5 6∈ U otherwise 1 ∈ cl(U). Thus 5 ∈ V .
Then 4 ∈ cl(V ) and 2 ∈ cl∗M\1(V ∪ 4). Hence (U − 4− 2, V ∪ 4∪ 2∪ 1) is a
3-separation of M . Thus |U | = 5 and U −4−2 is a triangle of M . It follows
that {2, 4} is contained in a triangle of M . But this is a contradiction as
M\e is (4, 5, S,+)-connected.
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We may now assume that e ∈ U and 4 ∈ V . Suppose 5 ∈ V . Then
(U − 2, V ) is a 3-separation of M\1, 2. But q3 ∈ U − 2 and {3, q4, 5} ⊆ V .
Hence q3 ∈ cl∗M\1,2(V ), so (U − 2 − q3, V ∪ q3) is 3-separating in M\1, 2.
But {1, 2} ⊆ cl(V ∪ q3). Thus (U − 2− q3, V ∪ q3 ∪ {1, 2}) is 3-separating in
M , so |U − 2− q3| = 3. As e is in the 3-separating set U − 2− q3, this set is
a triangle of M that meets the cocircuit {2, 3, 4, e} in {e}; a contradiction.
We conclude that 5 ∈ U . Then 5 ∈ cl(V ), so (U − 5, V ∪ 5) is a 3-separation
of M\1. Hence |U | = 5 otherwise |U − 5| ≥ 5 and we can replace (U, V ) by
(U − 5, V ∪ 5) to obtain a contradiction as above. Now q4 ∈ cl∗M\1,3(U),
so (U ∪ q4, V − 3 − q4) is 3-separating in M\1, 3. But 1 ∈ cl(U ∪ q4) and
3 ∈ cl(U ∪ q4 ∪ 1). Hence (U ∪ q4 ∪ 1 ∪ 3, V − 3− q4) is 3-separating in M .
Thus |V | = 5, so |E(M)| = 11; a contradiction. Hence 6.1.2 holds.

We now strengthen 6.1.2 to show the following.

6.1.3. e ∈ Q.

Assume e 6∈ Q. Since M\1 is not (4, 4, S)-connected, by 6.1.2, the asser-
tion holds unless M\1 has a quad Q′. Consider the exceptional case. Then
Q′ ∪ 1 is a cocircuit of M , so exactly one of q3 and q4 is in Q′. Without loss
of generality, we may assume that q3 ∈ Q′.

6.1.4. 3 6∈ Q′ and 2 ∈ Q′

Clearly Q′ ∩ {2, 3}| = 1. Suppose that 3 ∈ Q′. Then 4 or 5 is in Q′, so
Q′ ∪{4, 5} is a (4, 4)-violator of M\1; a contradiction to 6.1.2. We conclude
that 6.1.4 holds.

Next we show that

6.1.5. 4 6∈ Q′ and e ∈ Q′

Since 2 ∈ Q′ and {2, 3, 4, e} is a cocircuit, exactly one of 3, 4 and e is in
Q′. But 3 6∈ Q′. Suppose 4 ∈ Q′. Then Q′ = {2, q3, 4, v} for some element
v, so {2, q3, 4, v, 1} is a cocircuit of M . As 3 6∈ Q′ and {3, 4, 5} is a circuit,
it follows that 5 ∈ Q′ so v = 5. Thus Q′ = {2, q3, 4, 5}, so {q3, 1} contains
a circuit of M ; a contradiction. We deduce that 4 6∈ Q′. Therefore e ∈ Q′.
Thus 6.1.5 holds.

We may now assume that Q′ = {2, q3, e, w} for some element w that is not
in {1, 2, 3, 4} and so is not in {1, 2, 3, 4, 5} by orthogonality betweenQ′∪1 and
the triangle {3, 4, 5}. Let Z ′′ = {1, 2, 3, 4, 5, q3, q4, e, q, w}. Then r(Z ′′) ≤ 5
and r∗(Z ′′) ≤ |Z ′′| − 3 as Z ′′ contains the cocircuits {2, 3, 4, e}, Q ∪ 5, and
Q′ ∪ 1. Hence λ(Z ′′) ≤ 2; a contradiction, so 6.1.3 holds.

