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ABSTRACT. In our quest to find a splitter theorem for internally 4-connected
binary matroids, we proved in the preceding paper in this series that, except
when M or its dual is a cubic M6bius or planar ladder or a certain coextension
thereof, an internally 4-connected binary matroid M with an internally 4-
connected proper minor N either has a proper internally 4-connected minor
M’ with an N-minor such that |[E(M) — E(M’)] < 3 or has, up to duality,
a triangle T and an element e of T" such that M\e has an N-minor and has
the property that one side of every 3-separation is a fan with at most four
elements. This paper proves that, when we cannot find such a proper internally
4-connected minor M’ of M, we can incorporate the triangle T into one of two
substructures of M: a bowtie or an augmented 4-wheel. In the first of these,
M has a triangle T” disjoint from T and a 4-cocircuit D* that contains e and
meets T”. In the second, T is one of the triangles in a 4-wheel restriction of
M with helpful additional structure.

1. INTRODUCTION

Seymour’s Splitter Theorem [10] is a powerful inductive tool for 3-connected
matroids. It shows that if such a matroid M has a proper 3-connected minor N,
then M has a proper 3-connected minor M’ with an N-minor such that |E (M) —
E(M")] =1 unless 7(M) > 3 and M is a wheel or a whirl. The current paper is
the fourth in a series whose aim is to obtain a splitter theorem for binary internally
4-connected matroids. Specifically, we believe we can prove that if M and N are
internally 4-connected binary matroids, and M has a proper N-minor, then M has
a proper minor M’ such that M’ is internally 4-connected with an N-minor, and
M’ can be produced from M by a bounded number of simple operations.

Johnson and Thomas [6] showed that, even for graphs, a splitter theorem in
the internally 4-connected case must take account of some special examples. For
n > 3, let G, 42 be the biwheel with n 4 2 vertices, that is, G' consists of an n-cycle
V1,V2,...,U,,v1, the rim, and two additional vertices, u and w, both of which are
adjacent to every v;. Thus the dual of G, 42 is a cubic planar ladder. Let M be
the cycle matroid of Ga,12 for some n > 3 and let N be the cycle matroid of
the graph that is obtained by proceeding around the rim of Gs,12 and alternately
deleting the edges from the rim vertex to w and to w. Both M and N are internally
4-connected but there is no internally 4-connected proper minor of M that has a
proper N-minor. We can modify M slightly and still see the same phenomenon.
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Let G 4o be obtained from G2 by adding a new edge a joining the hubs u and
w. Let A,y be the binary matroid that is obtained from M (G, o) by deleting
the edge v,_1v, and adding the third element on the line spanned by wv, and
uv,—1. This new element is also on the line spanned by wv,, and wv,_;. For r > 3,
Mayhew, Royle, and Whittle [7] call A,. the rank-r triangular Mébius matroid and
note that A, \a is the dual of the cycle matroid of a cubic Mobius ladder.

In [2], we proved a splitter theorem when M is a 4-connected binary matroid and
N is an internally 4-connected proper minor of M. In particular, we showed that,
unless M is a certain 16-element non-graphic matroid, we can find an internally
4-connected matroid M’ with |E(M) — E(M’)| = 1 such that M’ has an N-minor.
This result leaves us to treat the case when M is an internally 4-connected matroid
having a triangle or a triad. But we know nothing about how this triangle or triad
relates to the N-minors of M. Our second step towards the desired splitter theorem
was to consider the case when all the triangles and triads of M are retained in N.
In this case, we proved [3, Theorem 1.2] the following result.

Theorem 1.1. Let M and N be internally 4-connected binary matroids such that
|[E(N)| > 7, and N is isomorphic to a proper minor of M. Assume that if T is a
triangle of M and e € T, then M\e does not have an N-minor. Dually, assume
that if T* is a triad of M and f € T*, then M/ f does not have an N-minor. Then
M has an internally 4-connected minor M’ of M such that M’ has an N-minor
and 1 < |E(M) — E(M")| < 2.

This theorem enables us to assume, by replacing M by its dual if necessary,
that M has a triangle T' containing an element e for which M\e has an N-minor.
In earlier work [1], we found it useful to consider weaker variants of internal 4-
connectivity. The only 3-separations allowed in an internally 4-connected matroid
have a triangle or a triad on one side. A 3-connected matroid M is (4,4, 5)-
connected if, for every 3-separation (X,Y) of M, one of X and Y is a triangle, a
triad, or a 4-element fan, that is, a 4-element set {x1, xo, 3, 4} that can be ordered
so that {x1,ze,z3} is a triangle and {x9,x3, x4} is a triad. Somewhat weaker still
than (4,4, S)-connectivity is the following notion. We call M (4,5, S, +)-connected
if, for every 3-separation (X,Y) of M, one of X and Y is a triangle, a triad, a
4-element fan, or a 5-fan, that is, a 5-element set {x,x2,23, 24,25} such that
{x1,22,23} and {z3,x4, x5} are triangles, while {x9, z3, x4} is a triad.

The following is the main result of [4, Theorem 1.2].

Theorem 1.2. Let M be an internally 4-connected binary matroid with an inter-
nally 4-connected proper minor N such that |E(M)| > 15 and |[E(N)| > 6. Then

(i) M has a proper minor M’ such that |E(M) — E(M")] < 3 and M’ is
internally 4-connected with an N-minor; or
(ii) for some (My, No) in {(M,N),(M*, N*)}, the matroid My has a triangle
T that contains an element e such that Mo\e is (4,4, S)-connected having
an N-minor; or
(ii) M or M* is isomorphic to M(G, ), M(Gy41), Ay, or A\z for some
r > 5.
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To continue the derivation of our desired splitter theorem, this paper will build
detailed structure around the triangle T' that arises in (ii). Let M be an inter-
nally 4-connected binary matroid having disjoint triangles 77 and T> and a 4-
cocircuit D* contained in their union. We call this structure a bowtie and de-
note it by (71,75, D*). Now let N be an internally 4-connected proper minor
of M, and suppose D* has an element d such that M\d has an N-minor. If
M\d is (4,4, S)-connected, then (17,75, D*) is a good bowtie. If, instead, M\d
is (4,5,5,4)-connected, then (71,75, D*) is a pretty good bowtie if it can be la-
belled ({1,2,3},{4,5,6},{2,3,4,5}) so that d = 2 and there is an element 7 such
that {3,5,7} is a triangle of M, and M\7 is (4,4, S)-connected having an N-minor.

To state our main theorem, we need to define two more structures. A terrahawk is
the graph that is obtained from a cube by adjoining one new vertex and adding edges
from this vertex to each of the four vertices that bound some fixed face of the cube.
Now let M be a binary internally 4-connected matroid having a binary internally
4-connected minor N. An augmented 4-wheel consists of a 4-wheel restriction of M
with triangles {zo, 21, y2}, {v2, T3, 23}, {23, y3, T2}, {2, y1, 22} along with two addi-
tional distinct elements z; and z4 such that M has {1, y1, 21, 22}, {22, y2, 22, 23},
and {zs3,ys, 23,24} as cocircuits. We call an augmented 4-wheel good if M\y; is
(4,4, S)-connected having an N-minor, while M\ys has an N-minor. A diagram-
matic representation of an augmented 4-wheel is shown in Figure 1. Although the
matroid M we are considering need not be graphic, we follow the convention begun
in [1] of using a modified graph diagram to keep track of some of the circuits and
cocircuits in M. By convention, the cycles in the graph diagram correspond to
circuits of the matroid while a circled vertex indicates a known cocircuit of M.

Theorem 1.3. Let M and N be internally 4-connected binary matroids such that
|[E(M)| > 16 and |[E(N)| > 6. Suppose that M has a triangle T containing an
element e for which M\e is (4,4, S)-connected having an N-minor. Then one of
the following holds.

(i) M has an internally 4-connected minor M’ that has an N-minor such that
1<|E(M)—-E(M’)| <3; or
(ii) M or M* has a good bowtie; or
(iii) M or M* has a good augmented 4-wheel; or
(iv) N =2 M(Ky) and M is the cycle matroid of a terrahawk.

We observe here that we can delete outcome (iv) in the last theorem if we allow
|[E(M) — E(M')] = 4 in (i) since the terrahawk has the cube as a minor. In the
fifth paper of this series [5], we essentially eliminate the need to consider good
augmented 4-wheels by showing that when M contains such a substructure, either
it also contains a good bowtie, or, in an easily described way, we can obtain an
internally 4-connected minor of M with an N-minor.

As a preliminary step towards proving this theorem, we shall show in Theorem 3.1
that, when (i) does not hold, M or M* has a good bowtie or a pretty good bowtie. In
the next section, we present some preliminary results that will be used in the proof
of Theorem 1.3. Then Section 3 outlines the main steps in that proof. Following
that, the remaining sections of the paper fill in the details of this outline.
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2. PRELIMINARIES

The matroid terminology used here will follow Oxley [8]. We shall sometimes
write N < M to indicate that M has an N-minor, that is, a minor isomorphic
to the matroid N. If x is an element of a matroid M and Y C E(M), we write
z € ™ (Y) to mean that z € cl(Y) or z € cI*(Y). A quad in a matroid is a
4-element set that is both a circuit and a cocircuit. The property that a circuit and
a cocircuit in a matroid cannot have exactly one common element will be referred
to as orthogonality. Tt is well known ([8, Theorem 9.1.2]) that, in a binary matroid,
a circuit and cocircuit must meet in an even number of elements.

Let M be a matroid with ground set E and rank function r. The connectivity
function Apr of M is defined on all subsets X of E by Ay (X) =r(X)+r(F—X)—
r(M). Equivalently, Ay (X) = r(X) + r*(X) — | X|. We will sometimes abbreviate
Au as A. For a positive integer k, a subset X or a partition (X, E — X) of E is k-
separating if App(X) < k—1. A k-separating partition (X, E — X) is a k-separation
if | X],|E — X| > k. If n is an integer exceeding one, a matroid is n-connected if it
has no k-separations for all £ < n. This definition has the attractive property that
a matroid is n-connected if and only if its dual is. Moreover, this matroid definition
of n-connectivity is relatively compatible with the graph notion of n-connectivity
when n is 2 or 3. For example, if G is a graph with at least four vertices and with no
isolated vertices, M (G) is a 3-connected matroid if and only if G is a 3-connected
simple graph. But the link between n-connectivity for matroids and graphs breaks
down for n > 4. In particular, a 4-connected matroid with at least six elements
cannot have a triangle. Hence, for r > 3, neither M (K, 1) nor PG(r — 1,2) is
4-connected. This motivates the consideration of other types of 4-connectivity in
which certain 3-separations are allowed. In particular, a matroid is internally 4-
connected if it is 3-connected and, whenever (X,Y") is a 3-separation, either | X| =3
or |[Y| =3. Let n and k be integers with n > 3 and k& > 2. A matroid M is (n, k)-
connected if M is (n — 1)-connected and, whenever (X,Y) is an (n — 1)-separating
partition of E(M), either |X| < k or |Y| < k. In particular, a matroid is (4, 3)-
connected if and only if it is internally 4-connected. A graph G without isolated
vertices is internally 4-connected if M(G) is internally 4-connected.
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A k-separating set X or a k-separation (X, F — X) is ezact if Ay (X) =k — 1.
A k-separation (X, F — X) is minimal if | X| =k or |E — X| = k. It is well known
(see, for example, [8, Corollary 8.2.2]) that if M is k-connected having (X, E — X)
as a k-separation with |X| = k, then X is a circuit or a cocircuit of M. The guts
of a k-separation (U, V) is cl(U) N cl(V), while the coguts is cI*(U) N cl* (V).

A set X in a matroid M is fully closed if it is closed in both M and M*. The
intersection of two fully closed sets is fully closed, and the full closure fcl(X) of X
is the intersection of all fully closed sets that contain X. Two exactly 3-separating
partitions (A1, B1) and (Asg, Bs) of a 3-connected matroid M are equivalent, written
(Al, Bl) = (AQ, BQ)7 if fCl(Al) - fCl(Ag) and fCl(Bl) = fCl(Bg)

Let (X,Y) be an exact 3-separation of a simple binary matroid M. As binary
matroids are uniquely representable over GF'(2), we can view M as a restriction of
PG(r —1,2), where r = r(M). Let clp be the closure operator of PG(r — 1,2).
Then r(X UY) +r(clp(X)Nclp(Y)) =r(X)+rY)=r(M)+2=r(XUY)+ 2.
Thus clp(X)Nclp(Y) is a line of PG(r—1,2), that is, a triangle with some element
set {a,b,c}. We call {a,b,c} the guts line of the 3-separation (X,Y’). Now assume
M is cosimple as well as simple and that N is an internally 4-connected minor of
M with | X N E(N)| < 3. By [4, Lemma 3.2], N is isomorphic to a minor of either
PG(r—1,2)|(YU{a,b,c}) or the matroid obtained from PG(r—1,2)|(Y U{a, b, c}) by
performing a A-Y exchange on {a, b, c}. In these cases, we say that N is isomorphic
to a minor of the matroid obtained by replacing X by a triangle or a triad on the
guts line of (X,Y"). We also say that we can get an N-minor of the matroid obtained
by putting a triangle or a triad on the guts of (X,Y).

Let M be a matroid. A subset S of E(M) is a fanin M if |S| > 3 and there is an
ordering (s1, 82, ...,8,) of S such that {s1,s2,s3}, {2, 93,84}, -+, {Sn—2,Sn—1,5n}
alternate between triangles and triads. We call (s1, s2,...,8,) a fan ordering of S.
We will be mainly concerned with 4-element and 5-element fans. For convenience,
we shall always view a fan ordering of a 4-element fan as beginning with a triangle
and we shall use the term 4-fan to refer to both the 4-element fan and such a fan
ordering of it. Moreover, we shall use the terms 5-fan and 5-cofan to refer to the
two different types of 5-element fan where the first contains two triangles and the
second two triads. Let (s1, S2,...,8,) be a fan ordering of a fan S. If n > 5, then
the only other fan ordering of S is (sn, Sn—1,-.-,$1). We shall view this reversal of
the original ordering as being the same fan ordering. The elements s; and s, are
called the ends of the fan. When (s, s2, $3,4) is a 4-fan, our convention is that
{s1, 82, 83} is a triangle. We observe that the only other fan ordering for this fan is
(81,83, $2,84). Again, we shall view this ordering as being the same as (s1, s2, $3, S4).
This means that, up to this equivalence, all fans with at least four elements have
unique fan orderings. For a 4-fan (si, s9, s3,$4), we call s; and s4 the guts and
coguts elements of the fan since s; € cl({s2, s3,54}) and s4 € cl*({s1,52,s3}). The
elements so and s3 are the internal elements of the 4-fan. If (sq1, s9, s3, 54, 55) is a
5-fan, then s; and sy are the guts elements of this fan. Dually, if (s1, s2, $3, 84, S5)
is a 5-cofan, then s; and s are its coguts elements.

Fans are examples of sequential 3-separating sets in M. A subset X of E(M) is
sequential if it has a sequential ordering, that is, an ordering (z1, s, ...,z)) such
that {x1, 9, ...,2;} is 3-separating for all 7 in {1,2,...,k}. Tt is straightforward to
check that, when M is binary, a sequential set with 3,4, or 5 elements is a fan while
a 4-element non-sequential 3-separating set is a quad. A 3-separation (X,Y) of a
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3-connected matroid M is sequential if X or Y is a sequential set. A 3-connected
matroid is sequentially 4-connected if all of its 3-separations are sequential. A
3-connected matroid M is (4,k,S)-connected if M is both (4, k)-connected and
sequentially 4-connected.

To motivate one of the other forms of connectivity used here, we return to the
example in the introduction letting M be the cycle matroid of the biwheel Gy, 42
and N be the cycle matroid of the graph that is obtained by proceeding around the
rim of Ga,42 and alternately deleting the edges from the rim vertex to u and to w.
Each triangle of M has an element whose deletion has an N-minor but every such
deletion has a 5-fan. Indeed, it is (4,5, S, +)-connected because, whenever it has
(X,Y) as a 3-separation, one of X and Y is a triangle, a triad, a 4-fan, or a 5-fan.

Let (X,Y) be a 3-separation of a 3-connected binary matroid M. We shall
frequently be interested in 3-separations that indicate that M is, for example, not
internally 4-connected. We call (X,Y) a (4, 3)-violator if | X|,|Y| > 4. Similarly,
(X,Y) is a (4,4, 5)-violator if, for each Z in {X,Y}, either |Z| > 5, or Z is non-
sequential. Finally, (X,Y) is a (4,5, S, +)-violator if, for each Z in {X,Y}, either
|Z| > 6, or Z is non-sequential, or Z is a 5-cofan.

The next result is an elementary consequence of (the dual of) Tutte’s Triangle
Lemma [11] (or see [8, Lemma 8.7.7]) so the proof is omitted.

Lemma 2.1. Let (s1,82,...,8,) be a fan in a 3-connected matroid M where n > 4
and {sp—2,8n—1,8n} s a triad. If s, is not in a triangle, then M/s,, is 3-connected.

We will frequently need to analyze small 3-separating sets in a 3-connected binary
matroid M. The next lemma, which is well-known and easy to verify, catalogues
such sets. Before stating the result, we introduce the terminology that we use.
A quad with an element in the guts is a 5-element set {1,2,3,4,5} where {1,2,3}
and {1,4,5} are circuits while {2,3,4,5} is both a circuit and a cocircuit. If, in
M, the set @Q is a quad with an element in the guts, then, in M™, the set @ is a
quad with an element in the coguts. A 5-fan with an element in the guts consists
of a 5-fan (s1, $2, S3, 84, $5) and an element sg such that {s1, s5,s6} is a triangle.
Thus M|{s1, $2, $3, 84, 85,86} = M(Ky), and {s9,ss3,s4} is a triad of M. The
dual of a 5-fan with an element in the guts is a 5-cofan with an element in the
coguts. A 5-cofan with an element in the guts consists of a 5-cofan (s1, so, S5, S4, S5)
and an element sg such that {si,ss,ss, 86} is a circuit. This structure is to be
distinguished from a 6-element fan (si, sa, $3, 84, S5,8¢) in which {s4, s5,6} is a
triangle, which also has (s, s2, $3, 84, 85) as a 5-cofan with sg in the guts of the
3-separation ({s1, s2, s3, 4, S5}, E(M) — {s1, $2, 83, 84, 85}). The dual of a 5-cofan
with an element in the guts is a 5-fan with an element in the coguts.

Lemma 2.2. Let X be a 3-separating set in a 3-connected binary matroid M.

(i) If | X| =3, then X is a triangle or a triad.

(ii) If | X| =4, then X is a quad or a 4-fan.

(i) If |X| = 5, then X is a 5-fan, a 5-cofan, a quad with an element in the
guts, or a quad with an element in the coguts.

(iv) If | X| =6 and X is sequential, then X is a 6-element fan, a 5-fan with an
element in the guts, a 5-fan with an element in the coguts, a 5-cofan with
an element in the guts, or a 5-cofan with an element in the coguts.

The next three lemmas will be used repeatedly throughout the paper. The first
is in [9, Lemma 6.1].
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Lemma 2.3. Let M be an internally 4-connected matroid with |[E(M)| > 8. If e
is an element of M that is not in a triad, then M\e is 3-connected. In particular,
if f is an element of M that is in a triangle, then M\ f is 3-connected.

Lemma 2.4. Let M be a sequentially 4-connected matroid and M' be a minor of
M having a non-sequential 3-separation (X,Y). If (X', Y") is a 3-separation of M’
that is equivalent to (X,Y), then (X', Y") does not induce a 3-separation of M.

Proof. As (X,Y) is non-sequential, so too is (X’,Y”’). Now assume that (X', Y”)
induces a 3-separation (X”,Y") of M. Then, without loss of generality, we may
assume that X" is sequential. Thus there is an ordering (z1,%s,...,2x) of X"
such that A\ps({z1,2z2,...,2;}) < 2 forall ¢ in {1,2,...,k}. Now M; = M\D/C
for some C and D. As the connectivity function is monotone on minors (see, for
example, [8, Corollary 8.2.5]), Ayn\p/c({z1,%2,..., 2} — (CUD)) <2 for all i in
{1,2,...,k}. As (X', Y’) induces (X",Y"), it follows that X" — (CUD) = X’ and
X' is sequential; a contradiction. [l

Lemma 2.5. Let M and N be internally 4-connected binary matroids and {e, f, g}
be a triangle of M such that N < M\e and M\e is (4,4, S5)-connected. Suppose
|[E(N)| > 7 and M\e has (1,2,3,4) as a 4-fan. Then either

(i) N =X M\e\1; or

(il) N = M\e/4 and M\e/4 is (4,4, S)-connected.

Proof. First observe that N has no 4-fan. This certainly holds if |[E(N)| > 8; it
also holds if |[E(N)| = 7 since, in this case, N = F; or F7. Since (1,2,3,4) is a
4-fan of M\e, either N < M\e\1, or N < M\e/4. In the first case, (i) holds. Thus
we may assume that N < M\e/4. In addition, we may assume that M\e/4 is not
(4,4, S)-connected, otherwise (ii) holds.

2.5.1. M\e/4 is 3-connected.

Assume that this statement is false. Then, by Lemma 2.1, M\e has a triangle
containing 4, so M\e has a 5-fan F. As M\e is (4,4, 5)-connected, it follows
that |[E(M\e)| < 10. Since N is internally 4-connected but M\e has a 5-fan,
7T<|E(N)| <|E(M\e)| <9. As M\e is (4,4, S)-connected, the complement of F
in E(M\e) must be a triad or a 4-fan. It follows without difficulty that M\e is
the cycle matroid of a 4-wheel or is a single-element deletion of M (K5). Thus M\e
has no 7- or 8-element minor that is internally 4-connected; a contradiction. Hence
2.5.1 holds.

Let (U,V) be a (4,4, S)-violator of M\e/4. Suppose that {2,3} C U. Then,
as {2,3,4} is a cocircuit of M\e, it follows that (U U4,V) is a (4,4, S)-violator of
M\e, a contradiction. We deduce that {2,3} € U and, by symmetry, {2,3} Z V.
Hence we may assume that 2 € U and 3 € V.

Since {1,2,3} is a triangle of M\e, either (UU3U4,V —3) or (U -2,V U2U4) is
a 3-separating partition of M\e depending on whether 1 is in U or V|, respectively.
By Lemma 2.4, since M\e is sequentially 4-connected and (U, V) is equivalent to
(UU3,V —=3)or (U-2,VU2), we deduce that (U, V) is sequential. Indeed,
as M\e is (4,4, 5)-connected, it follows that either V' — 3 or U — 2 is a 4-fan of
M\e and hence of M\e/4. Thus M\e/4 has either V or U as a 5-fan having 3 or 2,
respectively, as a guts element ¢. Then M\e/4\t and hence M\e\t has an N-minor.
But M\e\t has {2,3,4} —t as a cocircuit. Therefore, M\e\3/2 or M\e\2/3 has an



8 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

FIGURE 2

N-minor. Thus M\e/2 or M\e/3 has an N-minor. In both of these matroids, 1 is
in a 2-circuit. Hence M\e\1 has an N-minor, so (i) holds. O

The following result is a revision of Lemma 6.3 of [1]. It does no more than extract
a stronger statement using a slight modification of the original proof. The result
involves another special structure [12]. In an internally 4-connected binary matroid
M, we shall call ({1,2,3},{4,5,6},{7.8,9},{2,3,4,5}, {5,6,7,8},{3,5,7}) a quasi
rotor with central triangle {4,5,6} and central element 5 if {1,2,3},{4,5,6}, and
{7,8,9} are disjoint triangles in M such that {2,3,4,5} and {5, 6, 7,8} are cocircuits
and {3,5,7} is a triangle (see Figure 2).

Lemma 2.6. Let ({1,2,3},{4,5,6},{2,3,4,5}) be a bowtie in an internally 4-
connected binary matroid M with |E(M)| > 13. Then M\6 is (4,4, 5)-connected
unless {4,5,6} is the central triangle of a quasi rotor whose other triangles are
{1,2,3}, {z,y,7}, and {7,8,9} and whose cocircuits are {2,3,4,5} and {y,6,7,8},
for some x in {2,3} and some y in {4,5}. In addition, when M\6 is (4,4,5)-
connected, one of the following holds.
(i) M\6 is internally 4-connected; or
(i) M has a triangle {7,8,9} disjoint from {1,2,3,4,5,6} such that
({4,5,6},{7,8,9},{a,6,7,8}) is a bowtie for some a in {4,5}; or
(iil) M has a triangle {u,v,w} and a cocircuit {v,w,x,6} where u and v are in
{2,3} and {4,5}, respectively, and |{1,2,3,4,5,6,w,z}| = 8; or
(iv) M\1 is internally 4-connected and M has a triangle {1,7,8} and a co-
circuit {a,6,7,8} where |{1,2,3,4,5,6,7,8}] = 8 and a € {4,5}, so
({1,7,8},{4,5,6},{a,6,7,8}) is a good bowtie in M.

Proof. This is identical to the proof of the original result except that, at the end of
the proof of [1, 6.3.2], instead of obtaining a contradiction that M\1 is internally
4-connected, we obtain (iv). O

The next lemma strengthens [1, Lemma 8.2] by eliminating the hypothesis that
M has no M (K4)-minor.

Lemma 2.7. In a binary internally 4-connected matroid M, assume that
({1,2,3},{4,5,6},{2,3,4,5}) is a bowtie, and that {2,5,7} is a triangle and
{1,2,7,8} and {5,6,7,9} are cocircuits. If |E(M)| > 13, then |[{1,2,...,9}] = 9.
Moreover,

(i) M has a triangle containing {1,8}; or
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(ii) M/8 is internally 4-connected; or

(ili) M has a circuit {y2,9,7,8} and a triad {y1,y2,9} where
|{1’27 ce 797y13y2}| = ]-]-7 or

(iv) M has a circuit {x9,x3,1,8% and a triad {x1,x2,735} where
T1,%2,%3,1,2,...,9 are distinct except that, possibly, x1 = 9.

Proof. This follows the proof of [1, Lemma 8.2]. Because we have omitted the
hypothesis that M has no M (K4)-minor, we should add the following sentence
between the fifth and sixth sentences of the original proof. If T' contains 2, then it
also contains 4 and A({1,2,...,8}) < 2; a contradiction. O

Lemma 2.8. Let M and N be internally 4-connected matroids with |E(M)| > 11.
Assume that M has a triangle {e, f,g} such that M\e is (4,4, S)-connected having
(1,2,3,4) as a 4-fan and having an N-minor. Then either

(i) M has a good bowtie; or

(ii) M has no triangle containing 4, so {f,g} meets {2,3}; in particular, if
3 € {f,g}, then the only triangles of M containing 3 are {1,2,3} and
{e, f,g}, while the only triangles containing 2 or e are {1,2,3}, {e, f,g}
and possibly one containing {2, e}.

Proof. Since M is internally 4-connected, {2, 3,4, e} is a cocircuit of M. Suppose
M has a triangle T' containing 4. By orthogonality, T' meets {2,3,e}. If T meets
{2,3}, then M\e has a 5-fan; a contradiction. Thus e € T, so M has a good bowtie
(T,{1,2,3},{2,3,4,e}). We may assume that M has no triangle containing 4. Then
the rest of (ii) follows by orthogonality because {2, 3,4, e} is a cocircuit. O

Lemma 2.9. Let M and N be internally 4-connected matroids with |E(M)| > 12.
Assume that M has a triangle {e, f, g} such that M\e is (4,4, S)-connected having
(1,2,3,4) as a 4-fan. Suppose that each of M\e and M\1 has an N-minor and
that M\1 is (4,5, 5, +)-connected having a 5-fan. Then M has a good bowtie or a
pretty good bowtie.

Proof. Assume that the lemma fails. Then, by Lemma 2.8, M has no triangle
containing 4. Since {e, f, g} must meet the cocircuit {2, 3,4, e} of M, by symmetry
we may assume that f = 3.

Let (y1,92,Y3,Y4,y5) be a 5-fan in M\1. Then {1,y2,ys,ys} is a cocircuit of
M. By orthogonality, {2,3} meets {y2,ys3,y4}. As ys is in two triangles of M\1, it
follows by Lemma 2.8 that ys ¢ {2, 3}.

By symmetry, we may now assume that yo € {2,3}. Then the triangle {y1,y2, y3}
must contain e. If e = y3, then M has {1,y2,e,y4} as a cocircuit so M\e has
a 5-cofan containing {1,2,3,4}; a contradiction. Thus e # y3. Then M has
({1,2,3},{ys, ya, 5}, {1, Y2, y3, ¥4 }) as a bowtie and {y2,ys, e} as a triangle. Since
both M\e and M\1 have N-minors, and M\e and M\1 are (4,4, S)-connected and
(4,5, 5, 4)-connected, respectively, it follows that M has a pretty good bowtie. O

Lemma 2.10. Let M and N be internally 4-connected matroids with |E(M)| > 10.
Assume that M has a triangle {e, f,g} such that M\e is (4,4, S)-connected having
an N-minor and having (1,2,3,4) as a 4-fan. Then either
(i) M has a good bowtie; or
(ii) {2,3}N{f,g}| =1 and the common element of {2,3} N{f, g} is in exactly
two triangles of M.
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Moreover, if 3= f and N < M\3 and M\3 is (4,4, S)-connected but not internally
4-connected, then either (i) holds, or M has an element t such that both {1,g,t}
and {2,e,t} are triangles, so M|{1,2,3,e,g,t} = M(K,).

Proof. If M has no good bowtie, then, by Lemma 2.8, (ii) holds. Now suppose
that 3 = f, that N < M\3, and that M\3 is (4,4, S)-connected but not inter-
nally 4-connected. Suppose also that M has no good bowtie. Then M\3 has a
4-fan (y1,y2,¥s3,ys). Lemma 2.8 implies that y4 is not in a triangle. Thus, by
orthogonality, {y2,ys} meets both {1,2} and {e,g}. As neither {1,e} nor {2, g}
is in a triangle, it follows that {y1,y2,ys} is {v1,2, e} or {y1,1,¢9}. But the sym-
metric difference of one of these with the circuit {1,2,e,g} is the other, so M
has both {y1,2,e} and {y;,1,g} as triangles. Letting t = y;, it follows that
M|{1,2,3,e,9,t} = M(Ky). |

Lemma 2.11. Let M be an internally 4-connected matroid with |E(M)| > 12.
Assume that M has an element e such that M\e is (4,4, S)-connected. If F1 and
Fy are distinct 4-fans of M\e, then |Fy N Fy| < 1.

Proof. Suppose |Fy N Fy| > 2. Then Aype(F1 N F2) > 2, 50 Aype(F1 U Fp) <2 as
Ane(F1) = 2 = Aape(F2). But M\e is (4,4, 5)-connected and |E(M)| > 12 while
|F1 UF5| < 6. Hence |FyUFy| =4, so Fy = Fy. Moreover, one easily checks that the
fan orderings of F; and F are equivalent; a contradiction. Hence |[F1NFy| < 1. O

Lemma 2.12. Let M be an internally 4-connected binary matroid with |E(M)| >
10. If M has a triangle {a,b,c} such that M\a has a 5-cofan (x1,x2, 3,24, T5),
then x3 € {b, c}

Proof. Since M has no 4-fan, it has {x1, z2,23,a} and {x3,24,x5,a} as cocircuits.
Thus, by orthogonality, both {z1, 22,23} and {z3, x4, x5} meet {b, c}. But, at most
one element of {b, ¢} is in {x1, x2, x3, x4, x5} otherwise M has {x1, 22, x3, T4, x5,a}
as a 3-separating set; a contradiction. Thus x3 € {b, c}. O

3. OUTLINE

The proof of Theorem 1.3 occupies the rest of the paper. In this section, we
outline the main steps in the argument. Most of the effort in the paper is devoted
to proving the following weaker version of the main theorem.

Theorem 3.1. Let M and N be internally 4-connected binary matroids such that
|[E(M)| > 16 and |[E(N)| > 7. Suppose that M has a triangle T containing an
element e for which M\e is (4,4, 5)-connected having an N-minor. Then one of
the following holds.

(i) M has an internally 4-connected minor M’ that has an N-minor such that
1<|E(M)—E(M’)| <3; or
(ii) M or M* has a good bowtie or a pretty good bowtie.

In the second last section of the paper, we prove, in Lemma 9.2, that, if M has
a pretty good bowtie, then M has a good bowtie, a good augmented 4-wheel, or
an internally 4-connected minor M’ that has an N-minor and satisfies |E(M)| —
|[E(M)| = 1.

Recall that we are assuming that M and N are internally 4-connected binary
matroids such that M has a triangle T containing an element e for which M\e is
(4,4, 5)-connected having an N-minor. Since (i) of Theorem 3.1 clearly holds if
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M\e is internally 4-connected, we suppose that M\e is not internally 4-connected
having (1,2,3,4) as a 4-fan.

The rest of the argument is structured as follows. In the next three sections, we
treat the cases when M\e has more than one 4-fan. We show in the next section
that, when this occurs, because M\e is (4,4, S)-connected, these 4-fans meet in
their coguts elements, or they are disjoint, or they meet in their guts elements.
These three cases are treated in that order in Sections 4, 5, and 6. Following that,
we are able to assume that M\e has (1,2,3,4) as its unique 4-fan. Because N has
no 4-fan, either

(i) N <X M\e, 1; or

(il) N = M\e/4.
We shall refer to these two cases as the deletion case and the contraction case. We
treat these cases in Sections 7 and 8, and thereby complete the proof of Theorem 3.1.
In Section 9, we treat the case when M has a pretty good bowtie. The final
section of the paper, Section 10, combines that result with Theorem 3.1 to establish
Theorem 1.3.

4., TWO 4-FANS MEETING IN THEIR COGUTS ELEMENTS

We begin this section by showing that, when M\e has two 4-fans, they meet in
their coguts elements, they are disjoint, or they meet in their guts elements. We
then treat the first of these cases in detail.

Lemma 4.1. Let M be an internally 4-connected matroid with |E(M)| > 11. As-
sume that M has an element e such that M\e is (4,4, S)-connected having (1,2, 3,4)
as a 4-fan. Then (1,2,3,4) is the only 4-fan in M\e having 2 or 3 as an element.

Proof. As M\e is (4,4, 5)-connected having at least ten elements, it has no 5-
element 3-separating set. Suppose M\e has a 4-fan (a, b, ¢, d) meeting {2, 3} where
{a,b,e,d} # {1,2,3,4}. Suppose first that {2, 3} meets {b, ¢,d}. Then, in M\e, the
triangle {1, 2, 3} meets the triad {b, ¢, d} and so contains exactly two elements of it.
Thus {1,2,3,4} U {b,c,d} and {a,b,c,d} U {1,2,3} are 3-separating sets in M \e.
Since at least one of these sets has exactly five elements, we have a contradiction.
We may now suppose that {2,3} meets {a}. Then the triangle {a,b,c} and the
cocircuit {2,3,4} must meet in two elements, and again we get a 5-element 3-
separating set in M\e. O

By orthogonality, two different 4-fans in M\e that meet must do so in their
coguts elements or in their guts elements. In this section, we show that when
we have two 4-fans of M\e meeting in their coguts elements, we have a desirable
outcome.

Lemma 4.2. Let M and N be internally 4-connected matroids with |E(M)| > 13
and |E(N)| > 7. Assume that M has a triangle containing an element e such that
M\e is (4,4, S)-connected having an N-minor and having two 4-fans that meet in
their coguts elements. Then either

(i) M has a good bowtie; or
(ii) M has an internally 4-connected matroid M’ such that 1 < |E(M) —
E(M’")| <3 and M’ has an N-minor.
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Proof. Assume that neither (i) nor (ii) holds. Let (1,2,3,4) be a 4-fan of M\e
where {e, 3, g} is a triangle of M. A second 4-fan of M\e containing 4 must contain
g by orthogonality. Thus we may assume this second 4-fan is (6,5, ¢,4). Then the
elements 1,2,3,4,¢,g,5, and 6 are distinct.

Next we show the following.

4.2.1. N £ M\e/4.

Assume N < M\e/4. Then, as (ii) does not hold, M\e/4 has a (4, 3)-violator
(U, V). We show first that we may assume that

4.2.2. [UN{2,3}| = 1.

Suppose {2,3} C U. As {2,3,4} is a triad of M\e, it follows that (U U4,V) is
a (4, 3)-violator of M\e. Thus g € V otherwise we obtain the contradiction that
(Uu4duUe V) is a (4,3)-violator of M. Moreover, V must be a 4-fan of M\e.
As ¢ is an internal element of the fan (6,5,¢,4), it follows by Lemma 4.1 that
V ={6,5,9,4}; a contradiction as 4 ¢ V. Hence 4.2.2 holds.

We may now assume that v € U and v € V where {u,v} = {2,3}. Without loss
of generality, we may also assume that 1 € U. Then (UUvU4, V —v) is a 3-separation
of M\e. Hence V is a 4-fan (v, s,t,w) of M\e/4. Thus {4,v, s,t} is a circuit of M \e.
By orthogonality, {s,t} meets {g,5}. Then {s,t,w} and {g,5,6} are an intersecting
triad and triangle of M\e. Hence their union is a 4-fan of M\e. But the only 4-fan
of M\e containing g or 5 is (6,5, ¢9,4). Hence {s,t,w} U{g,5,6} = {6,5, 9,4}, so
4 € {s,t,w}; a contradiction. We conclude that 4.2.1 holds.

By 4.2.1, we deduce that N < M\e\l and N =< M\e\6, so N < M\1 and
N < M\6. Moreover, M has ({1,2,3},{g,5,6},{2,3,9,5}) as a bowtie. We now
apply [1, Lemma 6.3].

4.2.3. The triangle {g,5,6} is not the central triangle of a quasi rotor in M whose
other triangles include {1,2,3} and whose cocircuits include {2,3,5, g}.

Assume the contrary and suppose first that g is the central element of the quasi
rotor. Then the triangle {g,3,e} must be one of the triangles of the quasi rotor.
Then, by Lemma 2.8, the quasi rotor contains the only two triangles of M containing
3, one of which is {3,2,1}. Also the quasi rotor contains the only two triangles of
M containing e, one of which also contains 2. Thus the element 2 occurs twice in
the quasi rotor; a contradiction.

We may now assume, as the quasi rotor contains the cocircuit {2,3,5, g}, that
5 is the central element of the quasi rotor. Then, as the quasi rotor contains
the cocircuit {2,3,5, g}, it follows that {3,5} or {2,5} is contained in a triangle
T of the quasi rotor. But neither of the two triangles of M that contain 3 also
contains 5. Thus 2 € T, so T = {2,5,e}. Then the symmetric difference of the
circuits {1,2,e,g}, {2,5,e}, and {6,5,9} is {1,6}. Thus we have a contradiction
that completes the proof of 4.2.3.

We now use Lemma 2.6. This implies that M\6 is (4,4, .S)-connected. Moreover,
as both M\1 and M\6 have N-minors and M has no good bowties, it follows that
(iil) of the lemma holds. Thus M has a triangle T that contains exactly one element
of each of {2,3} and {5, g} along with another element that is not 1 or 6. Suppose
T contains 2. Then it also contains e. But {2, e, g} is not a circuit since {3, e, g}
is. Thus {2,e,5} is a circuit. But {3, ¢, g} is a circuit. Hence {2,5, ¢, g} is a circuit
of M. Since it is also a cocircuit, we have a contradiction. We deduce that 3 € T.
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FIGURE 3

Then T = {3,g,e}. Part (iii) of Lemma 2.6 also gives that M has a 4-cocircuit
{e,9,6,z}. Thus M\e has (4,5,¢,6,¢e) as a 5-cofan; a contradiction. We conclude
that Lemma 4.2 holds. (]

5. TWO DISJOINT 4-FANS

In this section, we treat the case when M\e has two 4-fans that are disjoint.
The argument here is long but it will mean that when we come to consider the case
when we have two 4-fans meeting in their guts elements, we never have two disjoint
4-fans or two 4-fans meeting in their coguts elements.

We have defined what is meant by M having a good bowtie or a pretty good
bowtie. We can think of these structures as being relative to the minor N of M. In
the next result, we shall refer to M™* having a good bowtie or a pretty good bowtie.
These substructures of M™* exist relative to the minor N* of M*.

Theorem 5.1. Let M and N be internally 4-connected matroids with |E(M)| > 16
and |E(N)| > 7. Assume that M has a triangle containing an element e such that
M\e is (4,4, S)-connected having an N-minor and having two disjoint 4-fans. Then
one of the following holds.

(i) M or M* has a good bowtie;
(ii) M or M* has a pretty good bowtie;

(iii) M has a good augmented 4-wheel; or

(iv) M has an internally 4-connected matroid M’ such that 1 < |E(M) —

E(M")| <3 and M’ has an N-minor.

Proof. We assume that M\e has (1,2,3,4) and (7,6,8,5) as disjoint 4-fans. Then
{2,3,4,e} and {6,8,5, e} are cocircuits of M. Thus, by Lemma 2.8 and orthogo-
nality with the triangle {e, f, g}, we may assume that f = 3 and ¢ = 8. Hence
M contains the configuration shown in Figure 3 where all the elements shown are
distinct.

Lemma 5.2. One of M\e\1l, M\e\7, or M\e/4,5 has an N-minor.

Proof. As M\e has (1,2,3,4) as a 4-fan and N < M\e, it follows that N < M\e\1
or N X M\e/4. Now M\e/4 has (7,8,6,5) as a 4-fan, so if N < M\e/4, then
N <X M\e/4\7 or N < M\e/4,5. The lemma follows immediately. O

Lemma 5.3. One of the following holds.
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(i) M\1 is (4,4, S)-connected;

(ii) M has a good bowtie;

(iii) M has {1,3,7,8} as a cocircuit; or
(iv) M has {1,3,6,7,e} as a cocircuit.

Proof. Assume the lemma fails. Clearly a (4, 4, S)-violator of M\1 must have 2 and
3 on opposite sides. We begin by showing the following.

5.3.1. Suppose (U,V) is a (4,4, 5)-violator of M\1 with2 € U and 3 € V.. Then
{8,¢} CV and 4 € U. Moreover, |V| <5 and U meets {5,6,7}.

First note that 1 & cl(U), so {e,8} € U. Suppose e € U and 8 € V. If 4 € U,
then (U U3U1,V —3) is a 3-separation of M; a contradiction. Thus 4 € V. Then
eccl(V)and 2 € cI"y1(VUe). Thus (U —e—2,VUeU2UL) is 3-separating
in M. Hence U is a 5-fan (e,2,a,b,c¢) of M\1 for some elements a, b, and ¢. Thus
a € {5,6,8} by orthogonality, and {1,2,a,b} is a cocircuit of M. But 8 & {a,b, c}
as 8 € V. Thus a € {5,6}. Then, by orthogonality, {a, b, ¢} is a triangle containing
{5,6}, so M\e is not (4,4, S)-connected; a contradiction.