6.1.6. Q = {e, 4, q3, q4} for some q3, q4 not in {1, 2, 3, 4, 5, e, g}. Moreover,
f = 4 and {g, q3, q4} is a circuit of M .

As e ∈ Q, exactly one of 2, 3, and 4 is in Q. Suppose that Q∩ {2, 3} 6= ∅.
Then, by orthogonality, 1 ∈ Q, so {1, 2, 3, 4, 5}∪Q is a 7-element 3-separating
set in M ; a contradiction. Thus Q ∩ {2, 3} = ∅, so 4 ∈ Q. We now know
that Q = {e, 4, q3, q4} for some elements q3, q4 not in {1, 2, 3, 4, 5}. Suppose
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f ∈ {2, 3}. Then, as |{e, 4, q3, q4, 5} ∩ {e, f, g}| = 2, we may assume that
q3 = g. Thus Q 4 {e, f, g} = {4, f, q4}. Then q4 ∈ cl({1, 2, 3, 4, 5}), so
{1, 2, 3, 4, 5, q4} is 3-separating in M\e; a contradiction. We conclude that
f 6∈ {2, 3}. Thus f = 4 and so g 6∈ {q3, q4}. Moreover, Q4 {e, f, g}, which
is {g, q3, q4}, is a circuit of M . Hence 6.1.6 holds.

Since N �M\e and (1, 2, 3, 4, 5) is a maximal fan of M\e, it follows that
M\e\5 is 3-connected. Moreover, N � M\e\5. Now M\e\5 has {4, q3, q4}
as a triad and has {g, q3, q4} as a triangle, so has (g, q3, q4, 4) as a fan. Thus
N � M\e\5\g or N � M\e\5/4. In the latter case, as 4 = f and {e, g} is
a circuit of M/4, we deduce that N � M\g. This also holds in the former
case.

As the quad Q of M\5 is {4, e, q3, q4} and M\5\e has an N -minor,
Lemma 3.4 implies that N � M\5\4. But f = 4. Hence N � M\f .
We now know that, for all t in the triangle {e, f, g}, the matroid M\t has
an N -minor. Then, by Theorem 3.5, since we have assumed that (i) of the
lemma does not hold, we deduce that

6.1.7. M\f or M\g is (4, 4, S)-connected.

Recall that M\1 is not (4, 4, S)-connected and that 4 = f . Next we show
the following.

6.1.8. Let (U, V ) be a (4, 4, S)-violator of M\1 with 4 in U . Then g ∈ U ,
and V is a 5-fan (e, 2, s1, s2, s3) where {s1, s2, s3} ∩ {1, 2, 3, 4, e, g} = ∅.
Moreover, M\g is (4, 4, S)-connected.

We may assume that |U |, |V | ≥ 5, or U or V is a quad of M\1. Neither
U nor V spans 1, so we may also assume that a ∈ U and b ∈ V where
{a, b} = {2, 3}. Suppose e ∈ U . Then (U ∪ b ∪ 1, V − b) is a 3-separation
of M . Therefore |V − b| ≤ 3, so |V | = 4. Hence V is a quad of M\1. But
V is sequential in M\1; a contradiction. We conclude that e ∈ V . Then
(U ∪ b, V − e− b) is 3-separating in M\1\e. Hence (U ∪ b ∪ 1, V − e− b) is
3-separating in M\e. Thus |V | ≤ 7.

Suppose g ∈ V . Then 4 ∈ cl(V ) and a ∈ cl∗M\1(V ∪ 4). Thus (U − 4 −
a, V ∪ 4 ∪ a ∪ 1) is 3-separating in M , so |U | ≤ 5. Hence |E(M)| ≤ 13; a
contradiction. We deduce that g ∈ U .

Now e ∈ cl(U) and b ∈ cl∗M\1(U ∪ e). Thus (U ∪ e ∪ b ∪ 1, V − e −
b) is 3-separating in M . Hence V is a 5-fan (e, b, s1, s2, s3) in M\1, and
{s1, s2, s3} ∩ {1, 2, 3, 4, e, g} = ∅. Thus {1, b, s1, s2} is a cocircuit of M .
Suppose that b = 3. Then the circuit {3, 4, 5} implies, by orthogonality,
that 5 ∈ {s1, s2}. But {e, 3, 5} is not a circuit of M , so 5 = s2. Taking
the symmetric difference of the circuits {e, 3, s1}, {s1, 5, s3}, and {3, 4, 5},
we deduce that {e, s3, 4} is a circuit. Thus s3 = g; a contradiction. We
conclude that b 6= 3, so (a, b) = (3, 2).

Finally, suppose that M\g is not (4, 4, S)-connected. Then, by 6.1.7, M\f
is (4, 4, S)-connected. As (U − 4 − 3, V ∪ 3) is 3-separating in M\1\4, we
deduce that (U − 4 − 3, V ∪ 3 ∪ 1) is 3-separating in M\4. Hence |U | ≤ 6,
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so |E(M)| ≤ 12; a contradiction. Thus M\g is (4, 4, S)-connected. We
conclude that 6.1.8 holds.

As M\g is not internally 4-connected, it has a 4-fan (t1, t2, t3, t4). Then
{t2, t3, t4, g} is a cocircuit of M . By orthogonality, {t2, t3, t4} contains ex-
actly one element of {e, f} and contains exactly one element of {q3, q4}, say
q3.

Suppose f ∈ {t2, t3, t4}. Then, by orthogonality, 3 or 5 is in {t2, t3, t4}.
If 3 ∈ {t2, t3, t4}, then {t2, t3, t4} meets {1, 2}; a contradiction as q3 ∈
{t2, t3, t4}. Thus 5 ∈ {t2, t3, t4}, so {f, 5, q3, g} is a cocircuit of M . Let
Z = {1, 2, 3, 4, 5, e, g, q3, q4}. Then r(Z) ≤ 5 and r∗(Z) ≤ |Z| − 3 as
Z contains the cocircuits {2, 3, 4, e} {f, 5, q3, g}, and {e, 4, q3, q4, 5}. Thus
λ(Z) ≤ 2; a contradiction.

We may now assume that e ∈ {t2, t3, t4}. First suppose that e = t4.
As q3 ∈ {t2, t3}, we may assume that t3 = q3. Orthogonality between the
circuit {t1, t2, q3} and the cocircuit {e, 4, q3, q4, 5} implies that 4, 5, or q4 is in
{t1, t2}. If q4 ∈ {t1, t2}, then {t1, t2, t3} = {q3, q4, g}; a contradiction. If 4 ∈
{t1, t2}, then 2 or 3 is in {t1, t2} by orthogonality with {2, 3, 4, e}. Thus {2, 4}
or {3, 4} is in a triangle ofM other than {3, 4, 5}; a contradiction. We deduce
that 5 ∈ {t1, t2}. Let Z ′ = {1, 2, 3, 4, 5, e, g, q3, q4, t1, t2}. Then r(Z ′) ≤ 5
and r∗(Z ′) ≤ |Z ′| − 3 as Z ′ contains the cocircuits {2, 3, 4, e}, {t2, q3, e, g},
and {e, 4, q3, q4, 5}. Thus λ(Z ′) ≤ 2; a contradiction. We conclude that
e 6= t4. Thus e ∈ {t2, t3}. Also q3 ∈ {t3, t4}.

Next we show that

6.1.9. q3 6= t3

Assume the contrary. Then e = t2. Orthogonality between {t1, e, q3}
and {2, 3, 4, e} implies that t1 ∈ {2, 3, 4}. But 4 = f , so t1 6= 4. Hence
t1 ∈ {2, 3}. Then {t1, e, q3} 4 {g, q3, q4} 4 {e, f, g} = {t1, f, q4}. Thus
{t1, f, q4} is a circuit, so q4 ∈ cl({1, 2, 3, 4, 5}); a contradiction. We conclude
that 6.1.9 holds.

We now know that q3 = t4. By symmetry, we may assume that e = t2.
Thus (t1, e, t3, q3) is a 4-fan inM\g. From 6.1.8, M has {e, 2, s1} as a triangle
and g 6= s1. It follows by orthogonality that {2, s1} must meet {t3, q3, g}.
But M\g is (4, 4, S)-connected, so {e, 2, s1} = {e, t1, t3}. Thus 2 is t3 or t1.