Next assume that 8 € U and e € V. Then (U — 8,V U8) is a (4,4, S)-violator
of M\1 unless U — 8 is a 4-fan in M\1. In the exceptional case, M\1 has a 5-fan
(8,a,b,c,d). If 2 € {b, ¢,d}, then, by orthogonality, 4 € {b, ¢, d}, a contradiction to
Lemma 2.8. Thus we may assume that 2 = a. But, by orthogonality, {2,8} can
only be in a triangle with e, which does not occur since e € V. We conclude that
{8,e} C V.

We observe that 4 € U otherwise (U — 2,V U2U1) is a (4, 3)-violator of M; a
contradiction. Now (U, V —e) is a 3-separation of M\1\e. Thus (UU3U1,V —{3,¢})
is 3-separating in M\e. As M\e is (4,4, S)-connected, we deduce that |V| < 6. If
|[V| <5, then, as {3,8,e} C V, it follows that U meets {5,6,7}. Thus, to complete
the proof of 5.3.1, we need to show that |V # 6.

Suppose |V| = 6. Then V — {e,3} is a 4-element fan in M\e that contains
8, so, by Lemma 4.1, V = {¢,3,7,6,8,5}. Now {e,6,8,5} is a cocircuit of M,
so it contains no circuit of M. Thus r(V) > 4. Evidently (V) = 4. Since
2 =X (V) = rana (V) +73, (V) =6, we deduce that 73, (V) = 4. Hence V' con-
tains a cocircuit C* in M\1 other than {e, 6,8,5}, and C*U1 is a cocircuit in M. Or-
thogonality implies that 3 € C*. As 1is in no triad of M, orthogonality implies that
C*Ulis {1,3,¢,5},{1,3,¢,6,7},{1,3,¢,5,6,7},{1,3,8,6},{1,3,8,7,5}, {1, 3,8, 7},
or {1,3,8,6,5}. As (C*U1) A {e, 6,8,5} is not a triad, the last possibility is ex-
cluded. Of the remaining six possibilities, the symmetric difference of the first
with {e, 6,8,5}, the second with {e, 6,8,5}, and the third with {e, 6,8,5} yield the
fourth, the fifth, and the sixth. By assumption, {1,3,8,7} and {1,3,6,7, e} are not
cocircuits of M. We conclude that M has {1,3,¢,5} as a cocircuit. Then M\e
has {1,3,5} as a cocircuit, so M\e has a 5-cofan. This contradiction completes the
proof that 5.3.1 holds.

We may now assume that M\1 has a (4,4, S)-violator (U, V) with {2,4} C U
and {3,8,e} C V. By 5.3.1, U meets {5,6,7} and |V| < 5. Suppose {5,6,7} C U.
Then (UU8UeU1,V —8—¢) is 3-separating in M. Thus V is a 5-fan (8, ¢,a, b, ¢) in
M\1. Hence a = 3. Thus 3 is contained in a triangle, {a,b, ¢}, contained in V' but
not containing 2,4, or e; a contradiction to orthogonality. We deduce that {5, 6,7}
meets V.
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Suppose 6 or 7 is in V. Then the circuit {3, e,6,7} implies that (U —{6,7},V U
{6,7}) is a 3-separation of M\1. Thus (U —{5,6,7},VU{5,6,7}) is 3-separating in
MA\1. But VU{5,6,7} contains {3,8,¢e,5,6,7} and so [V U{5,6,7}| € {6,7}, Then
(U—-{5,6,7},VU{5,6,7}) is a (4,4, S)-violator of M\1 that contradicts 5.3.1. We
deduce that we may assume that {6,7} C U and 5 € V. Then (U—{6,7},VU{6,7})
is a (4,4, S)-violator of M\1, which, since |VU{6,7}| € {6, 7}, contradicts 5.3.1. O

Lemma 5.4. Suppose N = M\1 and M has {1,3,6,7,e} as a cocircuit. Then
M\3 is internally 4-connected having an N-minor or M has a good bowtie.

Proof. First we observe that M\1 has {3,6,7,e} as a quad with 8 in the guts. As
N is a minor of the matroid obtained by putting a triangle or a triad on the guts
of ({3,6,7,¢}, E(M\1) — {3,6,7,€}), it follows that N < M\1\3. Thus N < M\3.

As 3 is in a triangle, M\3 is 3-connected. We show next that M\3 is sequen-
tially 4-connected. Let (U, V) be a non-sequential 3-separation of M\3. We may
assume that the triad {2,4,e} is contained in V. Also we may assume that the
triangle {6,7,8} is contained in U or V. Now {1,8} C U otherwise (U,V U 3) is
a non-sequential 3-separation of M; a contradiction. Thus {1,8,6,7} C U. The
cocircuit {1,6,7, e} of M\3 implies that (U UeU3,V —e) is a (4, 3)-violator of M;
a contradiction. Thus M\3 is indeed sequentially 4-connected.

We may now assume that M\3 is not internally 4-connected otherwise the lemma
holds. Then M\3 has a 4-fan (21,2, 23,24). Hence {2, 23, 24,3} is a cocircuit
C* of M. Orthogonality of this cocircuit with the circuits {1, 2,3}, {e, 3,8}, and
{3,6,7,¢e} implies that {xs, 23,24} meets each of {1,2}, {e, 8}, and {6,7,e}. Sup-
pose that e ¢ C*. Then C* is {3,8} along with exactly one element from each of
{1,2} and {6,7}. Taking the symmetric difference of C* with {1,3,6,7,e} gives a
cocircuit containing 8, which cannot be a triad. Thus C* is {2,3,8,6} or {2,3,8,7}.
Therefore A({1,2,3,6,7,8,e}) < 2; a contradiction. We deduce that e € C*. If
e = x4, then M has a good bowtie. Thus we may assume that e = x3. Then {1, 2}
meets {x2,z4}. As M\e is (4,4, S)-connected, C* — e cannot be a triad containing
{3,1}. Thus 2 € {zq, 24}, so C* = {2,3,4,e}. By Lemma 2.8, M has no trian-
gle containing 4. Thus (x2,z4) = (2,4). Hence, by orthogonality, {z1,x2,z3} is
{e,2,5}. Thus M has {1,8,5} as a triangle, so M\e is not (4,4, S)-connected; a
contradiction. O

Lemma 5.5. If N < M\1 and {1,3,7,8} is a cocircuit of M, then N < M\8.

Proof. As M\1 has (e, 3,8,7,6) as a 5-fan, by [4, Lemma 3.3], either N < M\1,e,6
or N < M\1/3\8. In the latter case, N < M\8. In the former case, as {5,8} is a
cocircuit of M\1,e,6, it follows that N < M\1,e,6/8. Thus N < M\1/8\3,7, so
N < M\1,3,7,8. Hence N < M\8. O

Lemma 5.6. The only triangles of M meeting {2,3,4,5,6,8,e} are
{1,2,3},{e, 3,8}, and {6,7,8}.

Proof. Let T be a triangle of M that meets {2,3,4,5,6,8, e} but is different from
{1,2,3},{e,3,8}, and {6,7,8}. If e € T, then, by Lemma 2.8, symmetry, and
orthogonality with the cocircuits {e,2,3,4} and {e,5,6,8}, we deduce that T =
{e,2,6}, a contradiction as {e, 2,6,1,7} is a circuit. Thus e € T. By symmetry, we
may suppose that 7' meets {2,3,4}. Then 4 € T, a contradiction to Lemma 2.8. O

Lemma 5.7. Suppose N < M\1 and {1,3,7,8} is a cocircuit of M. Then
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(i) M\8 is (4,4, 5)-connected and M has a good bowtie; or
(ii) M has a pretty good bowtie; or
(ili) M has the configuration shown in Figure 4 as a restriction where all the
elements shown are distinct.

Proof. Assume that none of (i)—(iii) holds.  Observe first that if M has
the configuration shown in Figure 4 as a restriction, then, by assumption,
[{1,2,3,4,5,6,7,8,e}| = 9. Using this and the fact that |E(M)| > 16, it is straight-
forward to check that all the elements in the figure are distinct.

Evidently, if M\8 is (4,4, S)-connected, then ({6,7,8},{1,2,3},{1,3,7,8}) is a
good bowtie as N < M\8, by Lemma 5.5. Thus we may assume that M\8 has a
(4,4, S)-violator (U, V). Without loss of generality, suppose that |[UN{1,3,7}| > 2.

5.7.1. (U,V) is equivalent to a (4,4, S)-violator (U’, V') with {1,3,7} C U’ and
{6,e} CV".

Suppose |U N {1,3,7} = 2. Then (U U {1,3,7},V — {1,3,7}) is a (4,4, 5)-
violator of M\8 that is equivalent to (U, V) unless V is a 5-cofan (v1, va, v3,v4, vs)
in M\8 where vy € {1,3,7}. Consider the exceptional case. Then {vs, vy, vs,8} is
a cocircuit of M. Thus, by orthogonality with the circuits {e, 3,8} and {6,7,8},
it follows that {e,6} C {vs,v4,v5}, so {vs,vs,v5} = {e,5,6}. But, by Lemma 5.6,
{e,6} N {vo,v3,v4} = 0, so we have a contradiction. Thus M\8 has a (4,4, S)-
violator (U’, V') that is equivalent to (U, V') and has {1,3,7} contained in U’. As
(U'U8, V") is not a 3-separation of M, it follows that {6,e} C V'. Thus 5.7.1 holds.

5.7.2. M\8 has a (4,4, 5)-violator (U', V') that is equivalent to (U, V) such that
{1,2,3,7} C U’ and {4,5,6,e} C V",

From 5.7.1, M has a (4,4, S)-violator (U’, V') that is equivalent to (U, V) such
that {1,3,7} C U’ and {6,e} C V’. Suppose 2 € V'. Then (U' U2,V’' —2) is a
(4,4, S)-violator of M\8 otherwise M\8 has a 5-fan that contains a triangle that
contains 2 but is different from {1, 2, 3}; a contradiction to Lemma 5.6. Hence we
may assume that {1,2,3,7} CU".

Suppose that 4 € U’. Then (U’ Ue U8,V —e) is a (4,3)-violator of M; a
contradiction. Thus 4 € V', Suppose 5 € U’. Then (U’ —5,V'U5) is a (4,4,5)-
violator of M\8 that is equivalent to (U, V') unless U’ is a 5-cofan (5, ug, us, ug, us).
In the exceptional case, as U’ — 5 contains the triangle {1,2,3}, we deduce that
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{ug,uz,us} = {1,2,3} and us = 7. Thus M has a cocircuit that contains {5, 8}
and is contained in {1,2,3,5,8}. This contradicts orthogonality. We deduce that
(U'—=5,V'U5) is a (4,4, S)-violator of M\8 and {1,2,3,7} CU’'—5and {e, 4,5,6} C
V' U5. Thus 5.7.2 holds.

Now let (U’, V') be a (4,4, S)-violator of M\8 that is equivalent to (U, V) and
has {1,2,3,7} C U’ and {e,4,5,6} CV'.

5.7.3. |U'| < 7.

Observe that Ayng(V/U2) < 3. Thus Mypg(V ' U20U3U1) < 3. As 7 ¢
chans(V/U{2,3, 1})Ncl* yn s (V'U{2,3,1}), it follows that Ay s(V/U{2,3,1,7}) < 2.
Thus A\ (V' U{2,3,1,7,8}) < 2. Hence |U' —{2,3,1,7}| < 3,s0 |U'| < 7.

5.7.4. |U'| £7.

Suppose that [U'| = 7, letting U" = {1,2,3,7,a,b,c}. Thenr(U")+rip5(U") = 9.
Thus r(U’) > 4 otherwise M |U’ = F; and M has a triangle containing 2 other than
{1,2,3}; a contradiction to Lemma 5.6.

Assume that r(U’) = 4. Then {1,2,3,7,a,b,c} contains distinct circuits C' and
C’ different from {1,2,3} such that C A C" A {1,2,3} # 0. Clearly C and C’ are
not both contained in {2,a,b, c} so, without loss of generality, C meets {1,3,7}.
By orthogonality, C N {1,3,7} is {1,3}, {1, 7}, or {3,7}. By orthogonality between
C and {2,3,4,e}, these three cases imply, respectively, that C contains {1,2,3},
{1,7}, or {2,3,7}. The first case is impossible by assumption. By taking the
symmetric difference with {1,2,3}, we may assume that C contains {1,7} and
C C{1,7,a,b,c}. Similarly, either C' C {2,a,b,c}, or {1,7} C C" C {1,7,a,b,c}.
Suppose C’' C {2,a,b,c}. Then orthogonality with {2,3,4, e} implies that 2 ¢ C".
Thus C" = {a,b,c}. Since {1,7} C C C {1,7,a,b, c}, without loss of generality, we
may take C to be a triangle {1,7,a}. On the other hand, if C* € {2,a,b,c}, then
{1,7} € C" C{1,7,a,b,c}. Thus C A C" must be {a,b, c}. Since we again get that
M has {a,b,c} and {1,7,a} as circuits, it follows that we may now assume this.

As mang(U’) = 4, it follows that rj,4(U’) = 5. Hence M\8 has a cocir-
cuit C* that is contained in {1,2,3,7,a,b,¢} and is not {1,3,7}. By orthogo-
nality with the triangles {1,2,3}, {1,7,a}, and {a,b,c}, it follows by the sym-
metry between b and c¢ that we may assume that C* is {7,a,b}, {1,2,a,b},
{1,3,a,b}, {2,3,b,¢c}, {2,3,7,a,b}, or {1,2,7,b,c}. The triangle {6,7,8} im-
plies that C* is a cocircuit of M when 7 ¢ C*, while C* U 8 is a cocircuit of
M when 7 € C*. Then M has, as a cocircuit, one of {7,8, a,b}, {1,2,a,b},
{1,3,a,b}, {2,3,b,¢}, {2,3,7,8,a,b}, or {1,2,7,8,b,c}. Orthogonality with the
triangle {e, 3,8} implies that M has {1,2,a,b} or {2,3,7,8,a,b} as a cocircuit. As
{2,3,7,8,a,b} A {1,3,7,8} = {1,2,a,b}, we deduce that M has {1,2,a,b} as a
cocircuit. Thus, if 7(U’) = 4, then M has the structure in Figure 4 as a restriction;
a contradiction.

We may now assume that r(U’) > 5, so r}\4(U’) < 4. Thus U’ contains distinct
cocircuits C; and Cj different from {1, 3, 7} such that C; AC5 A{1,3,7} # (. The
circuit {3, 6,7, e} implies that, for each ¢ in {1, 2}, either {3,7} C C}, or C avoids
{3,7}. The triangle {1,2,3} implies that either C} contains {1,3,7} or {2,3,7},
or Cr avoids {3,7}. The first possibility has been excluded. If {2,3,7} C Cf,
then CF A {1,3,7} C {1,2,a,b,c}. Therefore, by taking symmetric differences in
this way, we may assume that both C and C5 are contained in {1,2,a,b,c} and
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hence that {C},C5} = {{1,2,a},{a,b,c}}. Then {1,2,8 a} is a cocircuit of M,
contradicting orthogonality with the circuit {e, 3,8}. We conclude that 5.7.4 holds.

5.7.5. |U’| # 6.

Assume |U'| = 6, letting U’ = {1,2,3,7,a,b}. If r(U’) = 3, then M|U’" =
M(Ky). As {1,3,7} is a cocircuit of M\8, it follows that M has a circuit containing
{37} contradicting Lemma 5.6. Thus r(U’) > 4. Suppose 73, 4(U’) = 3. Then, in
M* /8, we have {1,2,3} as a triad. As {2,3,7,8} is not a cocircuit of M, it follows
that {2,3,a,8} or {2,3,0,8} is a cocircuit of M. This contradicts orthogonality
with the triangle {6,7,8}. Hence r},\s(U’) =4 = rans(U’).

B

L/

FIGURE 5

In M\8, let L' be the guts line of the 4-fan (2,1,3,7) and let L be the guts
line of the 3-separating set U’. Suppose first that L and L’ meet in {2}. Then
2 € clyns(V’). Thus (U’ —2,V"U2) is 3-separating in M\8. Hence so is (U’ —
2-3,V'U2U3). Then (U —2 -3,V U2U3UR.) is a (4,3)-violator of M;
a contradiction. We deduce that L and L’ do not meet in {2}. However, since
{1,3,7} is a cocircuit of M\8, we must have L and L’ meeting. Thus we have
the situation shown in Figure 5 where {«, 8} = {1,3}. If a or b is on L, then U’
contains another triad apart from {1,3,7} and it must contain 2. Now {2, 7} is not
contained in a triad of M\8 otherwise {2, 7,8} is contained in a 4-cocircuit of M; a
contradiction. Thus M\8 has a triad containing 2 but not 7, so, by orthogonality,
M has a triad containing 2; a contradiction. We conclude that neither a nor b is on
L. If a = 3, then {2,3,a,b} is a cocircuit of M\8 and hence of M. But {3,6,7, ¢}
is a circuit of M, so we contradict orthogonality. Thus a # 3, so « =1 and § = 3.
Now, by orthogonality, {3,7,a,b} is not a circuit of M as {2, 3,4, e} is a cocircuit.
Thus, without loss of generality, a is the element on L’ that is not on L and is
not 2. Thus M\8, and hence M, has {1,2,a,b} as a cocircuit and {1,7,a} as a
circuit. We conclude that the configuration in Figure 4 occurs as a restriction of
M; a contradiction. Therefore 5.7.5 holds.

We may now assume that |[U’'| =5. Let U’ = {1,2,3,7,a}. Then

5.7.6. U’ is a 5-fan (2,3,1,7,a).

Assume this fails. Then U’ is a 5-cofan (a,usq,us,us,7) where ug = 2 and
{us,us} = {3,1}. Hence, by orthogonality with the triangle {e, 3,8}, we deduce
that the 5-cofan is (a,2,3,1,7). But, as a # 6, it follows by orthogonality that
{a,2,3} is a triad of M; a contradiction. Hence 5.7.6 holds.
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We now know that N < M\a. Evidently M\1 and M\7 are not (4,4,5)-
connected. Thus, by [1, Theorem 5.1], either {1,7,a} is the central triangle of a
quasi rotor, or M\a is (4,4, S)-connected.

Next we show the following.

5.7.7. {1,7,a} is not the central triangle of a quasi rotor.

Assume the contrary. Suppose first that 7 is the central element of this quasi
rotor. Then, as {1,3,7,8} is a cocircuit, by Lemma 5.6, {8,7,6} and {1,7,a} are
the only triangles of M containing 7. Thus M has a second triangle containing
6, contradicting Lemma 5.6. Similarly, if 1 is the central element of the quasi
rotor, then, by Lemma 5.6, the other triangle of the quasi rotor containing 1 is
{1,2,3}. Hence M has a second triangle containing 2, contradicting Lemma 5.6.
We conclude that a is the central element of the quasi rotor. This quasi rotor
contains a cocircuit {1, a,u, v} where {u,a} is in a triangle. Now, as neither {2, a}
nor {3,a} is in a triangle, it follows by orthogonality with the triangle {1,2, 3} that
v € {2,3}. Hence, by Lemma 5.6, v = 3 and u € {e,8}. This contradiction to
Lemma 5.6 implies that 5.7.7 holds.

We now know that M\a is (4,4, S)-connected. Then M\8 is not (4,5, S, +)-
connected otherwise M has a pretty good bowtie. Thus M\8 has a (4,5,5,+)-
violator (X,Y) where |X N {1,3,7}| > 2. Then (X,Y) is a (4,4, 5)-violator of
M\8. Then, by 5.7.2, 5.7.4, 5.7.5, and 5.7.6, it follows that (X,Y") is equivalent to
the 3-separation (U’, V') where U’ is the 5-fan (2,3,1,7,a). Now U’ has no element
of V' in its closure, otherwise M has a triangle containing {3, 7}; a contradiction to
Lemma 5.6. Thus we may assume that V' has an element b that is in the coclosure
of U" in M\8. Then M\8 has a cocircuit C* that contains b and is contained in
U'Ub. If {b,1,2,a} is a cocircuit of M, then M has the configuration in Figure 4
as a restriction; a contradiction. Thus we may assume that {b,1,2,a} is not a
cocircuit of M.

5.7.8. 1 e C*.

Suppose 1 € C*. Then, by orthogonality with the circuits {1,2,3} and {1,7,a},
we deduce that C* is {b,2,3}, {b,7,a}, or {b,2,3,7,a}. In the first case, the
circuit {3,7,6,e} implies that b € {6,e}. But {e,2,3,4} is a cocircuit of M\8,
so b # e. Hence {6,2,3} is a cocircuit of M\8. Then {6,2,3,8} is a cocir-
cuit of M, so A({1,2,3,6,7,8}) < 2; a contradiction. If C* = {b,7,a}, then
the circuit {7,1,2,e,6} implies that b € {e,6}. Thus C* U8 is a cocircuit of
M and A({1,2,3,6,7,8,e,a}) < 2; a contradiction. If C* = {b,2,3,7,a}, then
C* A {1,3,7} ={1,2,a,b}; a contradiction. We conclude that 5.7.8 holds.

Now C* contains {b,1} and exactly one element of each of {2,3} and {7,a}.
Thus |C*| = 4. Then, as C* # {b,1,2,a} and C* 2 {1,3,7}, it follows that
|C* N {3,7}| = 1. Hence C* A {1,3,7} is a triad that contains b but not 1. Since
this case was already eliminated in 5.7.8, we conclude that the lemma holds. O

Lemma 5.8. Suppose N < M\1 and M has the configuration shown in Figure 4
as a restriction. Then M contains a good bowtie or a good augmented 4-wheel,
or M has an internally 4-connected minor M’ that has an N-minor and satisfies
1<|E(M)—EM')| <2.

Proof. Assume that the lemma fails. First we observe that

5.8.1. M has no 4-cocircuit containing {a,6,7}.
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To see this, note that N is a minor of both M\1 and M\e and the latter is
(4,4, S)-connected. Thus M has no 4-cocircuit containing {a,6,7} otherwise M
contains a good augmented 4-wheel.