If 2 = t3, then orthogonality between the cocircuit {e, 2, q3, g} and the
circuit {1, 2, 3} implies that q3 ∈ {1, 3}, contradicting 6.1.6. Thus 2 = t1, so
t3 = s1. The cocircuit {e, s1, q3, g} meets the circuit {s1, s2, s3}, so {s2, s3}
meets {e, q3, g}. But, by 6.1.8, {s2, s3} avoids {e, g}, so q3 ∈ {s2, s3}. Then
the 4-fan (t1, e, s1, q3) in M\g can be extended to a 5-fan; a contradiction.
Thus Lemma 6.1 holds. �

Although the matroid M we are dealing with need not be graphic, we
follow [2] in using a modified graph diagram to keep track of some of the
circuits and cocircuits in M (see Figure 8). By convention, the cycles in the
graph correspond to circuits of the matroid while a circled vertex indicates
a known cocircuit of M .



42 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

4 = f

2

3
1 5

h

i

g
w3

e

(a)

(b)

(c)

w3

e

4

v1

v2

v3

2

1 5

g

v1

v2

v3
e

4

3
1 5

i

h

g

w1

w2

w1

w2

2 = f

3 = f

Figure 8. Circled vertices correspond to known cocircuits.

Lemma 6.2. Let M and N be internally 4-connected matroids with
|E(M)| ≥ 15. Let {e, f, g} be a triangle of M such that M\e has an N -
minor and is (4, 5, S,+)-connected. Let (1, 2, 3, 4, 5) be a 5-fan in M\e.
Then each of M\e, 1 and M\e, 5 has an N -minor. Moreover,

(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′

is internally 4-connected with an N -minor; or
(ii) M\1 or M\5 is (4, 4, S)-connected having an N -minor; or
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(iii) both M\1 and M\5 are (4, 5, S,+)-connected and M contains one of
the configurations shown in Figure 8 where all the indicated elements
are distinct unless f = 3, |E(M)| = 15, and v3 = w3.

Proof. Certainly both M\e, 1 and M\e, 5 have N -minors. Moreover, as
(1, 2, 3, 4, 5) is a maximal fan in M\e, by [14, Lemma 1.5], each of M\e, 1
and M\e, 5 is 3-connected. Assume that neither (i) nor (ii) holds. Then,
by Lemma 6.1 and symmetry, we may assume that neither M\1 nor M\5
has a quad. Let (U5, V5) be a (4, 4, S)-violator of M\5. Then |U5|, |V5| ≥ 5.
Without loss of generality, we may assume that 3 ∈ U5 and 4 ∈ V5. By
Lemma 3.9(ii), {2, e} 6⊆ U5 and {2, e} 6⊆ V5.

Next we show that

6.2.1. 2 ∈ U5 and e ∈ V5.

Assume that this fails. Then 2 ∈ V5 and e ∈ U5. It follows that 1 ∈
U5 otherwise V5 contains {1, 2, 4} and so spans 5, a contradiction. Now
(U5 ∪ 2, V5 − 2) and (U5 ∪ 2 ∪ 4, V5 − 2− 4) are 3-separations of M\5. Thus
(U5 ∪ 2 ∪ 4 ∪ 5, V5 − 2− 4) is 3-separating in M . Hence |V5 − {2, 4}| ≤ 3, so
|V5| ≤ 5.

Now (U5−e, V5) is 3-separating in M\5\e. Hence so is (U5−e−3, V5∪3).
Thus (U5−e−3, V5∪3∪5) is 3-separating in M\e. Therefore |U5−e−3| ≤ 5,
so |U5| ≤ 7. But |V5| ≤ 5. Thus |E(M)| ≤ 13; a contradiction. Thus 6.2.1
holds.

We show next that

6.2.2. |V5| ≤ 7 and |U5| ≥ 7.

We know that (U5, V5−e) is a 3-separation of M\5\e, so (U5∪4, V5−e−4)
is 3-separating in M\5\e. Hence (U5 ∪ 4 ∪ 5, V5 − e − 4) is 3-separating in
M\e, so |V5 − e− 4| ≤ 5 and |V5| ≤ 7. Thus |U5| ≥ 7 and 6.2.2 holds.

Next we show the following.