Next we observe that

5.8.2. {1,3,7,8} is the only 4-cocircuit of M that contains at least two elements
of {1,3,7,8}.

If M has another 4-cocircuit C* containing at least two elements of {1,3,7, 8},
then, by orthogonality, C* C {1,2,3,6,7,8,¢,a}. Thus A({1,2,3,6,7,8,¢e,a}) < 2;
a contradiction.

Since M*/1 has (e, 3,8,7,6) as a 5-cofan with 5 in the guts, M*/1/8 has an N*
minor. Thus either M*/1,8,7 or M*/1,8\3,5 has an N*-minor. In the first case,
N < M\7 and we see that M contains a good augmented 4-wheel. Thus we may
assume that

5.8.3. M\7 has no N-minor and N < M\1,8/3,5.
Next we show the following.

5.8.4. For each a in {a,2,6}, the matroid M\o has an N-minor and is (4,4, 5)-
connected. Moreover, for each [ in {4,5,b}, the matroid M/ has an N-minor.

Now N =< M\1,8/3,5. But M\1,8/3,5 = M/3\1,8/5 = M/3\2,e¢/5 =
M\2,e/4,5. Thus each of M\2, M/4, and M/5 has an N-minor. Moreover,
M\1,8/3,5 =2 M\1,8/7,5 = M/7\1,8/5 = M/7\a,6/5. Hence both M\a and
M\6 have an N-minor. Finally, observe that M*/8 has (2,3,1,7,a) as a 5-cofan
with b in the guts. Then M*/8\b has an N*-minor, so M/b has an N-minor.

Evidently, M\7 is not (4,4, S)-connected for all v in {1,3,7,8}. Thus one of
the triangles {2,1,3},{6,8,7}, and {a,7,1} is the central triangle of a quasi rotor
otherwise, by [1, Theorem 5.1], M\« is (4,4, S)-connected for all o in {a,2,6}.
By Lemma 5.6, each of 2,6, and e is in a unique triangle of M. Suppose a is in a
triangle of M other than {1,7,a}. By orthogonality and Lemma 2.8, this triangle is
{a,b,c} for some element c. Then M\2 has (¢,b,a,1,7) as a 5-fan, so N < M\2\7,
a contradiction. Thus {1,7,a} is the unique triangle of M containing a.

Suppose first that {2, 1,3} is the central triangle of a quasi rotor. If the central
element of this quasi rotor is 3, then, by 5.8.2, one of the 4-cocircuits of the quasi
rotor is forced to be {2,3,4, e}, so M has a triangle containing 4, a contradiction
to Lemma 2.8. Thus we may assume that the central element of the quasi rotor is
1. Then {1,2,a,b} is one of the cocircuits of the quasi rotor and M has a triangle
containing {a, b}, a contradiction.

Next suppose that {6,8,7} is the central triangle of a quasi rotor. Then the
central element of this quasi rotor is 8 and not 7 otherwise, by 5.8.2, M has a
4-cocircuit containing {a, 6,7}, a contradiction to 5.8.1. Thus one of the cocircuits
of the quasi rotor is forced to be {5,6,8,¢e}, so M has a triangle containing 5, a
contradiction to Lemma 2.8. Hence {6,8,7} is not the central triangle of a quasi
rotor.

Finally, suppose {a, 7,1} is the central triangle of a quasi rotor. Then the central
element of this quasi rotor is not 7 otherwise M has a 4-cocircuit containing {a, 6, 7},
a contradiction. If the central element of the quasi rotor is 1, then one of the 4-
cocircuits of the quasi rotor is {1,2,a,b}, so M has a triangle containing {2,b}, a
contradiction to Lemma 5.5. We conclude that 5.8.4 holds.
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The next assertion is obtained by applying Lemma 2.7 with the element 4 here
taking the role of the element 8 in that lemma.

5.8.5. One of the following occurs.
(i) M has a triangle containing {2,4}; or
(ii) M/4 is internally 4-connected; or
(iii) M has a circuit {4,e,5,21} and a triad {5,x1,22} where {z1,z2} N
{1,2,3,4,5,6,7,8,e} =0; or
(iv) M has a circuit {2,4,29,23} and a triad {x1,x2,73} where
T1,%2,%3,1,2,3,4,5,6,7,8, e are distinct except that, possibly, r1 = 5.

By Lemma 2.8, (i) does not hold. Moreover, as N < M/4, (ii) does not hold.
Thus (iii) or (iv) holds. Applying Lemma 2.7 again this time relative to the element
5 and then combining this with the information above obtained by considering what
happens relative to 4, we find that

5.8.6. M contains one of the structures shown in Figure 6.

To see this, first note that if 5.8.5(iii) holds relative to both 4 and 5, then (I)
holds. Next we show the following.

5.8.7. If 5.8.5(iv) holds relative to 4, then M has a circuit {2,4,b,z3} and a co-
circuit {x1,b,x3}.

Certainly M has a circuit {2,4, 2, x5} and a cocircuit {x1,x2,z3}. By orthog-
onality with the cocircuit {1,2,a,b}, we see that b € {xq, 23} so, by symmetry, we
may assume that b = x5. Thus 5.8.7 holds.

Returning to the proof of 5.8.6, we note that it follows immediately from 5.8.7
that if 5.8.5(iv) holds relative to both 4 and 5, then (II) holds.

Now suppose that 5.8.5(iii) holds relative to 4, and 5.8.5(iv) holds relative to 5.
Then M has circuits {4, 5, e, 21} and {5, 6, y2, ys} and has cocircuits {5, z1,z2} and
{y1,y2,y3}. By orthogonality, {x1, z2} meets {ys,y3}. Suppose 21 € {y2,y5}. Then
orthogonality between {4,5, e, 21} and {y1, y2, y3} implies that 4 € {y1,y2,y3}. But
4 & {y2,ys} otherwise {4,5,e,21} = {5,6,y2,y3}; a contradiction. Thus 4 = yy,
and M has {4,z1} contained in a triad, so (I) holds. We may now assume that
x9 € {y2,y3}. Then, by symmetry, (IIT) holds.

Finally, suppose that 5.8.5(iii) holds relative to 5 while 5.8.5(iv) holds relative
to 4. Then, by 5.8.7, M has circuits {4,5,e,21} and {2,4,b,y3} and cocircuits
{4,x1,22} and {y1,b,y3}. By orthogonality, {z1,xz2} meets {b,ys3}. If o = ys,
then (IV) holds. Next suppose that 21 = y3. Then, by using symmetric difference,
we see that {2,5,e,b} is a circuit. Then A({1,2,3,4,5,6,7,8,e,a,b,z1}) < 2; a
contradiction. The same contradiction occurs if 1 = b, so we may assume that
29 =b. Thus M has {4,b,2;} as a cocircuit.

We now apply Lemma 2.7 relative to the element b. By 5.8.4, N < M /b and M\2
is (4,4, S)-connected, so neither (i) nor (ii) occurs. Suppose that (iii) occurs. Then
M has a triad containing {4, y3}. If this triad contains z1, then (IV) holds. Thus, by
orthogonality, {4,5,y3} is a triad of M. Then A({1,2,3,4,5,6,7,8,¢,a,b,x1,y3}) <
1; a contradiction. We conclude that (iv) of Lemma 2.7 rather than (iii) must hold
relative to b. Thus M has a circuit {a,b, 22,25} and a triad {21, z2,23}. Since
M has {y1,b,y3} as a cocircuit, by orthogonality with the circuit {a,b, 22,23}, it
follows, by symmetry, that z3 € {y1,ys}. Suppose z3 = y;. Then, by orthogo-
nality between the circuit {a, b, 22, 23} and the cocircuit {4,b,z1}, we deduce that
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{4, 21} meets {z9,23}. Then A\({1,2,3,4,5,6,7,8,¢,a,b,21,ys3,22,23}) < 1. But
1{1,2,3,4,5,6,7,8,e,a,b,x1,ys, 22, 23}| < 14, so we have a contradiction. We may
now assume that z3 = ys. Then, as M has {2,4,b,ys} and {a,b, z0,y3} as circuits,
it has {2,4, a, 22} as a circuit. Then, by orthogonality with the cocircuit {4, x1, b},
we see that zo = 7. Then A({1,2,3,4,5,6,7,8,a,e,21}) < 2; a contradiction. We
conclude that 5.8.6 holds.
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3 8 3 8
2 6 2 6
1 7 1 7
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Ty /) C\ T
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3 8 3 8
2 6 2 6
1 7 1 7
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Y
b ’ b
Y1 Y1
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FIGURE 6

5.8.8. M does not contain the configuration shown in Figure 7.

Suppose that M does contain the configuration shown in Figure 7. By
Lemma 5.7, the elements 1,2,3,4,5,6,7,8,¢e,a, and b are distinct. Let Z be the set
of thirteen elements shown. Since A(Z) < 2, all thirteen elements must be distinct.
Moreover, r(Z) = 7 otherwise A(Z) < 1.

Now M\1,8/3,5 has an N-minor and has (e, 21,4, x2) and (7,a,2,b) as 4-fans.
If N < M\1,8/3,5\e, then N < M\8,¢e/6, so N < M\7; a contradiction. Thus
N < M\1,8/3,5/x2. As the last matroid has (7,a,2,b,4) as a 5-fan, we deduce
that N < M\T; a contradiction. Thus 5.8.8 holds.

Now M does not contain the structure in (IV) in Figure 6 otherwise M contains
the structure in Figure 7; a contradiction. Next we show the following.
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5.8.9. If M contains (I) or (III) from Figure 6, then (i) of Lemma 2.7 holds
relative to the element b.

Suppose that M contains (I) or (IIT) from Figure 6. If (iv) of Lemma 2.7 does not
hold relative to the element b, then (iii) of that lemma holds. Then M has a 4-circuit
{b,2,4,21} and a triad {4, z1,22}. Hence M contains the configuration shown in
Figure 8. By 5.8.8, M does not have {4, 21,21} as a cocircuit. By orthogonality,
{z1, 22} must meet {z1,5}. We know that x1 # 2zo. Suppose 21 € {z1,5}. Then
2({1,2,3,4,5,6,7,8,e,a,21,b}) < 2; a contradiction. Thus 5 = z3, so M has
{4,5,21} as a cocircuit.

We will now need to distinguish between (I) and (III). Suppose first that (I)
holds. Then {4,z1,y2} is a cocircuit and {b,2,4,z1} is a circuit. As {4,5,21} is
a cocircuit, so is {5, z1,21,y2}. By orthogonality, b € {5,21,y2}. If b € {5,21},
then A({1,2,3,4,5,6,7,8,a,b,e,21}) < 2; a contradiction. Thus b = y3. Then
2({1,2,3,4,5,6,7,8,a,b,e,21,21}) < 1; a contradiction. We conclude that (T) does
not hold. Next suppose that (IIT) holds. Then {4,5, z1 }, {5, x1, 22}, and {y1, y2, z2}
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are cocircuits of M, and {b,2,4, 21} and {5, 6, x2,y2} are circuits. By orthogonal-
ity between {5,6,x2,y2} and {4,5, 21}, we deduce that {4, z1 } meets {za,y2}. If
4 € {x2,y2}, then M has a 4-circuit containing {4,5,6}. By orthogonality, the
fourth element of this circuit is in {2,3,e}. Thus A({1,2,3,4,5,6,7,8,¢e,a}) < 2;
a contradiction. Hence z1 € {z2,y2}. But 21 # x2 otherwise the triads {5, z1, 21}
and {4, 5, z1} imply the contradiction that 4 = ;. We deduce that z; = ys.

By orthogonality between {b,2,4,21} and {z1,x9,y1}, we deduce that {b,4}
meets {xo,y1}. If 4 € {x2,y1}, then {xo,y1,y2} = {4,5,21}, so 5 € {z2,y1}; a
contradiction. We conclude that b € {x9,y1}. If b = x5, then the circuit {5, 6, z1, b}
and the cocircuit {b,1,2,a} give a contradiction to orthogonality. Thus b = y;.
The symmetric difference of the cocircuits {4,5, z1}, {5, 21,22}, and {z1,x2,b} is
{4,21,b}. Tt follows that \({1,2,3,4,5,6,7,8,¢,a,21,b,21}) < 1; a contradiction.
We conclude that 5.8.9 holds.
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By 5.8.9, if (I) or (III) holds, then M contains one of the structures shown in
Figure 9 where we have omitted the elements y; and ys from (III). Comparing
these two structures with (II), we observe that, since M\2 is (4,4, S)-connected
having an N-minor and having two disjoint 4-fans, the two structures in Figure 9
contain structures symmetric to (II). But there are a number of assumptions that
accompany (IT). To ensure that we can, indeed, provide a simultaneous treatment
of (IT) and the two structures in Figure 9, we shall assume that M contains the
structure in Figure 10 where the following assumptions hold.

(i) M\« is (4,4, S)-connected having an N-minor for all « in {a’,2,¢’,6'}.
(ii) The only triangles of M meeting {1/,2/,3", 4, 5,6',7,8 ¢ ,a’,b'} are
{1/,2,3'},{3,¢',8'},{8,6', 7'}, and {7',a’,1'}.
(iii) M has no 4-cocircuit containing {a’,6’,7'}.
(iv) M\7 has no N-minor.
(v) M/3\1’,8 has an N-minor.

5.8.10. N £ M\3'.

Assume that N < M\3'. If M\3' is (4,5,5,+)-connected, then, as M\da'
is (4,4, 5)-connected having an N-minor, M has a good augmented 4-wheel;
a contradiction. We deduce that M\3' is not (4,5, S, +)-connected. Suppose
that M\3" has a non-sequential 3-separation (U,V). Then we may assume that
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{1,d’,7,6',8} C U. Since we may also assume that {e’,2',4’} is a subset of U
or V, we must have that {e’,2’,4'} C V. Thus 5 € V otherwise we can move ¢’,
then 2/, and then 4’ into U. Now we may assume that {y],y5,y5} is a subset of U
or V. If it is contained in U, then we can move 5" into U; a contradiction. Thus
{y1, 5, ¥4} C V. We can now move 6', then 8 into V enabling us to add 3’ to V;
a contradiction. We conclude that M\3' is sequentially 4-connected.

Next suppose that M\3' has (uy,us,us,ug,us) as a 5H-cofan. Then M
has {3',u1,u2,us} and {3',us,us,us} as cocircuits. By orthogonality between
these cocircuits and the circuits {3/,¢/,8'} and {3,2,1'}, we deduce that
each of {u1,ug,us} and {us,us,us} meets each of {¢/,8'} and {2/,1'}. Since
{u1, u2,us,uq,us} does not contain {e’,8} or {2,1'}, we deduce that uz €
{e/,8} N {2',1'}; a contradiction. Hence M\3’ has no 5-cofan.

Now let (uy,uz,us, uq,us) be a 5-fan of M\3'. Then M has {3/, us,us,us} as a
cocircuit. Thus {¢/,8'} and {2/,1'} both meet {ua,us,us}. The limitations on the
possible triangles containing any of €’,2’,8’) and 1’ mean that us ¢ {e’,2',1’,8'}.
Moreover, €' & {us,us} otherwise M has a good bowtie. We conclude that we
may assume that ug = 8. Then {uy,us,uz} = {6',7,8}. If us = 6, then M
has two triangles containing 6; a contradiction. Thus ug = 7’ so uy = 1’ and
(u1,ug,us, ug,us) = (6',8,7,1", a’). We conclude that (6,8',7',1’,a’) is the unique
5-fan of M\3'. Thus M\3’ has no 5-fan with an element in the guts.

Since M\3' is not (4,4, S)-connected, it now follows that M\3’ has a 5-fan with
an element in the coguts. It follows that M has a 4-cocircuit containing {6’,7’,a’}.
This contradiction completes the proof of 5.8.10.

Now suppose z € {6',a’}. Then M\z is (4,4, S)-connected having an N-minor.
Moreover, M\z has a 4-fan (3, s2, 83, s4) where (z,s4) is (6’,5') or (a/,’). Thus,
by Lemma 2.5, either N < M\2z\3'; or N < M\z/sy and M\z/ss is (4,4, 5)-
connected. By 5.8.10, the former does not hold. Hence the latter does. Thus
M\z/s4 has a 4-fan (vy,v2,v3, v4).

5.8.11. M has {va,v3,v4} as a cocircuit.

We shall prove this when (z,s4) = (6,5’) noting that the argument focuses ex-
clusively on the restriction of M to {1’,2',3',6',7',8 ¢,a’,0’,5}. The symmetry in
that restriction means that this argument also proves 5.8.11 when (z, s4) = (a/,b’).
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Assume that 5.8.11 fails. Then M has {ve,vs3,v4,6'} as a cocircuit C* of M.
By orthogonality, {vs,vs,vs} meets {7/,8}. Suppose 7 € C*. Then, by or-
thogonality with the triangle {1’,7' a’}, we deduce that C* contains {6’,7',a'}
or {6',7,1'}. The first possibility has been excluded; the second implies that
c* C {6,7,1,3,2'}, so A({1",2,3,6',7,8}) < 2; a contradiction. We con-
clude that 7 ¢ C*. Hence 8 € C*. Thus C* contains {6’,8 ¢’} or {6,8,3'}.
The first case gives the contradiction that 5 € C*; the second implies that
A({1,2/,3,6',7,8'}) < 2; a contradiction. We conclude that 5.8.11 holds.

We will now take (v1, va, v3,v4) to be a 4-fan in M\6'/5" and (wy, we, w3, wy) to
be a 4-fan in M\a'/V'. In the 4-fan (vy,v2,v3,v4), we may clearly interchange vy
and vs. In the next assertion, we assume that we have made this interchange if
necessary.

5.8.12. The matroid M has {5',€',4',v3} as a circuit and {4',v3,v4} as a cocircuit.
Moreover, vy € {V/,25}.

By 5.8.11, {v1,v2,v3,5'} is a circuit of M. None of ¢/,8, or 6’ is in a triad of
M. Thus {€/,8,6'} avoids {ve,vs}. Hence vy € {€’,8}. Therefore {5',8" v, v3}
or {5, €', v9,v3} is a circuit of M. In the former case, as {1’,3',7',8'} is a cocircuit
of M, it follows that {1’,3’, 7'} meets {vq,v3}; a contradiction. Thus {5, ¢’,ve,vs}
is a circuit of M. The cocircuit {e’,2',3',4'} implies that we may assume that
4" = vy. Hence M has {5',¢’,4',v;} as a circuit and {4’,v;,v4} as a cocircuit. By
orthogonality with the circuit {2/,4',b’, 2%}, we deduce that {vs, v4} meets {V', 2% }.
If vg € {b', 25}, then A({1/,2/,3,4',5',6", 7,8 ,a",VV,¢,24}) < 2; a contradiction.
Thus vy € {V/, 2z4}. Hence 5.8.12 holds.

By 5.8.11,

5.8.13. M has {ws,ws, w4} as a cocircuit.

We now know that M has {1',2",a’,0'} and {ws, w3, ws} as cocircuits and
has {w,ws,w3,b'} as a circuit. By orthogonality and the fact that o' ¢
{wy, we, w3, ws}, we see that

5.8.14. w; € {1/,2'}.
Next we show that
5.8.15. M has {4',vs,24} as a cocircuit.

Assume that this fails. Suppose w; = 1’. Then, by orthogonality be-
tween {1/,3',7',8} and {wy,ws,ws,b'}, we see that {we, w3} meets {3',7,8};
a contradiction. We deduce that w; = 2. Then, by orthogonality, {ws,ws}
meets {3',4',¢'}. Hence 4’ € {wa,w3}. Thus {wy,ws,ws,b’} contains {2',4,b'}
and so equals {2/,4', b 25}, Thus {ws,ws} = {4',24}. Hence, by orthog-
onality, {we,ws,ws} is {4',25,5'} or {4',25,v3}. But the second possibil-
ity has been excluded. By 5.8.12, {4’,v3,b'} is a cocircuit of M. Thus
A{1,2,3,4",5,6",7,8,a",V,¢ ,vs,25}) < 1; a contradiction. Thus 5.8.15 holds.

Let z = {1',2/,3,4',5',6',7,8,a',V/,¢,u3, 25 }. Then A\(Z) < 2, so |Z] = 13.
Moreover, r(Z) = 7, otherwise A(Z) < 1.

Now M/3'\1’,8" has an N-minor. Since M/3'\1',8" has (7/,¢/,6,5) as a 4-
fan but M\7 has no N-minor, it follows that M/3'\1’,8 /5 has an N-minor.
Now M/3'\1',8 /5" has (7',2',d/,V’) as a 4-fan. Thus M/3'\1’,8'/5' /b’ has an N-
minor and has (2/,25,4',v3,¢’) as a 5-fan. Thus either M/3'\1',8'/5'/b'\2/, ¢’ or
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M/3\1,8 /5 /b /x5\2" has an N-minor. In each case, M\1’,2" has an N-minor.
Since M\1’,2’ has {a’,V'} as a cocircuit, we deduce that N < M/a’. But M/d’
has a 2-circuit containing 7. Thus M\7' has an N-minor; a contradiction. We
conclude that the lemma holds. 0

Lemma 5.9. If N < M\1, then M has a good bowtie, a pretty good bowtie, or
a good augmented 4-wheel, or M has an internally 4-connected minor M' with
1< |E(M)— E(M’")| <2 such that M" has an N-minor.

Proof. We may assume that M\1 is not internally 4-connected and M does not
have a good bowtie. Then, by Lemma 5.3, M\1 is (4,4, S)-connected, or M has
{1,3,7,8} or {1,3,6,7,e} as a cocircuit. If M has {1,3,6,7,e} as a cocircuit,
then, by Lemma 5.4, M\3 is internally 4-connected having an N-minor and the
lemma holds. If M has {1,3,7,8} as a cocircuit, then, by Lemma 5.7, M\8 is
internally 4-connected having an N-minor, or M has a pretty good bowtie, or M
has the configuration in Figure 4 as a restriction. In the last case, by Lemma 5.8,
M contains a good bowtie or a good augmented 4-wheel, or M has an internally
4-connected minor M’ with 1 < |E(M)—E(M')| < 2 such that M’ has an N-minor.

It remains to consider the case when M\1 is (4,4, S)-connected having a 4-fan
(a,b,c,d). Then {1,b,c,d} is a cocircuit of M. By orthogonality with the triangle
{1,2,3}, either 2 or 3 is in {b, c,d}.

5.9.1. 3¢ {b,c,d}.

Suppose 3 € {b,c,d}. Then 8 or e is in {b,c,d} by orthogonality. Suppose
8 € {b,c,d}. Then {1,b,c,d} contains {1,3,8}. By orthogonality, it must also
contain 7 or 6. In the first case, ({1,3,2},{7,8,6},{1,3,7,8}) is a good bowtie.
Thus {1,b,¢,d} = {1,3,8,6}. Hence, by taking symmetric differences, we see that
{1,3,¢,5} is a cocircuit of M. Thus M\e has {1,3,5} as a cocircuit and so has
(4,2,3,1,5) as a 5-cofan; a contradiction.

We may now assume that {3,e} C {b,c,d}. Then {1,b,¢,d} is {1,3,e,a} for
some element «. Thus M\e has {1,2,3, a} as a 3-separating set. As {1,2,3,4} is
also 3-separating and M\e is (4,4, S)-connected, we deduce that o = 4. But then
{1,3,e,4} and {2, 3,¢e,4} are cocircuits; a contradiction. Hence 5.9.1 holds.

It follows by 5.9.1 that 2 € {b,¢,d}. As M does not have a good bowtie, 2 # d,
so 2 € {b,c}. Then, by Lemma 2.8, {2,e} C {a,b,c}. Thus, by orthogonality,
{a,b,c} is {2,e,5} or {2,e,6}. The first possibility gives the contradiction that
({2,e,5},{6,7,8},{e,5,6,8}) is a good bowtie. The second contradicts the fact
that {2,e,6,1,7} is a circuit. Thus Lemma 5.9 holds. O

The next result follows without difficulty by combining the last lemma with
Lemmas 2.5 and 5.2 and by using symmetry.

Corollary 5.10. Neither M\1 nor M\T has an N-minor. But M\e/4,5 has an
N-minor and both M\e/4 and M\e/5 are (4,4, S)-connected.

Lemma 5.11. FEither M/5 is (4,4, 5)-connected, or M has a triad {4,7,0} and
has circuits {4,¢e,6,0}, {4,e,5,7}, and {5,6,~,d}.

Proof. Let (U, V) be a (4,4, S)-violator of M/5. Then neither U nor V contains
{e,8,6}. Without loss of generality, we may assume that U contains two or three
elements of {e,3,8}. If 6 € U, then (UU{e, 3,8}U5,V —{e, 3,8}) is a (4, 3)-violator
of M; a contradiction. Thus we may assume that 6 € V.
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1 7

FIGURE 11. M has {4,¢,6,0}, {4,¢,5,7}, and {5,6,7,d} as circuits.

5.11.1. {¢,3,8} Z U.

Assume that {e,3,8} CU. If 7 € U, then (UU6U5,V —6) is a (4, 3)-violator of
M; a contradiction. Thus 7 € V. As M/5\e is (4,4, S)-connected, (U —e, V) is not
a (4,4, 5)-violator of this matroid. Thus U — e is a triangle, a triad, or a 4-fan of
M/5\e. Hence |U| < 5. As 8 € clpy/5(V), it follows that |U| = 5 otherwise (U, V)
is not a (4, 4, S)-violator of M/5.

We now have that, in M/5, the set U is a quad {3,e,a,b} with the element
8 in its closure, or U is a 5-fan. But no element of {e,8,3} is in a triad of M,
so U is not a 5-fan. Thus {3,e,a,b} is a cocircuit of M. By orthogonality with
the circuit {1,2,3}, we deduce that {a,b} meets {1,2} in a single element. Then
(U uU{L,2},V —{1,2}) is a (4,4, S)-violator of M/5 with |U U {1,2}| = 6 and
{e,3,8} CUU{1,2}. This contradiction to the last paragraph completes the proof
of 5.11.1.

By 5.11.1, |{e, 3,8}NU| = 2. Then (UU{e, 3,8},V —{e, 3,8}) is a 3-separation of
M/5. By 5.11.1, this 3-separation is not a (4,4, S)-violator of M/5. If e ¢ V', then
(U—e,V)isa (4,4, 95)-violator of M/5\e; a contradiction. Thus e € V and {3,8} C
U so V is a 5-fan (e, 8,7, 0,¢) in M/5 that contains 6. As 6 is not in a triad of M,
we deduce that e = 6. Then {e, 8,7,5} and {v,d,6,5} are circuits of M. Hence so
is {e, 3,8,6}. Now {8,~,d} is a triad of M, so {8,~,0}N{1,2,3,¢,6,7,8} = 0. Also
5 ¢ {fB,7,0}. By orthogonality between the cocircuit {2, 3,4, e} and the cocircuits
{e,B,7,5} and {e,B,9,6}, we deduce that 4 € {B,7} N {B,0}, so 8 = 4. Thus
{e,4,7,5} and {e,4,6,6} are circuits of M, and the lemma holds. O

The structure that arises in the last lemma when M /5 is not (4,4, S)-connected is
depicted in Figure 11. The next result is an immediate consequence of Lemma 5.11.

Corollary 5.12. If neither M/4 nor M/5 is (4,4, S)-connected, then M contains
the configuration shown in Figure 12 where {4,7,0} and {5,v,e} are triads of M
and all of {4,€,6,6},{5,6,7,9},{5,e,2,e}, and {2,4,~,e} are circuits of M.

Lemma 5.13. The configuration in Figure 12 does not arise in M.

Proof. Assume that the configuration shown in Figure 12 does arise. Then, letting
Z ={1,2,3,¢,4,5,6,7,8,7,d,e}, we have r(Z) < 6 and |Z| —r*(Z) > 4, so A\(Z) <
2. This is a contradiction as |E(M)| > 16.
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By combining Corollary 5.12 and Lemma 5.13, we immediately obtain the fol-
lowing.

Corollary 5.14. At least one of M /4 and M/5 is (4,4, S)-connected.

Lemma 5.15. Suppose that M/4 is (4,4,5)-connected but not internally 4-
connected, and M/5 is not (4,4, S)-connected. Then M contains the configuration
in Figure 13 where {e,2,5,e} is not a circuit of M.

Proof. By Lemma 5.11, since M/5 is not (4,4, S)-connected, M contains the con-
figuration shown in Figure 11. Clearly M /4 has a 4-fan (a,b,c¢,d). Thus {4,a,b, c}
is a circuit of M and {b,c,d} is a cocircuit of M. Thus, by orthogonality, {a, b, c}
meets {2,3,e}. But {2,3,e} avoids the triad {b,c,d} otherwise M has a 4-fan.
Thus a € {2,3,e}. Also {4,7,d} is a cocircuit of M, so {b,c} meets {7,d}. Note
that {b, c,d} avoids {1,2,3,4,e,6,7,8}.

Suppose first that 6 € {b,c}. Then, without loss of generality, 6 = b. Thus
{d,¢c,d} is a triad. As {0,4,e,6} is a circuit, it follows by orthogonality that {c,d}
meets {4,e,6}; a contradiction. We deduce that § ¢ {b,c}. Thus v € {b,c}, so
we may assume that v = b. Then {v,¢,d} is a triad. As {4,e,5,7} ia a circuit, it
follows that 5 € {¢,d}, and {v,5} is contained in a triad of M.

Suppose 5 = ¢. Then {b,c,4} = {v,5,4}. As {a,b,c,4} and {e,v,5,4} are
circuits of M, it follows that e = a. Thus M contains the configuration in Figure 13.
To see that {e,2,5,¢} is not a circuit of M, we observe that otherwise M contains
the configuration in Figure 12, which contradicts Lemma 5.13.

We may now assume that 5 = d. Then (a,b,¢,d) = (a,7,¢,5) and a € {2,3,e}.
Consider the circuit {a,v,c,4}. As ¢ # 5, it follows that a # e. If a = 3, then the
symmetric difference of the circuits {3,4,¢,v} and {3,4,5,v,8} is {¢, 5,8}, which
must be a triangle of M. Since 5 is in the triad {b, ¢, d}, we have a contradiction.
We conclude that a # 3, so a = 2. Thus {2,7,¢, 4} is a circuit of M and {v,¢,5} is
a cocircuit. Thus M contains the structure shown in Figure 12; a contradiction. [

Lemma 5.16. Assume that M contains the configuration in Figure 13. Then the
only triads of M meeting {4,5,e,v} are {4,0,7} and {5,v,e}. Moreover, either

€ d v N 5
5
D € /]
2 3 8 6
1 7

FIGURE 12



30 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

g
% ~ N
5
D € a
2 3 8 6
1)
1 7

FIGURE 13. M does not have {e,2,5,¢} as a circuit.

M /e is internally 4-connected, or M/e is (4,4,S)-connected having (z,90,v,4) as
its unique 4-fan for some new element x that is not in {1,2,3,4,5,6,7,8,¢e,8,v,c}.

Proof. First, observe that, by orthogonality, a triad of M meeting {4, 5, e,v} must

either be {4,4,~v} or {5,7,¢}, or must contain {4,5}. But, by orthogonality with

the circuit {4, e,6,d}, a triad containing {4, 5} must be {4,5,} and so cannot exist

as {4,9,7} is a triad. We conclude that the first assertion of the lemma holds.
Next we show the following.

5.16.1. M/e is sequentially 4-connected.

Let (U, V) be a non-sequential 3-separation of M/e. Then we may assume that
{4,7,0} C U. Tt follows that 5 € V, so e € V otherwise we can move 5 into
U and then add € to U to get a non-sequential 3-separation of M. The circuit
{7,4,5,6} implies that 6 € V. Thus we may assume that 8,7, and 3 are in V as
{8,7,3} Cfelpg/e(V). If 1 or 2 is in V, then fcly;/. (V) contains {1,2,4,~,5} so we
may assume that these elements are in V; a contradiction. Thus {1,2} C U. We
can now move 3, then e, then 8, then 6, and then 5 into U; a contradiction. Hence
5.16.1 holds.

5.16.2. M has no 4-circuit containing {4,v,}.

Suppose M has {4,+,¢, z} as a circuit. Then, by orthogonality with the cocircuit
{2,3,4, ¢}, it follows that z € {2,3,e}. If z = 2, then the configuration in Figure 12
arises; a contradiction to Lemma 5.13. If z = 3, then, as {4,~,3,8,5} is also a
circuit, {¢,8,5} is a triangle, so M has a 4-fan; a contradiction. Finally, z # e as
{4,e,7,5} is also a circuit. Thus 5.16.2 holds.

5.16.3. Let (t1,t2,t3,t4) be a 4-fan of M/e. Then {ta,t3} = {0,7}, and (t1,t4) =
(z,4) for some element x that is not in {1,2,3,4,5,6,7,8,¢e,9,v,¢}.

Clearly {t1,to,t3,e} is a circuit of M and {ta,t3,¢4} is a triad of M. By or-
thogonality, {t1,t2,t3} meets {5,v}. Suppose first that 5 € {t2,¢3}. Then, by the
first asertion of the lemma, {ta,t3,t4} = {5,7,¢}; a contradiction. Next suppose
that v € {to,ts}. Then {to,t3,t4} = {4,0,7}. If t4 = 6, then {t1,12,t5,e} contains
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{4,7,¢e}; a contradiction to 5.16.2. If ¢4 = 4, then the required result holds by
letting t; = x where we note that if x is in the set Z of twelve elements shown in
Figure 13, then A(Z) < 2 so we get a contradiction since |E(M)| > 16. We may
now assume that {5,~v} N {t2,t3}.

Now suppose that 5 = t;. Then {e,5,ta,t3} is a circuit and {5,6,¢e,8} is a
cocircuit so {6, e, 8} meets {t2,t3}, so M has a 4-fan; a contradiction.

Finally, suppose that v = ¢;. Then {e,v,t2,t3} is a circuit and {4,4,~v} is
a cocircuit so, by orthogonality, 4 or 0 meets {t2,t3}. The first possibility was
eliminated by 5.16.2. The second gives a contradiction since {d,, 5,6} is a circuit
and {t2,t5,t4} is a triad containing § but avoiding v, 5, and 6.

An immediate consequence of 5.16.3 is that M /e has no 5-fan and has no 5-cofan
since both such structures contain two 4-fans, which do not have the same ends.
The lemma now follows by applying 5.16.1. g

Lemma 5.17. Assume that M contains the configuration in Figure 13. Then either

(i) M* has a good bowtie; or
(il) M/e or M/4,5\e is internally 4-connected having an N-minor.

Proof. Recall that, by Corollary 5.10, N < M\e/4,5. Now M\e/4,5 = M/4,5\y =
M\v/d,e. Thus N <= M/e. If M/e is internally 4-connected, the lemma holds.
Thus, by the last lemma, we may assume that M/e is (4,4, S)-connected having
(x,6,7,4) as its unique 4-fan. Thus M has {e,z,d,7} as a circuit.

Now M\e/4 is (4,4, S)-connected having (7,8,6,5) as a 4-fan. Thus M\e/4/5
is 3-connected, so M\v/d, ¢ is 3-connected. Next we show that

5.17.1. M\v/d,¢e is sequentially 4-connected.

To see this, first note that the restriction of M\~v/d,e to {3,4,6,7,8,e} is iso-
morphic to M (K4). Since M (K4) is not the union of two lines, for every partition
(X,Y) of its ground set, either X or Y contains a basis of M (Ky). This observa-
tion means that if (U, V) is a non-sequential 3-separation of M\v/d, e, then we may
assume that {3,4,6,7,8,e} C U. It follows that we may assume that 5 is in U.
Now we can add 7 and then § and € to U to obtain a non-sequential 3-separation
of M; a contradiction. Thus 5.17.1 holds.

If M\~v/d,e is internally 4-connected, then the lemma holds. Thus we may
assume that M\vy/d,e has a 4-fan (¢, ta,t3,t4). Then {ta,t3,t4} or {to,t5,t4,7} is
a cocircuit of M.

Assume first that {t2,%5,%4} is a cocircuit. Then M has a circuit C that is
contained in {¢1, 9,3, d,e} and properly contains {t1,¢2,t3}. Suppose that § € C.
Then, by orthogonality, 4 € {t1,t2,t3}. As {4,2,3,e} is a cocircuit, it follows
that {2,3,e} meets {t1,2,t3}. But {2,3,e} avoids the triad {to,t3,%4}. Thus
t1 € {2,3,e}, so 4 is in the triad {to,t3,t4}. As this triad is not {4,v,d}, we
contradict the first assertion of Lemma 5.16. We conclude that § ¢ C. Then
C = {ty,ta,t3,e}. Thus, by orthogonality, 5 € {t1,t2,t3}. Hence {e, 6,8} meets
{t1,ta2,t3}. Thus t; € {e,6,8}. Therefore 5 € {ta,t3} so, by the first assertion
of Lemma 5.16 again, {to,t3,t4} = {5,7,¢}; a contradiction. We deduce that
{ta,t3,t4} is not a cocircuit of M.

We may now suppose that {to,ts,t4,7} is a cocircuit of M. Then, it follows
by orthogonality with the circuit {e,x,d,~v} that {d, e, z} meets {ta,t3,t4}. Hence
x € {ta,t3,t4}. The cocircuit {to,ts,ts,v} contains {z,v} and so meets each of
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{4,5,e} and {5,6}. By orthogonality with the circuit {6,7,8}, it follows that
{ta,t3,t4,7} does not contain 6 and so contains 5. Thus {5,z,~,y} is a cocir-
cuit of M for some element y. But {v,5,e} is a cocircuit too, so {e,z,y} is a
cocircuit of M. Since M*\e is (4,4, S)-connected having an N*-minor, it follows
that ({&,z,y},{7,4,0},{e,v,d,2}) is a good bowtie in M*. We conclude that the
lemma holds. U

Recall that M contains the configuration shown in Figure 3. By combining
5.12-5.17, we may now assume that both M/4 and M/5 have N-minors and are
(4,4, S)-connected but not internally 4-connected.

Lemma 5.18. Let (a,z,y,2) be a 4-fan in M/5. Then {5,a,x,y} is a circuit of
M and {x,y, z} is a cocircuit that is disjoint from {1,2,3,5,6,7,8,e}. Moreover,
one of the following holds.
(I) a=e and 4 € {x,y}; or
(I1) a =6 and 4 avoids {x,y}; or
(III) a =8 and 4 avoids {x,y}.

Proof. Since {5, a,x,y} is a circuit, it follows by orthogonality that {a,z,y} meets
{e,6,8}. But {e, 6,8} avoids {x,y, z}, so a € {e,6,8}. If a = e, then, by orthogo-
nality, {x,y} meets {2,3,4}. Hence 4 € {z,y} and (I) holds. We may now assume
that a € {6,8}. Then (II) or (III) holds unless 4 € {z,y}. But, in the exceptional
case, orthogonality implies that {2, 3, e} meets {z,y}; a contradiction. O

Lemma 5.19. Assume that M has a circuit {5,x,y, a} for some o in {6,8} where
{z,y,2} is a cocircuit that is disjoint from {1,2,3,5,6,7,8,¢e}. Suppose that z # 4.
Then
(i) M/z or M/5, z is internally 4-connected having an N-minor; or
(ii) M* has a good bowtie; or
(i) M*\z is (4,5, 85, +)-connected having an N-minor and M* has a pretty good
bowtie; or
(iv) M has an internally 4-connected matroid M’ such that 1 < |E(M) —
E(M’")| <3 and M’ has an N-minor.

Proof. Assume that the lemma fails. By Corollary 5.10, neither M\e\1 and M\e\7
has an N-minor, and N < M\e/4,5. Now M\e/5 has (a,y,z, z) as a 4-fan. Thus
N =< M\e/5\a or N <X M\e/5/z. In the former case, letting {a, 8} = {6,8},
we have that M\e\« has {5, 8} as a cocircuit. Thus N < M\e/5. But the last
matroid has {«, 7} as a circuit. Hence N < M\e\7; a contradiction. We deduce
that N < M\e/5/z.

5.19.1. 4 & {z,y}.

If 4 € {x,y}, then, by orthogonality between {5,z,y,a} and {2,3,4,¢e}, we
deduce that {z,y} meets {2, 3, e}; a contradiction. Thus 5.19.1 holds.

5.19.2. M/z is sequentially 4-connected.

Let (U, V) be a non-sequential 3-separation of M/z. Then we may assume that
{6,7,8} CU and that z € U and y € V. Thus 5 € V otherwise we can move y into
U and then adjoin z to U to get a non-sequential 3-separation of M a contradiction.
Hence e € V otherwise we can move 5 into U. Similarly, 3 € V otherwise we can
move e into U. We can now move 8, then 6, and then x into V. Now adjoining z
to V gives a non-sequential 3-separation of M; a contradiction. Thus 5.19.2 holds.
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5.19.3. Let (t1,t2,t3,t4) be a 4-fan in M/z. Then {to,t3} € {5,x,y}.

Clearly {to,t3} # {x,y} otherwise {to,t3,t4} = {x,y,2}; a contradiction. Now
assume that (t2,t3) = (5,2). By orthogonality between the cocircuit {5,¢,6,8}
and the circuit {t1,z,5, 2}, we deduce that t; € {e,6,8}. If t; = e, then it follows
by orthogonality between {t1,z,5, 2} and the cocircuit {2,3,4,e} that 4 € {x, z},
which contradicts 5.19.1 or the lemma hypothesis. Thus we may assume that
t; € {6,8}. The circuits {t1,x,5,2} and {z,y,5,a} imply that ¢; # «. Then, by
taking the symmetric difference of the last two circuits and {6, 7,8}, we deduce that
{y, z, T} is a circuit; a contradiction. We conclude, by symmetry, that 5.19.3 holds.

5.19.4. M/z has no 5-fan.

Suppose that M/z has (t1,t2,t3,t4,t5) as a 5-fan. Then, by the dual of
Lemma 2.12 and symmetry, we may assume that t3 = x. Then {ta,z,%4} is a
triad of M. By orthogonality with the circuit {5, z,y, a}, we deduce by symmetry
that to = 5. This gives us a contradiction to 5.19.3. We conclude that 5.19.4 holds.

5.19.5. If (t1,to,ts,t4,t5) is a 5-cofan of M/z, then 5 € {t1,t5}. In particular, if
t1 =5, then ts € {z,y}.

Clearly {to,t3,t4,2} is a circuit of M so, by orthogonality, {ts,t3,ts} meets
{z,y}. Because {t1,t2,13,t4,t5} is 3-separating in M/z, it contains exactly one of
x and y. Moreover, « & {t1,t2,ts,ta, t5}, otherwise M has a 4-fan. Thus, by orthog-
onality between the circuit {5, x, y, o} and the cocircuits {¢1, ¢, t5} and {ts,t4,t5},
it follows that ¢35 ¢ {z,y}. Now suppose that to = z. Then, by orthogonality,
5 € {t1,t3}. Thus, by 5.19.3, 5 = t;. We deduce, by symmetry, that 5.19.5 holds.