6.2.3. If f = 4, then g ∈ V5.

Assume g ∈ U5. We have λM\5(U5) = 2, so λM\5(U5 ∪ 4) ≤ 3. But
e ∈ clM\5(U5∪4)∩cl∗M\5(U5∪4) since {f, g} ⊆ U5∪4 and {2, 3, 4} ⊆ U5∪4.
Thus λM\5(U5 ∪ 4∪ e) ≤ 2. Hence (U5 ∪{4, e, 5}, V5−{4, e}) is 3-separating
in M , so |V5 − {4, e}| ≤ 3. But |V5| ≥ 5. Thus V5 − {4, e} is a triangle or a
triad of M .

Now (U5, V5 − e) is a 3-separation of M\5\e and 4 ∈ cl∗M\5,e(U5). Thus
V5 − {4, e} is a triangle {v1, v2, v3} of M\5, e where {4, v1, v2} is a triad of
M\5, e. As 4 = f and g ∈ U5, it follows that {4, v1, v2, e} is a cocircuit
of M\5. We know that M\5 has no quads and that V5 is a 5-element 3-
separating set in this matroid that contains the triangle {v1, v2, v3}. Suppose
r(V5) = 3. Then V5 is a 5-fan in M\5. Thus {4, e} is contained in a triangle
contained in V5; a contradiction. We deduce that r(V5) = 4. Thus V5 is a 5-
cofan in M\5 in which the triangle is {v1, v2, v3} and the other two elements
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are e and 4. Thus e is in a triad of M\5. But M\5, e is 3-connected; a
contradiction. We conclude that 6.2.3 holds.

6.2.4. If f ∈ {2, 3}, then g ∈ U5.

Suppose g ∈ V5. First assume that f = 3. Then (U5 − 3, V5 ∪ 3) is
a 3-separation of M\5, so (U5 − 3, V5 ∪ 3 ∪ 5) is a 3-separation of M ; a
contradiction as |U5 − 3| ≥ 4. We may now assume that f = 2. Then
(U5− 2, V5 ∪ 2) and (U5− 2− 3, V5 ∪ 2∪ 3) are 3-separations of M\5. Hence
(U5− 2− 3, V5 ∪ 2∪ 3∪ 5) is 3-separating in M . Thus |U5− 2− 3| ≤ 3. This
contradicts 6.2.2. Hence 6.2.4 holds.

6.2.5. If f ∈ {2, 3}, then V5 is a 5-fan (e, 4, v1, v2, v3) in M\5 and
{4, v1, v2, 5} is a cocircuit of M . Moreover, {v1, v2, v3}∩ {1, 2, 3, 4, 5, e, g} =
∅.

First we note that, as f ∈ {2, 3}, by 6.2.4, g ∈ U5. Thus each of (U5 ∪
e, V5 − e) and (U5 ∪ e ∪ 4, V5 − e − 4) is 3-separating in M\5, so (U5 ∪
e ∪ 4 ∪ 5, V5 − e − 4) is 3-separating in M . Hence |V5 − e − 4| ≤ 3, so
|V5| = 5. As e ∈ clM\5(U5) and 4 ∈ cl∗M\5(U5 ∪ e), it follows that V5 is
a 5-fan (e, 4, v1, v2, v3) as asserted. As M has no 4-fans, we deduce that
{4, v1, v2, 5} is a cocircuit of M .

Now {2, 3, 4, 5, e, g} ∩ {v1, v2, v3} = ∅ as {2, 3, g} ⊆ U5 and
|{e, 4, v1, v2, v3}| = 5. Clearly 1 6∈ {v1, v2} by orthogonality between the
cocircuit {4, v1, v2, 5} and the circuit {1, 2, 3}. Finally, v3 6= 1 otherwise
r({1, 2, 3, 4, 5, e, v1, v2}) ≤ 4 and then λ({1, 2, 3, 4, 5, e, v1, v2}) ≤ 2; a con-
tradiction. Thus 6.2.5 holds.

Now let (U1, V1) be a (4, 4, S)-violator of M\1. As M\1 has no quads,
|U1|, |V1| ≥ 5. Without loss of generality, we may assume that 3 ∈ U1 and
2 ∈ V1. By 6.2.1, 6.2.3, 6.2.5, and symmetry, we get the following.