5.19.6. M/z has no 5-cofan with an element in the coguts.

Let (t1,ta,t3,t4,t5) be a 5-cofan of M/z with an element, ¢g, in the coguts. Then
Mz also has (t1,ts,ta,ts,ts) and (t5,ts,ts,t2,16) as 5-cofans. By 5.19.5, 5 must
be an end of all three of these 5-cofans; a contradiction.

5.19.7. M/z has no 5-cofan with an element in the guts.

Let (t1,t2,t3,t4,t5) be a 5-cofan of M/z with an element, tg, in the guts. Then,
by 5.19.5 and symmetry, we may assume that (¢1,t2) = (5,2). Then N < M/z/5.
Moreover, as M/z has no 5-fan, {5,t3,t5,%6} is a circuit of M/z. By orthogo-
nality with the cocircuit {5,e,6,8}, we deduce, as {t3,t5} avoids {e, 6,8}, that
te € {6, 6, 8}

Now {5,t3,t5,t6,2} or {5,t3,t5,t6} is a circuit of M. In the first case, {z,y}
meets {t3,t5}; a contradiction. Thus {5, ts,5,ts} is a circuit of M. Hence M /5 has
(te,ts,t3,t4) and (a, x,y, 2) as 4-fans. Suppose these 4-fans are disjoint. Then, by
applying Corollary 5.10 and duality, we obtain the contradiction that M/5/z has
no N-minor. We deduce that the two 4-fans meet, so tg = . As these two 4-fans
in M/5 meet in their guts elements, the corresponding two fans in M*\5 meet in
their coguts elements and, by Lemma 4.2, the lemma holds. Thus 5.19.7 holds.

On combining 5.19.4, 5.19.6, and 5.19.7, we immediately obtain the following.

5.19.8. M*\z is (4,5,5,+)-connected.
Evidently if M/z is internally 4-connected, then the lemma holds.

5.19.9. If M/z is (4,4, S)-connected but not internally 4-connected, then either M*
has a good bowtie, or M/z has a 4-fan (t1,t2,t3,5) where |[{z,y} N {t2,t3}]| = 1.
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FIGURE 14

Let (t1,to,ts,t4) be a 4-fan in M/z. Then {t1,t2,t3,2} is a circuit so, by or-
thogonality and symmetry, we may assume that x € {t1,t2}. Suppose = = t;.
Then, as M*\z is (4,4, S)-connected, M* has ({t2,t3,t4}, {2, y, 2},{z, 2,t2,t3}) as
a good bowtie. We may now assume that x = t5. Then, by orthogonality between
the cocircuit {t2,t3,t4} and the circuit {5, z,y, a}, we deduce that 5 € {t3,t4}. If
5 = t3, we contradict 5.19.3. Thus 5 = t4 and 5.19.9 holds.

5.19.10. If M/z is not (4,4, S)-connected, then M* has a pretty good bowtie.

As M/z is not (4,4, 5)-connected, 5.19.8 and 5.19.5 imply that we may assume
that (5,x,t3,t4,t5) is a b-cofan in M/z. Then ({ts,ts,ts5},{z,y, 2}, {z, z,t3,t4}) is
a bowtie in M*. Since {5,z,ts} is a triangle of M™* and M*\5 is (4,4, S)-connected
having an N*-minor, while M*\z is (4,5, S, +)-connected having an N*-minor, it
follows that the specified bowtie is a pretty good bowtie in M*. Thus 5.19.10 holds.

To complete the proof of Lemma 5.19, it follows by 5.19.9 that we may assume
that M/z is (4,4, S)-connected having a 4-fan (¢1, t2, t3,5) where, by symmetry, we
may assume that © = to. Then M has {z, z,t1, {3} as a circuit. Thus M contains the
structure shown in Figure 14 where there is a circuit {5, z, y, a} for some « € {6, 8}.

5.19.11. M/5, z is sequentially 4-connected.

Let (U,V) be a non-sequential 3-separation of M/5,z. Then we may assume
that {z,t1,t3} C U. Then we can add 5 to U to get a non-sequential 3-separation
of M/z; a contradiction. Hence 5.19.11 holds.

5.19.12. M/5,z is internally 4-connected.

It suffices to show that M/5,z has no 4-fan. Assume to the contrary
that (s1,$2,83,84) is a 4-fan of M/5,z. Then {si,s2,s3,5}, {s1,52,53,2}, or
{s1, s2, 83,5, 2} is a circuit C of M. Assume first that 5 € C. Then, by orthogonal-
ity, {e, 6,8} meets {s1,s2,s3}. But {e, 6,8} avoids {s2,s3}. Hence s; € {e,6,8}.
Now the cocircuit {5, z,t3} meets C. If t3 € {s9, 53}, then t3 is in a triad of M other
than {5, t3, 2} and not containing z. Thus M/z has a 5-cofan; a contradiction. We
deduce that = € {s2,s3}. By orthogonality between the cocircuit {s2, s3,s4} and
the circuit {5, z,y, a}, we obtain a contradiction as {s2, s3,s4} # {x,y, 2z} and « is
not in a triad. We conclude that 5 ¢ C.
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We now know that C = {s1, $2, $3,2}. Then (s1, 9, 3, $4) and (¢1,z,t3,5) are
4-fans of M/z. Since sy # 5, these 4-fans are either disjoint or meet in their
guts elements. In the first case, since N < M/z/5, we obtain a contradiction to
Corollary 5.10. In the second case, the lemma follows by Lemma 4.2. We conclude
that 5.19.12 holds and, therefore, so does Lemma 5.19. O

Lemma 5.19 means that if (IT) or (III) of Lemma 5.18 holds, then we may assume
that z = 4 otherwise Theorem 5.1 certainly holds. Now, by symmetry, we can apply
Lemma 5.18 to M/4 resulting in the analogue of one of options (I), (II), and (III)
holding for that matroid. We begin by eliminating the first of these options.

Lemma 5.20. Assume that M has a circuit {5, z,y, a} for some « in {6,8} where
{z,y,4} is a cocircuit. Then M has no 4-circuit containing {4,5,e}.

Proof. Assume that M has a 4-circuit {4,5,e,h}. Then M/5 has {4,e,h} as a
circuit and has (o, z,y,4) as a 4-fan. Hence M /5 has a 5-fan; a contradiction [J

The next lemma treats the case when option (II) or (III) of Lemma 5.18 holds
for each of M /5 and M /4. Proving this will enable us to assume that option (I) of
Lemma 5.18 holds for each of M/5 and M/4.

Lemma 5.21. Assume that M has a circuit {5,x,y,a} for some o in {6,8} where
{z,y,4} is a cocircuit. Suppose, in addition, that M has a circuit {4,2',y’, 8}
for some B in {2,3} where {a’,y',5} is a cocircuit. Then M/4,5 is internally
4-connected having an N-minor.

Proof. By Lemma 5.20, M has no circuit containing {4,5,e}. Now M/5 is 3-
connected having (o, z,y,4) as a 4-fan. As 4 is not in a triangle of M/5, it follows
that M /5,4 is 3-connected. Next we observe that, as N < M\e/4,5, we certainly
have N < M/4,5.

By orthogonality between the cocircuit {z,y,4} and the circuit {3,4,2',y'},
since [ is not in a triad, we may assume that z = z’.

5.21.1. M/4,5 is sequentially 4-connected.

Suppose M /4,5 has a non-sequential 3-separation (U, V). Then we may assume
that {1,2,3} C U. If e € U, then we can add 4 to U to get a non-sequential
3-separation of M/5; a contradiction. Thus e € V. We may also assume that
{6,7,8} is a subset of U or V. If it is a subset of U, we can move e into U; a
contradiction. Thus {6,7,8} C V. Ase € V, we can add 5 to V to get a non-
sequential 3-separation of M/4; a contradiction. Hence 5.21.1 holds.

5.21.2. M/4,5 has no 4-fan.

Suppose M /4,5 has a 4-fan (t1,t2,t3,t4). Then M has a circuit C' such that
{ti,t2,t3} G C C {t1,t2,t3,4,5}. By symmetry, we may assume that 4 € C. As
{4,2,3,€e} is a cocircuit, it follows by orthogonality with C' that {2,3,e} meets
{t1,t2,t3}. But {to,t3} avoids {2, 3,e}, so t1 € {2,3,e}. As M has {4, z,y} as a co-
circuit, {z,y} meets {t2,t3}. By orthogonality between {to,ts,t4} and {5,z,y,a},
we deduce that {to,3,%4} contains {x,y} and so is {z,y,4}; a contradiction. We
conclude that 5.21.2 holds and Lemma 5.21 follows immediately. (]

We may now assume that option (I) of Lemma 5.18 holds with respect to each
of M/5 and M /4. Hence M contains the structure shown in Figure 15 where all of
the elements shown are distinct.
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Lemma 5.22. M/4,5\e is internally 4-connected having an N-minor.

Proof. We know, by Corollary 5.10, that M/4\e is (4,4, S)-connected having
(7,8,6,5) as a 4-fan and having an N-minor. Thus M/4,5\e is 3-connected.

5.22.1. M/4,5\e is sequentially 4-connected.

Let (U,V) be a non-sequential 3-separation of M/4,5\e. Then we may assume
that {6,7,8} is contained in U, so we can add 5 to U to get a non-sequential
3-separation of M /4\e; a contradiction. We deduce that 5.22.1 holds.

5.22.2. M/4,5\e has no 4-fan.

Let (t1,t2,t3,t4) be a 4-fan of M/4,5\e. Then either {t2,t3,t4} or {t2,t3,%4,€}
is a cocircuit C* of M. Moreover, M has a circuit C' that contains {t1,t2,3}
and is contained in {t1,t2,¢5,4,5}. Suppose first that C* = {t9,¢5,t4}. Then
C # {t1,t2,t3}. By symmetry, we may suppose that C contains {¢1,t2,¢3,5}. Then,
by orthogonality with the cocircuit {5, 6,8, e}, it follows that C' meets {6,8}. Thus
t; € {6,8}. Moreover, by orthogonality with the cocircuit {e, 2, 3,4}, it follows that
4 ¢ C. Thus C = {t1,ta,t3,5} where ¢; € {6,8}. Hence (II) or (III) of Lemma 5.18
holds; a contradiction.

We may now assume that C* = {t3,t3,t4,€}. Then, by orthogonality with
the circuits {e, 3,8} and {e,4,5, 8} and using the fact that {4,5} is disjoint from
{t1,ta,t3,t4}, we deduce that C* contains 8 and meets {3,8}. Then C* contains
{e, 3,3} or {e, 3,8}. Thus M\e has C* — e as a triad avoiding {4,5} and meeting
one of the triangles {1,2,3} or {6,7,8}. Thus M\e has a 5-cofan; a contradiction.
We conclude that 5.22.2 holds, and Lemma 5.22 follows immediately. (]

The lemmas that preceded Lemma 5.22 told us that the theorem holds unless
option (I) of Lemma 5.18 holds with respect to each of M/5 and M/4. But, in
the exceptional case, we are forced to have the structure shown in Figure 15, and
Lemma 5.22 shows that the theorem also holds when that occurs. (]

6. TWO 4-FANS MEETING IN THEIR GUTS ELEMENTS

The purpose of this section is to prove the following result.
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Theorem 6.1. Let M and N be internally 4-connected matroids with |E(M)| > 16
and |E(N)| > 7. Assume that M has a triangle containing an element e such that
M\e is (4,4, S)-connected having an N-minor and having two 4-fans that meet in
their guts elements. Then one of the following holds.

(i) M has a good bowtie; or

(ii) M* has a good bowtie or a pretty good bowtie; or

(ii) M has an internally 4-connected matroid M’ such that 1 < |E(M) —
E(M")| <3 and M’ has an N-minor.

Proof. By the main results of the last two sections, we may assume that, for
each (M, N7) in {(M,N),(M*,N*)}, the matroid M; has no element that is in
a triangle such that the deletion of this element from AM; has an Nj-minor, is
(4,4, S)-connected, and has two 4-fans that are either disjoint or meet in their
coguts elements. Let (1,2,3,4) and (1,5,6,7) be 4-fans of M\e. Then the ele-
ments 1,2,3,4,5,6,7,e are distinct. Using orthogonality and symmetry, we may
assume that the triangle containing e is {e, 2,5} (see Figure 16). First we show the
following.

Lemma 6.2. M\e\1l is internally 4-connected.
Proof. Assume the contrary, letting (U, V') be a (4, 3)-violator of M\e\1.
6.2.1. {2,3} Z U.

Assume {2,3} C U. Then (U U1,V) is a (4,3)-violator of M\e. Thus V is
a 4-fan (y1,y2,93,y4) in M\e. Then {y2,ys,ys, e} is a cocircuit of M. Moreover,
{y2, y3,ya} contains {5, 6} by orthogonality with the triangles {2, 5, e} and {3,6, e}.
Thus the 4-fans {y1,y2,vs3, ¥4} and {1,5,6, 7} in M\e meet in at least two elements
but are distinct; a contradiction to Lemma 2.11. We deduce that 6.2.1 holds.

By symmetry, neither U nor V' contains {2,3} or {5,6}. Without loss of gener-
ality, we may assume that 2 € U and 3 € V.

6.2.2. 6 U andb5€V.

Assume this fails. Then 6 € V and 5 € U. Thus (U Ue, V) and (U,V Ue)
are 3-separations of M\1. By symmetry, we may assume that 4 € U. Then
3 €y (UUe), so (UUeU3UL,V —3) is a 3-separation of M. Thus [V —3| = 3.
Hence V is a 4-fan (v1,v2,v3,3) in M\1 where 6 is in the circuit {vy,vq,v3} of M.
Orthogonality with {5,6,7, e} implies that 7 € {vy,ve,v3}, so M\e has a 5-fan; a
contradiction. Thus 6.2.2 holds.
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We now know that {2,6} C U and {3,5} C V. By symmetry, we may assume
that 4 € U. Then (UU3U1,V —3) is a 3-separation of M\e. But V —3 is not the 4-
fan {1,5,6,7}, so |V —3] = 3. Thus V is a 4-fan (vy,ve, v3,3) in M\e\1. Therefore
{v1, v, v3} is a triangle containing 5 but avoiding {6, e}. Thus the triangle contains
7 and so M \e has a 5-fan. This contradiction completes the proof of Lemma 6.2.

Lemma 6.3. Fither both M\e/4 and M\e/7 are (4,4,5)-connected and N =
MN\e/4/7, or M has an internally 4-connected minor M' that has an N-minor
such that |[E(M) — E(M')| = 2.

Proof. As (1,2,3,4) is a 4-fan of M\e, either N < M\e\l, or N =< M\e/4.
By the last lemma, M\e\1 is internally 4-connected. Thus we may assume that
N A M\e\l otherwise the lemma holds. Then, by Lemma 2.5, M\e/4 is (4,4, 5)-
connected having an N-minor. Since M\e/4 has (1,5,6,7) as a 4-fan and M\e\1
does not have an N-minor, it follows that N < M\e/4/7. Moreover, by symmetry,
since M\e/4 is (4,4, S)-connected, so is M\e/7. O

By the last lemma, in our proof of Theorem 6.1, we may assume from now on
that both M\e/4 and M\e/7 are (4,4, S)-connected and N =< M\e/4/7. We may
also assume that neither M\e/4 nor M\e/7 is internally 4-connected otherwise the
theorem holds.

Lemma 6.4. Either M/4 is 3-connected, or M has a good bowtie.

Proof. As M\e/4 is 3-connected, if M /4 is not, then M has a triangle containing
{e,4}. Thus, by Lemma 2.8, M has a good bowtie. O

The configurations that arise in the next lemma are shown in Figure 17.

Lemma 6.5. If M/4 is not internally 4-connected, then it is (4,4, S)-connected
and either
(i) M has a circuit {4,e,7,x2} and a triad {7,z,y} where {x,y} avoids
{1,2,3,4,5,6,7,¢e}; or
(ii) M has a circuit {4,z,a,b} and a triad {a,b,c} where x € {2,3} and if
{a,b,c} meets {1,2,3,4,5,6,7,¢e}, then 7= c.
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Proof. Let (U, V) be a (4, 3)-violator of M /4. Since {2,3,4, e} is a cocircuit of M,
neither U nor V contains {2,3,e}. By symmetry between the ordered pairs (2,5)
and (3,6), we may assume that either

(I) {2,e} CU and 3 € V;or

(I1) {2,3} CU andee V.

Assume that (I) holds. Suppose that 1 or 6 is in U. Then (UU3U4,V —3)is a
3-separation of M. Thus V is a 4-fan (3, a, b, ¢) of M/4, so {4,3,a,b} is a circuit of
M and {a,b,c} is a triad of M, that is, by the symmetry between 2 and 3, the first
part of (ii) holds. Now suppose that {a,b,c} meets {1,2,3,4,5,6,7,e}. Then, as
M is internally 4-connected, 7 € {a,b,c}. If 7 € {a, b}, then orthogonality with the
cocircuit {5,6,7,e} implies that {a,b} C {5,6,7}, so Apr({1,2,3,4,5,6,7,¢e}) < 2;
a contradiction. This leaves the possibility that 7 = ¢, so the last part of (ii) holds.

We may now assume that {1,6} € V. Then {2,e} C clp/4(U). Thus |U| &
{3,4}. As (U —{2,e},V U{2,e,4}) is a 3-separation of M, it follows that U is
a 5-fan (2,uq,us, uq,e) in M/4. Thus {2,us,us,4} and {4, us,uq, e} are circuits
of M, and {ug,usz,us} is a triad of M. Neither 5 nor 6 is in a triad of M, so
orthogonality between {4, us, uq, e} and {5,6,7, e} implies that 7 € {uz,us}. But
7 # uz otherwise {2, us,us,4} and {e, 5,6, 7} violate orthogonality. Hence uq = 7.
Then {2, us, uz, 4} A {4,u3,7,e} A{2,e,5} = {7,uz,5}. Thus M has a 4-fan; a
contradiction.

We may now assume that (IT) holds. Suppose 5 or 6 is in U. Then (UUeU4, V —e)
is a 3-separation of M, so V is a 4-fan (e, a, b, ¢) in M /4. Then {4, ¢, a,b} is a circuit
of M. By orthogonality with the cocircuit {5, 6,7, e}, we deduce that {a,b} meets
{5,6,7}. Neither 5 nor 6 is in a triad of M, so 7 € {a,b}, as {a,b,c} is a triad.
Then, without loss of generality, 7 = a. Thus (i) holds.

We may now suppose that {5,6} C V. Then {2,3} C clyu(V), so (U —
{2,3},V U{2,3} U4) is a 3-separating partition in M. Hence |U| = 5. As M/4\e
is (4,4, S)-connected, it follows that |V — e| < 4. Thus |E(M)| < 11. This contra-
diction completes the proof of 6.5. O

If M/4 or M/T7 is internally 4-connected, then the theorem holds. Thus we
may assume that neither of these matroids is internally 4-connected. Then, by the
last lemma, both are (4,4, S)-connected. Then either part (i) of the last lemma
holds both when we consider M /4 and M/7, or part (ii) of the lemma holds with
respect to M /4. We begin by considering the first possibility. Then M contains the
structure shown in Figure 18 and all the elements shown there are distinct. Since
N < M/4,7\e, we see that N < M/4,7\z, so N < M\xz/z,y. Because y is in a
triad, M/y is 3-connected.

Lemma 6.6. Suppose that M contains the structure shown in Figure 18 where all
the elements shown are distinct. Then
(i) M/y is internally 4-connected having an N-minor; or
(il) M/y is (4,4, 5)-connected and M* has a good bowtie; or
(iil) M*\y is (4,5,5,4)-connected and M* has a pretty good bowtie; or
(iv) M has an internally 4-connected minor M’ having an N-minor such that
1< [B(M)| - [E(M)| < 2.

Proof. Assume that M /y is not internally 4-connected. First we note that
6.6.1. M/y is sequentially 4-connected.
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Suppose that M/y has a non-sequential 3-separation (U, V). Then we may as-
sume that {2,5,e} C U. If 6 € U, then we may assume that U contains 7,1, 3,4 and
z. Then we add y to U to get a non-sequential 3-separation of M; a contradiction.
Thus 6 ¢ U. Also 7 € V otherwise we can move 6 into U. Similarly, 1 € V. But
now we can move 5, then e, and then 2 into V'; a contradiction. Thus 6.6.1 holds.

It is an easy consequence of orthogonality that

6.6.2. x is in exactly two triads of M, namely {z, z,4} and {z,y,7}.
Next we show the following.
6.6.3. If (t1,t2,13,ta) is a 4-fan in M/y, then {t1,t2,t3} N {4, x, 2} = {z, z}.

Clearly M has {t1,t2,t3,y} as a circuit and {to,t3,t4} as a triad. As {z,y,7} is
a triad of M, exactly one of z and 7 is in {t1,t2,3}.

Assume first that 7 € {t1,¢2,t3}. Suppose t1 = 7. Then {7,t3,t3,y} is a circuit.
Thus, by orthogonality, {to,t3} meets {e,5,6} so M has a 4-fan; a contradiction.
We may now assume that 7 € {to,t3}. Then, by orthogonality with the circuit
{4,2,7,e}, we deduce that 4 € {to,t3,t4}. Suppose 4 € {ta,t3}. Then {t1,4,7,y}
is a circuit. Thus, by orthogonality with the cocircuit {4,x,z}, we deduce that
t1 = z so M has {z,4,7,y} as a quad; a contradiction. Thus t; = 4. Hence we
may assume that M has {7,t3,4} as a cocircuit and {¢;,7,t3,y} as a circuit. By
orthogonality between {t1,7,t5,y} and {7,¢e,5,6}, we deduce that t; € {e,5,6}.
Letting Z = {1,2,3,4,5,6,7,e,x,y,t3}, we see that r(Z) <6 and |Z| — r*(Z) > 4,
s0 AM(Z) < 2. This is a contradiction as |Z| < 11 yet |E(M)| > 16.

We may now assume that 7 ¢ {t1,to,t3}, so @ € {t1,t2,t3}. Orthogonality with
{4, x, 2z} implies that {t1,t2,¢3} also meets {4,z}. Suppose 4 € {t1,t2,t3}. Then
orthogonality with {2, 3, 4, e} implies that {2, 3, e} meets {t1,t2,t3}, s0t1 € {2,3,¢e}
and, without loss of generality, = t5 and 4 = ¢3. Thus t4 = z. In this case, M /4
has (e,7,z,y,t1) as a 5-fan; a contradiction to Lemma 6.5. We conclude that
4 & {t1,t2,t3}, s0 z € {t1,t2,t3} and hence {x,z} C {t1,t2,t3}. Thus 6.6.3 holds.

Because {x, z} is contained in the triangle of every 4-fan in M /y, it follows that

6.6.4. M*\y has no 5-cofans.

We show next that
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6.6.5. M*\y has no 5-fan with an element in the guts.

To see this, suppose that M*\y has a 5-fan (t1, t2,t3, t4,t5) with an element ¢4
in the guts. Then, by 6.6.3, {1‘, Z} - {tg,tg,t4}. Because M*|{t1,t2,t3,t4,t5,t6} =
M(Ky), this restriction contains at least two triangles containing x. As y &
{t1,ta,t3,14,t5,ts}, this contradicts 6.6.2. Thus 6.6.5 holds.

It is slightly more complicated to show that

6.6.6. M*\y has no 5-fan with an element in the coguts.

Assume that M/y has a 5-cofan (o, t1, t2,t3,t4) with an element t5 in the guts.
Then, by 6.6.3, {z, 2z} C {t1,t2,t3}. Hence, by 6.6.2 and symmetry, we may assume
that (to,t1,t2) = (4,2,2). Now {4,z,t4,t5} or {4, z,1t4,t5,y} is a circuit of M.
Suppose the latter holds. Then, by orthogonality with the cocircuit {y,x,7}, we
deduce that 7 € {ty,t5}. If 7 = t4, then the triad {z, ¢35, 7} has only a single element
in common with the circuit {e, 4,7, z}; a contradiction. If 7 = t5, then the cocircuit
{2,3,4, e} implies that t4 € {2,3, e}; a contradiction. We conclude that {4, z, t4,t5}
is a circuit of M. Then, by orthogonality with the cocircuit {2,3,4, e}, we deduce
that {t4,t5} meets {2,3,e}. As t4 is not in a triangle, it follows that t5 € {2,3, e}.
If t5 = e, then, by orthogonality, t4 = 7. Thus {4,z,7,e} is a triangle of M, so
2({1,2,3,4,5,6,7,e,2,z}) < 2; a contradiction. Hence t5 € {2, 3}.

Now consider M /4. By Lemma 6.5, it is (4,4, S)-connected. Moreover, it has
an N-minor and has (e, 7,z,y) and (ts,t4, 2, t3) as disjoint 4-fans. Thus we have a
contradiction that completes the proof of 6.6.5.

On combining 6.6.4, 6.6.5, and 6.6.6, we deduce that

6.6.7. M*\y is (4,5,95,+)-connected.
Next we extend 6.6.3 by showing the following.
6.6.8. If (t1,ta,t3,t4) is a 4-fan in M/y, then {ta,t3} = {x,2} and t4 = 4.

Suppose that ¢; € {x,z}. Then, by 6.6.3 and symmetry, we may assume that
to € {x,z}. Suppose (t1,t2) = (x,z). Then ({z,t5,t4}, {7, 2,y}, {z,y,2,t3}) is a
bowtie in M*, and M*\y is (4,5, 5, +)-connected with an N-minor, while M*\4 is
(4,4, S)-connected with an N-minor. Thus M* has a pretty good bowtie and the
lemma holds. Therefore we may assume that (¢1,t3) = (z,2). Then {z,t3,t4} is
a triad that avoids 4 and 7; a contradiction to 6.6.2. We conclude that {to,t3} =
{z,2z},s0ty =4.

By 6.6.8, M/y has no 5-fan. Thus

6.6.9. M/y is (4,4,5)-connected.

We now know that M contains the configuration shown in Figure 19. To complete
the proof of the lemma, we show the following.

6.6.10. M/4/y is internally 4-connected having an N-minor.

Since M\z has an N-minor, we see that M/4/y has an N-minor. Assume
that 6.6.10 fails. Let (U,V) be a non-sequential 3-separation of M/4/y. Then
we may assume that {7,e,z} C U, so (U Uy,V) is a non-sequential 3-separation
of M/4; a contradiction to Lemma 6.5. Thus we may assume that M/4/y has
a 4-fan (uq,us,us,us). By 6.6.8, it is not a 4-fan of M/y, so {4,u;,us,us} or
{4,y,u1,us,us} is a circuit of M. By orthogonality with {2,3,4, e}, we deduce
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that {2,3,e} meets {uj,us,us}. Thus u; € {2,3,e}. By orthogonality with the
cocircuit {4, z, z}, we see that {u1, ua,us} meets {z, z}. Thus we may assume that
ug € {x,z}. Hence {ug,us,us} is a triad of M that contains z or z but avoids
{4,y}. By 6.6.2, us = z. Hence M/y has {t1,z,z} as a triangle that meets the
triads {4,x, z} and {z,us,us}, so M/y has a 5-cofan. This contradiction to 6.6.9
completes the proof of 6.6.10 and thereby finishes the proof of Lemma 6.6. O

It follows by the last lemma that we may assume that part (i) of Lemma 6.5 does
not hold with respect to either M/4 or M /7. Thus part (ii) holds with respect to
both M/4 and M/7. Since part (ii) holds with respect to M /4, it follows that M
contains the configuration shown in Figure 17(b). Recall that N < M/4/7\e. Sup-
pose first that ¢ # 7. Then M/4/7\e has (2,a,b,c) as a 4-fan, so N =< M/4/7\e\2
or N X M/4/T\e/c. If N = M/4/7\e\2, then N < M\e\2/3, so N < M\e\1l and
the required result holds by Lemma 6.2. We conclude that either

(A) c#7and N X M/4/7\e/c; or

(B) c=T1.

In case (A), Lemma 6.7 will complete the proof of the theorem. Now consider
case (B). Since part (ii) of Lemma 6.5 holds with respect to M /7, we deduce that
M contains a circuit {7,2’,ad/,b'} and a triad {a’,¥’,c¢'} where 2’ € {5,6} and if
{a’, 0/, '} meets {1,2,3,4,5,6,7, e}, then ¢/ = 4. If ¢ # 4, then we reduce to a case
symmetric to case (A). Thus, assuming we can deal with case (A), we may assume
that ¢’ = 4. Then, by orthogonality between {a’,b’,4} and {4, a, b, 2}, it follows by
symmetry that we may assume that ' = a. Then A({1,2,3,4,5,6,7,¢e,a,b,b'}) < 2;
a contradiction. It remains to treat case (A).

Lemma 6.7. Suppose that ¢ # 7 and N < M/4/7\e/c. Then one of the following
holds.

(1) M/c or M/4,c is internally 4-connected having an N-minor; or
(ii) M* has a good bowtie or a pretty good bowtie.

Proof. We begin by showing the following.
6.7.1. M/c is sequentially 4-connected.
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Let (U,V) be a non-sequential 3-separation of M/c. Then we may assume that
a € U and b € V. In addition, we may assume that {2,e,5} is in U. Suppose U
meets {6,3,1}. Then we may assume that it contains all of this set. Hence we may
assume that, in addition, it contains 4. Thus we can move b into U and then add
¢ to it; a contradiction. We may now assume that {6,3,1} C V. Then V spans
{2, e,5} so all of these elements can be added to V. We now obtain a contradiction
as before. Thus 6.7.1 holds.

6.7.2. M/c has no 5-fan.

Suppose that M /c has a 5-fan (t1, to, ts,t4,t5). Then, by the dual of Lemma 2.12,
ts € {a,b}, so we may assume that t3 = a. Then the triad {to,t3,t4} meets the
circuit {4,2,a,b}. We know that 2 is not in a triad, and b & {to,t3,t4} since
{ta,t3,ta} # {a,b,c}. Thus 4 € {ta,t4}, so we may assume that 4 = t5. Then
{t1,4,a,c} is a circuit. Thus M/4 has (t1, ¢, a,b,2) as a 5-fan; a contradiction since
M/4 is (4,4, 5)-connected. We deduce that 6.7.2 holds.

6.7.3. If (t1,ta,t3,t4,t5) is a 5-cofan in M/c, then |{a,b} N {t1,ta,ts,t4,t5}] =
‘{CLJ)} n {t27t4}| =1.

First we note that |{a,b} N {t1,t2,3,t4,t5}| < 1 otherwise {¢1,t2,t3,t4,t5,c} is
3-separating in M. Clearly {t2,t3,t4,c} is a circuit of M. Thus {ta,t3,t4} meets
{a,b}. By symmetry, we may assume that a € {to,t3}. If a = t3, then {t1,ts,a}
and {a, t4, t5} are cocircuits of M. Thus, by orthogonality, both {t1,t2} and {t4, t5}
meet {b,2,4}. But 2,b & {t1,t2,t4,t5}. Thus 4 € {t1,t2} N{t4,15}; a contradiction.
We conclude that a # t3. Thus 6.7.3 holds.

6.7.4. If (t1,a,ts3,ts,t5) is a 5-cofan in M/c, then t; = 4.

Evidently {t1,a,t3} and {4,2,3,e} are cocircuits of M while {c,a,ts,t4} and
{4,a,b,2} are circuits. Thus, by orthogonality, 4 € {t1,t3}. But if t3 = 4, then
ty € {2,3,e}; a contradiction. Hence 6.7.4 holds.

6.7.5. M/c has no 5-cofan with an element in the coguts.

Assume that M /c has a 5-cofan ({1, to, t3,t4,15) with an element ¢4 in the coguts.
Then M has {t1,t2,t3}, {t3,ta,t5}, and {t1,15,t6} as triads. By the last two asser-
tions, we may assume that to = a and t; = 4. Then {4,ts5,%s} is a cocircuit. As
{4,a,b,2} is a circuit, by orthogonality, b or 2 is in {t5,ts} But 2 is not in a triad,
so b € {t5,tg}. Hence c € cl*({t1,ta,...,t6}); a contradiction. Thus 6.7.5 holds.

6.7.6. M/c has no 5-cofan with an element in the guts.

Assume that M/c has a 5-cofan (¢1,t9,ts, t4,t5) with an element ¢g in the guts.
Then, by 6.7.3 and 6.7.4, we may assume that t; = 4 and ¢t = a. Now {t1,t3,t5,%}
is a circuit of M/c, so {t1,ts,t5,t6} or {ti1,ts,t5,t6,c} is a circuit of M. But
b ¢ {t1,ta,...,tg}. Thus, by orthogonality, {t1,ts,ts5,ts} is a circuit of M, that is,
{4,13,t5,t6} is a circuit of M. Hence, by orthogonality, {2, 3, e} meets {t3,t5,ts}.
But {2,3, e} avoids {t3,t5}. Therefore tg € {2,3,e}.

Suppose tg = 2. Then {4,t3,t5,2} and {4, a,b,2} are circuits of M. Thus M /4
has (2, t3,t5,t4) and (2, a, b, ¢) as 4-fans. Hence M*\4 has (t4, t5, t3,2) and (¢, b, a, 2)
as 4-fans meeting in their coguts elements; a contradiction.

Next suppose that tg € {3,e}. Then {4,ts,t5,ts} is a circuit of M so M*\4 has
(ta,t5,t3,t6) and (¢, b, a,2) as distinct 4-fans. Moreover, as tg # 2 and t4 # ¢, these
4-fans are disjoint; a contradiction. We conclude that 6.7.6 holds.
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By combining 6.7.1, 6.7.2, 6.7.5, and 6.7.6, we deduce that M*\c is (4,5, S, +)-
connected. If M*\c is internally 4-connected, then the theorem holds. Suppose
next that M*\c is not (4,4, S)-connected. Then M*\c has a 5-fan (t1, ta, t3,ta,15)
and, by 6.7.3 and 6.7.4, we may assume that this 5-fan is (4, a,ts,t4,t5). Then
({b,a,c}, {ts,ta,t5},{a,c,ts,t4}) is a pretty good bowtie in M* because M*\c is
(4,5, 5, +)-connected having an N*-minor and {a,4,t3} is a triangle of M* and
M*\4 is (4,4, S)-connected having an N*-minor. We may now assume that M*\c
is (4,4, S)-connected having a 4-fan (s1, s2, 83, 54). Then {s2, s3, 84, ¢} is a cocircuit
of M* so, by orthogonality, we may assume that a € {s3,s4}. If a = s4, then
({s1, 52,83}, {a,c,b}, {s2, s3,a,c}) is a good bowtie in M*. Thus, we may assume
that a = s3. The cocircuit {a,b,2,4} of M* implies that 4 € {s1,s2}. If 4 = so,
then M* has {4,a,c, s4} as a cocircuit, so M*\4 has (2,b,a,c, s4) as a 5-cofan; a
contradiction. We deduce that 4 = s;. We conclude that

6.7.7. M contains the structure shown in Figure 20 and every 4-fan of M/c has 4
as its coguts element.

Next we establish the following.
6.7.8. M/4,c is sequentially 4-connected having an N-minor.

Since M/4 is (4,4, S)-connected having (2,a,b,c) as a 4-fan, M/4/c is 3-
connected. Now recall from 6.7.1 that M/c is sequentially 4-connected. Sup-
pose (U, V) is a non-sequential 3-separation of M/4,c. Then we may assume that
{a,s2,54} C U. Then we can add 4 to U to get a non-sequential 3-separation of
M /c; a contradiction.

6.7.9. Every 4-fan of M/4 has c as its coguts element.

To see this, recall that M/4 has (2, a,b,c) as a 4-fan. If M/4 has another 4-fan,
then, by assumption, it is not disjoint from (2, a, b, ¢) and it does not have the same
guts element. Thus it has the same coguts element.

To complete the proof of Lemma 6.7, we now show that

6.7.10. M/4/c is internally 4-connected.

Assume the contrary. Then M/4/c has a 4-fan (p1,p2,p3,ps4). Then
{p1,p2,p3,4}, {P1,D2,Dp3,¢}, or {p1,p2,ps,4,c} is a circuit C of M. In the first
two cases, (p1,p2,P3,p4) is a 4-fan in M/4 or M/ec, respectively. But the only
4-fans of M/4 and M/c have ¢ and 4, respectively, as their coguts elements.
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Since {p1,p2,p3,ps} avoids {4,c}, this gives a contradiction. We conclude that
{p1,p2,p3,4,¢} is a circuit of M. We also know that {p2,ps,ps} is a triad of M.
Since {4,2,3,e} is a cocircuit of M, we deduce by orthogonality that {p1,p2,p3}
meets {2, 3, e}. But M has no 4-fan, so {2, 3, e} avoids {p2, p3}. Hencep; € {2,3,¢}.
As {a,b, c} is a triad, {a,b} meets {p1, 2, ps} and therefore meets {p2,p3}. Since
{a,b,2,4} is a circuit meeting {p2, p3, p4}, it must contain at least two elements of
this triad. But 2 & {p2,ps,ps} and 4 & {p2,p3,ps}. Hence {a,b} C {p2,ps,ps}-
But {a,b,c} is a triad so ¢ € {p2,ps3,ps}; a contradiction. We conclude that 6.7.8
holds. This completes the proof of the lemma. O

The theorem follows immediately by combining the various lemmas. O

7. THE DELETION CASE WITH JUST ONE 4-FAN

In view of the results established in the last three sections, throughout the rest
of the proof of Theorem 3.1, we may assume that the following condition holds.

Hypothesis F. Whenever a triangle of M contains an element t such that M\t is
(4,4, S)-connected having an N-minor, M\t has at most one 4-fan; and, whenever
a triad of M contains an element t such that M/t is (4,4, S)-connected having an
N-minor, M/t has at most one 4-fan.

We maintain our assumption that (1,2,3,4) is a 4-fan in M\e. In this section,
we assume that N < M\e, 1.

Lemma 7.1. Let M and N be internally 4-connected matroids with |E(M)| > 15
and |[E(N)| > 7. Assume that M has a triangle {e, f, g} such that M\e is (4,4, 5)-
connected having (1,2,3,4) as a 4-fan. Suppose that M\e,1 has an N-minor and
that Hypothesis F holds. Then one of the following holds.

(i) M has a good bowtie or a pretty good bowtie;
(ii) M has an internally 4-connected minor M’ such that 1 < |E(M)—E(M")| <
2 and M’ has an N-minor;
(iif) M\1 and M\1,e are (4,4, 5)-connected but not internally 4-connected. Fur-
thermore, when 3 = f, the matroid M has as a substructure one of the
configurations shown in Figure 21 and
(a) in part (a) of the figure, M also has a triangle {vi,v2,v3} and a co-
circuit {vg,v3,3,1,¢e}, and the elements 1,2,3,4,q4,9,€,v1,v2,03 are
distinct; and

(b) in part (b) of the figure, M also has a triangle {u1,g,us} and a co-
circuit {2,g,us, 1,e} and the elements 1,2,3,4,q2,9,€,u1,us,qs are
distinct.

Proof. Assume that the lemma fails. Then, by Lemma 2.8, M has no triangle
containing 4. Thus {2,3} meets {f,¢g}. By symmetry, we may assume that f = 3.
By Lemma 2.10,

7.1.1. {1,2,3} and {3,e,g} are the only triangles of M containing 3.

Now M\1 is 3-connected since 1 is in a triangle of M. If M\1 is internally 4-
connected, then (ii) holds. If M\1 is (4,5, S, 4)-connected having a 5-fan, then, by
Lemma 2.9, (i) holds. The rest of the proof will treat the two cases when M\1 is
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(4,4, S)-connected but not internally 4-connected and when M\1 is not (4,5, S, +)-
connected. We begin by showing that the second of these cases does not occur.
Thus assume that M\1 is not (4,5, .5, +)-connected.

7.1.2. Let (U, V) be a (4,5, S, +)-violator of M\1.
(i) If2€U, then3 € V.
(ii) If {2,e} C U, then {3,4} V.

Part (i) is immediate. Now suppose that {2,e} C U and {3,4} C V. If g € V,
then e € cl(V) and 2 € cl*pp\1(VUe). Thus (U—e—2,VUeU2U1) is a 3-separating
partition of M. Thus U is a 4-fan or a 5-fan in M\1; a contradiction. We may now
suppose that g € U. Then 3 € cl(U), so (UU3U1,V — 3) is a 3-separation of M.
Thus V is a 4-fan in M\1; a contradiction. Hence 7.1.2 holds.

7.1.8. Let (U, V) be a (4,5,5,4)-violator of M\1. Then |UN{2,3,4,e}| = 2.

By symmetry and 7.1.2(i), we may assume that |[U N {2,3,4,e}| € {2,3}. If
[UN{2,3,4,e}| = 3, then (UU{2,3,4,e} UL,V —{2,3,4,e}) is a 3-separation of
M. Thus V is a 4-fan in M\1; a contradiction. Hence 7.1.3 holds.

Next we show the following.

7.1.4. M\1 has a (4,5, 5, +)-violator (U, V) with {2,4} CU and {3,e,g9} C V.

On combining 7.1.2 and 7.1.3, we get that M\1 has a (4,5, S, +)-violator (U, V)
with {2,4} C U and {3,e} € V. Thus 7.1.4 holds unless ¢ € U. Consider the
exceptional case. Then (U,V —e) is a 3-separation of M\1,e. Thus (UU3U1U
e,V —e — 3) is 3-separating in M so |V| € {4,5}. But (U —g,V Uyg) is also a 3-
separation of M\1 and |U —g| > 6 while either |V'Ug| > 6 or V Ug is non-sequential.
Hence (U — g,V Uyg) is a (4,5, S, +)-violator of M\1. Thus 7.1.3 holds.

7.1.5. Let (U, V) be a (4,5,5,+)-violator of M\1 in which {2,4} C U and
{3,e,9} CV. ThenV —g is a quad in M\1 having g in its guts, so V is the union of
two triangles {3,e,g} and, say, {z1, 22, 9}. Moreover, {21,223} N{1,2,3,4,e,g9} = 0.

Evidently (UU3U1,V —e—3) is a 3-separating partition of M\e. Since V—e—3
is not the unique 4-fan of M\e, we deduce that |V —e — 3| < 3. Hence |V| =4
or |V| = 5. In the first case, V must be a quad in M\1 but this cannot be as V'
contains the triangle {3,e,g}. Thus |V| =5 and V — e is 3-separating in M\1,e.
Since (1,2,3,4) is a 4-fan of the (4,4, S)-connected matroid M\e, it follows that



A SPLITTER THEOREM FOR INTERNALLY 4-CONNECTED BINARY MATROIDS IV 47

M\e\1 is 3-connected. Thus V —e is a 4-fan or a quad of M\1,e. Since e € cl(V —e),
in the latter case, e is in a triangle with the two elements of V —e —3 — ¢g. By
orthogonality, 2 or 4 is one of these elements; a contradiction as {2,4} C U. Thus
V —eis a 4-fan (23, 22, 21, 20) of M\1,e. Moreover, since the only triangles of M
containing 3 are {3, e, g} and {3,2,1}, we deduce that 3 = z5. Now g € {21, 22, 23}
If g € {22,21}, then V is a 5-fan in M\1; a contradiction. Thus g = z3 and V — g
is a quad in M\1 having ¢ in its guts. We conclude that 7.1.5 holds.