6.2.6. (i) 4 ∈ U1 and e ∈ V1;
(ii) if f = 2, then g ∈ V1; and
(iii) if f ∈ {3, 4}, then V1 is a 5-fan (e, 2, w1, w2, w3) in M\1

where {2, w1, w2, 1} is a cocircuit of M and {w1, w2, w3} ∩
{1, 2, 3, 4, 5, e, g} = ∅.

We now show the following.

6.2.7. If f = 4, then V5 is a 5-fan (e, 4, g, h, i) in M\5 and {4, g, h, 5} is a
cocircuit of M where {h, i} ∩ {1, 2, 3, 4, 5, e, g} = ∅.

By 6.2.3, g ∈ V5. If w1 ∈ V5, then (U5−2, V5∪2) and (U5−2−3, V5∪2∪3)
are 3-separating in M\5, so (U5 − 2− 3, V5 ∪ 2 ∪ 3 ∪ 5) is is 3-separating in
M ; a contradiction as |U5| ≥ 7. We deduce that w1 ∈ U5. Then e ∈ cl(U5)
and 4 ∈ cl∗M\5(U5 ∪ e). Thus (U5 ∪ e ∪ 4 ∪ 5, V5 − e − 4) is 3-separating
in M . Hence |V5| = 5 and V5 is a 5-fan (e, 4, g, h, i) in M\5. It follows
that {4, g, h, 5} is a cocircuit of M . Clearly {h, i} ∩ {2, 3, 4, 5, e, g} = ∅.
Moreover, h 6= 1 otherwise the circuit {1, 2, 3} and the cocircuit {4, g, h, 5}
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meet in a single element. Finally, i 6= 1 otherwise λ({1, 2, 3, 4, 5, e, g, h}) ≤ 2;
a contradiction. Thus 6.2.7 holds.

The case when f = 2 is symmetric to that when f = 4. We may
now combine the information above to obtain that both M\1 and M\5
are (4, 5, S,+)-connected, and that M contains one of the configurations
shown in Figure 8. It is not difficult to check that all of the elements shown
are distinct unless |E(M)| = 15, f = 3, and v3 = w3, otherwise M has a
(4, 3)-violator. �

We are now ready to complete the proof of the main theorem. This will
use the following notion, which was motivated by Zhou’s [18] definition of
a double k-fan. For an integer k ≥ 3, we shall say that an internally 4-
connected binary matroid M has a good k-configuration if M has distinct
elements c1, c2, . . . , ck, a0, a1, . . . , ak−1, b0, b1, . . . , bk−1 such that

(i) for all i in [k − 1], the set {ci, ai, bi, ci+1} is a cocircuit and each of
{ai−1, ci, ai} and {bi−1, ci, bi} is a triangle of M ; and

(ii) when k is even, {ak−1, ck, ak} is a triangle for some element
ak not in {a1, b1, c1, a2, b2, c2, . . . , ak−1, bk−1, ck−1}; and, when k
is odd, {bk−1, ck, bk} is a triangle for some element bk not in
{a1, b1, c1, a2, b2, c2, . . . , ak−1, bk−1, ck−1}; and

(iii) if i is odd, then M\bi is (4, 5, S,+)-connected and has an N -minor,
while if j is even, then M\aj is (4, 5, S,+)-connected and has an
N -minor.

Proof of Theorem 1.2. Assume that neither (i) nor (ii) holds. By Theo-
rem 2.1, M has a triangle T that contains an element e such that M\e
is (4, 5, S,+)-connected. Let T = {e, f, g}. Since M\e is not (4, 4, S)-
connected, it has a 5-fan (1, 2, 3, 4, 5) where we may assume that f ∈
{2, 3, 4}. By Lemma 6.1, neither M\1 nor M\5 has a quad. Thus nei-
ther M\1 nor M\5 is (4, 4)-connected. Hence, by Lemma 6.2, both M\1
and M\5 are (4, 5, S,+)-connected having N -minors, and M contains one
of the configurations shown in Figure 8.

By symmetry, we may assume that f ∈ {3, 4}. Now, in M , we have
distinct elements c1, c2, c3, a0, a1, a2, b0, b1, b2, b3 where (a0, a1, a2) = (5, 3, 1),
(b1, b2, b3) = (e, w1, w3), (c1, c2, c3) = (4, 2, w2), and b0 = g when f = 4,
while b0 = v1 when f = 3. We also know that each of M\a0, M\b1, and
M\a2 is (4, 5, S,+)-connected having an N -minor. We deduce that M has a
good k-configuration when k = 3. Let n be the largest value of k for which
M has a good k-configuration. We shall show that M is isomorphic to one
of M(G+

n+1), M(Gn+1), ∆n, or ∆n\a.
By taking symmetric differences, we see that if M has a good k-

configuration, then {a0, b0, ai, bi} is a circuit of M for all i in [k −
1]. The arguments for the cases when n is odd and when n is
even are essentially identical. We shall present only the former. In
that case, M\an−1 is (4, 5, S,+)-connected having an N -minor and
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having (bn−2, cn−1, bn−1, cn, bn) as a fan. Applying Lemma 6.2 tak-
ing (e, f, g) = (an−1, cn−1, an−2), we get that M\bn is (4, 5, S,+)-
connected having an N -minor and a 5-fan (an−1, cn, an, cn+1, an+1) for
some elements an, cn+1, an+1 where {cn, an, cn+1, bn} is a cocircuit of M .
Moreover, M\an+1 is (4, 5, S,+)-connected having an N -minor. Now,
by orthogonality between the circuit {an−1, cn, an} and the cocircuits
{c1, a1, b1, c2}, {c2, a2, b2, c3}, . . . , {cn−2, an−2, bn−2, cn−1}, we deduce that
an 6∈ {c1, b1, a1, c2, b2, a2, . . . , cn−1, bn−1, an−1}. Moreover, an 6∈ {cn, bn}.
In addition, as {an−1, bn−1, an, bn} and {a0, b0, an−1, bn−1} are circuits,
their symmetric difference is either a 4-circuit or it is empty. Hence ei-
ther {a0, b0} ∩ {an, bn} = ∅ and {a0, b0, an, bn} is a 4-circuit of M , or
{an, bn} = {a0, b0}.

Suppose first that {a0, b0} ∩ {an, bn} = ∅. The cocircuit {cn, an, cn+1, bn}
implies, using orthogonality, that cn+1 6∈ {a0, b0, a1, b1, c1, . . . , an, bn, cn}.
Now N � M\an+1 and, by Lemma 6.2, M\an+1 is (4, 5, S,+)-
connected. Moreover, using orthogonality, it follows that an+1 6∈
{a1, b1, c1, a2, b2, c2, . . . , an, bn, cn}. We conclude that if {a0, b0}∩{an, bn} =
∅, then M has a good (n+ 1)-configuration; a contradiction. It follows that
{a0, b0} = {an, bn}. In that case, either

(i) (a0, b0) = (an, bn); or
(ii) (a0, b0) = (bn, an).

If (i) holds, the triangles {a0, c1, a1} and {a0, cn+1, an+1} imply that ei-
ther {a1, an+1, c1, cn+1} is a circuit, or {a1, c1} = {an+1, cn+1}. The for-
mer contradicts orthogonality with the cocircuit {b0, a0, cn, cn+1}. Thus
{a1, c1} = {an+1, cn+1} and it is not difficult to check using orthogonality
that (a1, c1) = (an+1, cn+1). In case (ii), a similar argument establishes that
(b1, c1) = (an+1, cn+1).

Now let Z = {a1, b1, c1, a2, b2, c2, . . . , an, bn, cn}. Then r(Z) ≤ n + 1 and
r∗(Z) ≤ |Z| − n. Thus λ(Z) ≤ 1. Hence either Z = E(M), or E(M) − Z
contains a single element, say z. In the latter case, let Z ′ = E(M) −
{an, bn, z}. Then r(Z ′) ≤ n + 1 and r∗(Z ′) ≤ |Z ′| − n − 1. It follows that
equality holds in each of the last two inequalities and λ(Z ′) = 2. Thus
{an, bn, z} is a triangle of M . It is now straightforward to check that, in
case (i), M is isomorphic to M(G+

n+1) or M(Gn+1) depending on whether
z does or does not exist; and, in case (ii), M is isomorphic to ∆n or ∆n\a
depending on whether z does or does not exist. �
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