7.1.6. When M\1 is not (4,5, 5, +)-connected, either M has a good bowtie, or M
has an internally 4-connected minor M’ that has an N-minor such that |E(M) —
EM)| =1.

By 7.1.5, M\1 has a quad {e, 3, 21, 22 }. Then M\1\e = M\1\3. Hence M\3 has
an N-minor. Since 3 is in no triad of M, we know that M\3 is 3-connected. If M\3
is internally 4-connected, then 7.1.6 holds with M’ = M\3. Thus we may assume
that M\3 has a (4, 3)-violator (X,Y’). Then |X N {1,2}| = 1. Suppose (X,Y)
is non-sequential. Without loss of generality, we may assume that the cocircuit
{2,4, e} is contained in X. Then {1,g} CY. If {21,22} C X, then (X U3,Y) is a
(4, 3)-violator of M; a contradiction. Thus 2 or 25 is in Y, so they are both in the
closure of Y and we may assume that {21,202} C Y. The cocircuit {1,e, 21,22} in
M\3 means that we can move e into V" and then add 3 to V' to get a non-sequential
3-separation of M; a contradiction. We conclude that (X,Y") is sequential.

We now know that M\3 has a 4-fan («a, 3,7, 9). Then {3, 8,7, 8} is a cocircuit in
M. Hence, by orthogonality, {e, g} meets {8, v,d}. If g € {5,, 0}, then orthogonal-
ity implies that {3,3,7,0} C {1,2,3,e, 9,21, 22}. Hence A({1,2,3,4,e,9,21,22}) <
2; a contradiction. Thus g & {8,v,d}, so e € {8,7,d}. Suppose that e € {3,~}.
Then orthogonality with {2, 3,4, e} implies, since 4 is in no triangle by Lemma 2.8,
that 2 € {«, 8,7}. Now orthogonality with the cocircuit {1, 3, e, 21, 22} implies that
{a, 8,7} € {1,2,e,21,22}. Then \({1,2,3,4,e,9,21,22}) < 2; a contradiction. We
conclude that e = ¢. Thus ({a, 8,7}, {3,e,9},{5,7,3,¢e}) is a bowtie and M\e is
(4,4, S)-connected. Hence M contains a good bowtie and 7.1.6 holds.

We may now assume that M\1 is (4,4, S)-connected but not internally 4-
connected. Then M\1 has a unique 4-fan (q1, 2, g3, q4). Thus M has {q2, g3, 94,1}
as a cocircuit and, by Lemma 2.8, ¢4 is in no triangles of M. As M\1,e is 3-
connected, it has no 2-cocircuits so e € {g2,¢3,q4}. By Lemma 2.10 and symmetry,
we may assume that either g3 = 3 or q3 = 2. Moreover, 3 is in exactly two tri-
angles of M. Thus, if g3 = 3, then {q1,92} = {e,g} and, as M\e has a unique
4-fan, (q1,492) = (e, g). Similarly, if g3 = 2, then, by orthogonality, {gs, g2, ¢1 } must
contain e, so q; = e.

7.1.7. Let (U, V) be a (4,3)-violator of M\1,e with 3 in V. Then {2,9} CU.

To see this, suppose first that 2 € V. Then (U, V' U1) is a (4, 3)-violator of M\e
in which U is not the unique 4-fan and so is not a 4-element 3-separating set; a
contradiction. Thus 2 € U.

Now suppose that g € V. Then (U, V Ue) is a (4, 3)-violator of M\1. Thus U is a
4-fan of M\1 containing 2. But 2 is in at most two triangles of M, namely {1, 2, 3}
and possibly one containing {2, e}. As neither of these triangles is contained in U,
we deduce that 2 is the coguts element of the 4-fan U. Because 2 is in a triangle of
M, we have a contradiction to Lemma 2.8. We conclude that 7.1.7 holds.
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7.1.8. The matroid M\1,e is (4,4, S)-connected. Moreover, (iii)(a) or (#i)(b) of
the lemma holds.

Let (U, V) be a (4, 3)-violator of M\1,e. By 7.1.7, we may assume that {2,g} C
Uand3eV.

Suppose first that 4 € V. Clearly (U — 2,V U2U1) is a 3-separation of M\e in
which U—2 is not its unique 4-element 3-separating set, {1, 2, 3,4}. Thus |U—2| = 3.
Hence U is a 4-fan (uy, ug, us,2) of M\1, e where g € {u1,ug,us}. Now {us,us,2,1}
is a cocircuit of M\e by orthogonality. If uy = g, then {us,us, 1,2} is a cocircuit of
M so M has a good bowtie; a contradiction. Hence we may assume, by symmetry,
that us = g. Moreover, {g,us, 1,2, e} is a cocircuit of M.

Suppose g3 = 3. Then (q1,¢2) = (e,g). Moreover, {uy,us,us} contains {g,qs4}
as it must contain a second element of the cocircuit {1,3,¢,q4}. Thus M\1 has a
5-fan; a contradiction. We deduce that g3 = 2. Then M contains the structure in
Figure 21(b) and has {u1,g,us} as a circuit and {g,us, 1,2, e} as a cocircuit.

We now show that 1,2, 3,4, g2, g, e, u1, us, qq are distinct. To see this, first observe
that, as ({u1,us,2,9},V) is a partition of E(M\1,e) with {3,4} contained in V,
the elements 1,2,3,4,g,e,uy,us are distinct. Possibly ¢ or ¢4 is one of these
elements. But, as (e, g2, 2,q4) is a 4-fan of M\1, the elements 1,2, 3, e, g, g2, g4 are
distinct. It remains to consider whether {go, ¢4} meets {4, u1,uz}. By Lemma 2.8,
neither 4 nor g4 is in a triangle. This leaves only the possibilities that 4 = ¢4 or
g2 € {u1,us}. In the first case, as M has {1, ¢2,2,q4} and {2,3,4, e} as cocircuits,
their symmetric difference, {1,q2,3,€e} is a cocircuit. Since it is also a circuit,
we have a contradiction. Thus 4 # q4. If g2 € {uy,us}, then, as {q,g,1} is
a triangle, it must equal {u1,g,us}. Thus 1 € {uy,us}; a contradiction. Thus
1,2,3,4,q2,9,e,u1,us, q4 are indeed distinct. Hence (iii)(b) of the lemma holds.

We may now assume that 4 € U. Then (U U3U1Ue,V — 3) is a 3-separation
of M. Hence |V| =450V is a 4-fan (v1,v2,vs,3) of M\1,e. It follows that M\1,e
is (4,4, 5)-connected. As g4 is not in a triangle, it is not in V' so the elements
1,2,3,4,q4, g, e,v1,v2,v3 are distinct provided g4 # 4. Moreover, by orthogonality,
{v2,v3,3,1,€e} is a cocircuit of M. Now, g4 # 4 otherwise A\({1,2,3,4,¢e,g9}) < 2; a
contradiction. Thus (iii)(a) of the lemma holds. We conclude that 7.1.8 holds and
this completes the proof of the lemma. O

Lemma 7.2. If, in Lemma 7.1, part (iii)(a) holds, then either M has an internally
4-connected matroid M' such that 1 < |[E(M) — E(M')] < 2 and M’ has an N-
minor, or M has a good bowtie.

Proof. Assume that part (iii)(a) of Lemma 7.1 holds but that the lemma is false.
Then, in addition to the structure shown in Figure 21(a), we know that M has
{v1,v2,v3} as a triangle and has {vs,v3,3,1,e} as a cocircuit. We shall apply [1,
Lemma 8.1]. We note first that (i) of that lemma does not hold, otherwise M has a
triangle containing 4, a contradiction to Lemma 2.8. The same lemma also implies
that M has no triangle containing g4 since (e, g,3,q4) is a 4-fan of M\1.

Now M\1,e has an N-minor and has (v1,v2,v3,3) as a 4-fan. Thus either
M\1,e/3, or M\1,e,v; has an N-minor.

7.2.1. M\1,e,v; has no N-minor.

Assume the contrary. We may also assume that M\v; is not (4, 3)-connected,
otherwise the lemma holds. We show next that
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7.2.2. M\v; is sequentially 4-connected.

Since {v1,v2,v3} is a triangle, M\v; is 3-connected. Suppose M\v; has a non-
sequential 3-separation (U,V). Then we may assume that {1,2,3} C U. Since
|U N {va,v3}| = 1, we may also suppose that v € U and v3 € V. Now e € V
otherwise we can move vz into U and then add v; to U to get a non-sequential
3-separation of M, which cannot exist. Similarly, the triangle {e, g, 3} implies that
g € V or we can move e into U. The cocircuit {1, 3, g, g4} now implies that ¢4 € V'
otherwise we can move g into U, contrary to what we already know. Therefore we
have {v9,1,2,3} C U and {vs,e,g,94} C V. Thus we can move 3, then 1, and then
v9 into V; a contradiction. We conclude that 7.2.2 holds.

Next we establish a useful property of 4-fans in M\v;.

7.2.3. In every 4-fan of M\v1, the cogutls element is in {vo,v3} but no internal
element is in this set.

Let (o, f,7,0) be a 4-fan in M\v;. Then {v1,8,7,6} is a cocircuit of M, so
{v2,v3} meets {B,v,d}. Suppose vy or vs is an internal element in (o, 3,7,9).
Without loss of generality, we may suppose that v = 7. Orthogonality with the
cocircuit {1,3, e, ve, v3} implies that {«, 8} meets {1,3,e}.

The next step in the proof of 7.2.3 is to show the following.

7.2.4. Both {1,g,v2} and {2,e,v2} are triangles of M.

First observe that, since {1,2, e, g} is a circuit of M, it suffices to prove that at
least one of {1,g,v2} and {2,e,v9} is a triangle. By Lemma 2.8, 3 € {«, 5,7} and
if e € {a, 8,7}, then {a, 8,7} = {2,e,v2} and 7.2.4 holds. Finally, if 1 € {a, 8,7},
then, by orthogonality with {1, 3, g, g4}, it follows, since ¢4 is not in a triangle, that
{a, 8,7} = {1, g,v2}. We conclude that 7.2.4 holds.

By orthogonality between the cocircuit {3, 9,v1,v2} and the triangles {1, g, vo}
and {2, e,va}, we deduce that {3,0} meets {1, ¢} and {2, e}. Orthogonality implies
that {8, d,v1,v2} is {1,2,v1,v2} or {e, g,v1,v2}, and, as M\e and M\1 are (4,4, 5)-
connected, M contains a good bowtie; a contradiction. We conclude that every

4-fan of M\wv; has vy or vz as its coguts element, but not as an internal element,
that is, 7.2.3 holds.

7.2.5. M\vy is (4,4, 5)-connected.

This holds by 7.2.3 unless M\v; has a 5-cofan (vs, o, 3,7, v3) In the exceptional
case, {v1,v2,v3,a, 8,7} is a (4, 3)-violator of M; a contradiction.

As we have assumed that M\v; is not internally 4-connected, we know that
M\v; has a 4-fan. By 7.2.3, this 4-fan has vy or vs as its coguts element. Thus M
has a good bowtie; a contradiction. We conclude that 7.2.1 holds.

Next we establish the following.

7.2.6. N < M\1,e/3, so N X M\2,e/4 and N < M\2,¢9/3.

The fact that N < M\1,e/3 is an immediate consequence of 7.2.1. Now observe
that M\1,e/3 = M/3\2,e = M\2,e/4. Since M/3\2,e = M\2,g/3, 7.2.6 holds.
Next we show that

7.2.7. M/4 is not internally 4-connected.

Suppose M /4 is internally 4-connected. By 7.2.6, N < M/4, so we obtain the
contradiction that the lemma holds. Thus 7.2.7 holds.
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We are interested in applying [1, Lemma 8.1] with the element labelled 4 here
playing the role of the element labelled 6 in the original lemma. We now know that
neither (i) nor (ii) of that lemma holds. The rest of the proof of Lemma 7.2 will
involve showing that none of [1, Lemma 8.1] holds.

First suppose that (iv) of that lemma holds. Then M has a circuit {3, 4, g4, y2}
and a triad {q4,y1,y2} where {y1,y2} avoids {1,2,3,4,e,9,q4}. As {vo,v3,3,1,€}
is a cocircuit of M, by orthogonality, {q4,4,y2} meets {ve,vs,1,e}. Thus yy €
{ve,v3}, so M has a 4-fan; a contradiction.

Next suppose that Lemma 8.1(v) of [1] holds. Then M has a circuit {e, 4, 2, x3}
and a triad {z1, 22,23} where {z1, 29,23} avoids {1,2,3,4,¢e,g,q4} except that,
possibly, 1 = qs. Now {vs2,v3,3,1,e} is a cocircuit of M, so {ve,vs, 3,1} meets
{4,x2,25}. But {2,253} avoids {3,1} and {va,vs,3,1} avoids 4. Thus {vs,v3}
meets {x2, 23}, so M has a 4-fan; a contradiction. Hence Lemma 8.1(v) of [1] does
not hold.

We deduce now that Lemma 8.1(iii) of [1] holds. By symmetry, Lemma 8.1(iii)
of [1] also holds when we interchange the roles of 4 and ¢4. It follows that M has
a 4-circuit {2,4,y2,ys} and a triad {y1,y2,ys} where 1,2,3,4, e, g, q4, 91, Y2, y3 are
distinct except that possibly y; = ¢4. In addition, M has a 4-circuit {g, 4, 22,23}
and a triad {z1, 22, 23} where 1,2,3,4, ¢, g, qu, 21, 22, 23 are distinct except that pos-
sibly z; = 4. Combining all this, we see that M contains the structure shown in
Figure 22.

Next we show the following.

7.2.8. If h € {y2,y3} N {22, 23}, then M has no 4-cocircuit that contains {2,g,h}
and meets {1,3}.

Without loss of generality, let h = yo = 2z5. Suppose that M has a cocir-
cuit C* that contains {2, g, h} and meets {1,3}. Then orthogonality implies that

{y17y3} meets {gaQ47Z3}' If Ys € {qu4a23}v then 4 € Cl({].,2,3,6,9,(]4,22723}),
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so M({1,2,3,4,¢e,9,q4, 22,23}) < 2; a contradiction. Thus y; € {g,q4,23}. Then
A{1,2,3,4,¢,9,q4,Y1, 22, 23}) < 2; a contradiction. We conclude that 7.2.8 holds.

Next observe that, by 7.2.6, N < M/3\2,g, so N < M\2,g. We shall complete
the proof of the lemma by showing that M\2, g is internally 4-connected. First we
observe that

7.2.9. M\2,g is 3-connected.

To see this, note that M\2 is 3-connected as 2 is in a triangle of M. Now g
is in the guts of a 4-fan in M\2. Thus we may assume that g is in a triad of
M\2 otherwise 7.2.9 holds. Hence M has a 4-cocircuit D* containing {2,g}. By
orthogonality, D* must meet {1,3},{4,92,y3}, and {q4, 22, 23}. Thus there is an
element h in {y2,y3} N {22, 23} such that D* contains {2, ¢, h} and meets {1,3}.
This contradiction to 7.2.8 implies that 7.2.9 holds.

7.2.10. M\2,g is sequentially 4-connected.

Suppose (U, V) is a non-sequential 3-separation of M\2,g. We may assume that
{1,3,q4} CU. If e or 4is in U, then (UU2Ug,V) is a (4,3)-violator of M;
a contradiction. Thus {e,4} C V. Now {y1,y2,y3} € U otherwise 4 € cl(U)
and we can move 4 into U to get a contradiction. Thus we may assume that
{y1,y2,y3} C V. Then, in M\2,g, we see that 3 is in the coclosure of V, so
(U-3,VU3U2Uyg) is a (4, 3)-violator of M; a contradiction. Thus 7.2.10 holds.

We may now assume that M\2, g has a 4-fan («, 3,7, d) otherwise the lemma
holds. Then M has a cocircuit C* such that {8,v,6} & C* C {2,g,8,7,6}. If
2 € C*, then orthogonality implies that {1,3} and {4,y2,y3} meet C*. Now no
element in {4,y2,y3} is in a triangle of M, so 6 € {4,y2,y3} and, without loss of
generality, v € {1,3}. Orthogonality between {«, 8,7} and {1, 3, g4} implies that 4
or q4 is in a triangle of M a contradiction to Lemma 2.8. We deduce that 2 ¢ C*.
Since a symmetric argument establishes that g ¢ C*, we obtain the contradiction
that C* = {3,v,0}. We conclude that Lemma 7.2 holds. O

Lemma 7.3. If, in Lemma 7.1, part (iii)(b) holds, then either M has an internally
4-connected matroid M’ such that 1 < |[E(M) — E(M')| < 2 and M’ has an N-
minor, or M has a good bowtie.

Proof. Assume that part (iii)(b) of Lemma 7.1 holds but that the lemma is false.
Then, in addition to the structure shown in Figure 21(b), we know that M has
{u1,g,us} as a triangle and has {2, g, us, 1, e} as a cocircuit.

7.3.1. None of 1,2,3,4,¢e,q2, or q4 is in any triangles apart from those shown in
Figure 21(b).

To see this, first we observe that, by Lemma 2.8, M has no triangle containing
4 and no triangle containing ¢4. The cocircuits {1, 4,2, g2} and {2,3,4,e} along
with the existing triangles now guarantee that none of 1,2, 3, e, or ¢» is any triangles
apart from those shown in the figure. Thus 7.3.1 holds.

Since M\1,e has (u1,g,us,2) as a 4-fan, either M\1,e/2 or M\1,e,u; has an
N-minor. First we show that

7.3.2. M\1,e,u; has no N-minor.
Assume the contrary. Then M\u; is not internally 4-connected.

7.3.3. M\uy is sequentially 4-connected.
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Since w; is in a triangle, M\u; is 3-connected. Let (U, V) be a non-sequential
3-separation of M\u;. Then we may assume that {1,g,¢q2} C U. It follows that
ug € V. Suppose that 2 € U. Then we may assume that e € U. It follows that we
can move ug into U; a contradiction. We may now assume that 2 € V. Then both
e and 3 are in V otherwise we can move 2 into U. Now V spans {1, g, g2} so all
these elements can be moved into V' to obtain a contradiction. Hence 7.3.3 holds.

Next we establish a useful property of 4-fans in M\u;.

7.3.4. In every 4-fan of M\uy, the coguts element is in {g,us} but no internal
element is in this set.

Let (o, 8,7,0) be a 4-fan in M\uy. Then {u,,v,0} is a cocircuit in M and
orthogonality with {g,u1,us} implies that {8,v,0} meets {g,us}. Suppose that
g or ug is an internal element of the fan; without loss of generality, let it be ~.
Then {a, 3,7} meets {1,2,e,g,us}. Thus {«, 3,7} meets {1,2,e}, and 7.3.1 im-
plies that {«, 5,7} is {1,9,¢2} or {3,e,¢g}. Hence v = g and orthogonality with the
triangles {1, g,q2} or {3, e, ¢} implies that {/3,0} meets {3,e} and {1, ¢2}. Orthog-
onality with {1,2, 3} implies that {uy,8,7,0} is {1,3,g,u1} or {e, g,g2,u1}. Then
({17 2, 3}7 {g» Uy, 7_1,3}, {17 3,9, ul}) or ({2’ €, q2}7 {ga U1, ’LL3}, {6, 42,9, ul}) is a good
bowtie, since M\1 and M\e are (4,4,5)-connected. This contradiction implies
that {g,us} avoids {7,0}. Thus ¢ € {g,us} and 7.3.4 holds.

Now M\u; does not have a 5-cofan of the form (g, a, 8, v, us) otherwise we obtain
the contradiction that {g, u1, us, o, 8,7} is a (4, 3)-violator of M. We conclude that
M\uy is (4,4, S)-connected. As it is not internally 4-connected, it has a 4-fan whose
coguts element is in {g,u3}. Then Lemma 2.8 implies that M has a good bowtie.
This contradiction completes the proof of 7.3.2.

As 7.3.2 holds, it follows that M\1,e/2 has an N-minor. Thus N < M/2\3, g2,
so N < M\3\gz2. To complete the proof of Lemma 7.3, we shall prove the following.

7.3.5. M\3\q2 is internally 4-connected.

As 3 is in no triad in M, it follows that M\3 is 3-connected. Now M\3 has ¢o
in the guts of a 4-fan, so either M\3\gz is 3-connected, or ¢ is in a triad of M\3.
The latter implies, by orthogonality, that ¢o is in a triad of M\3 meeting {1, g} and
{2,e}, so Am({1,2,3,e,9,¢2}) < 2; a contradiction. We conclude that M\3\qz is
3-connected.

Suppose that (U, V) is a non-sequential 3-separation of M\3\g2. Without loss
of generality, {2,4,e} C U. As U does not span {3, g2}, we must have {1,¢9} C V.
Moreover, g4 € V otherwise we can move 1 into V. Then (U — 2,V U2U3U ) is
a (4,3)-violator of M; a contradiction. Thus M\3\qg2 is sequentially 4-connected.

Let (o, f8,7,0) be a 4-fan in M\3\g2. Then M has a cocircuit C* such that
{B,7,6} CC* C{3,¢2,8,7,6}. Since M has no 4-fan, we know that C* contains
3 or g2. As the next step towards proving 7.3.5, we show that

7.3.6. g€ {B,7} and § € {1,2,¢e}. Moreover, {1,2,e} avoids {a, B,~}.

It is an immediate consequence of 7.3.1 that M\3\g2 has no triangle meeting
{1,2,e}, so {1,2,e} avoids {«, 3,7}. Now suppose that {3,¢g2} C C*. Then the
triangles in M|{1,2,3,e,g,q2} imply that {5,~,0} meets {1,2},{2,e},{1,g}, and
{e,g}. Thus g € {B,v} and 0 = 2, so 7.3.6 holds. We may now assume that
|C* N {3,q2}| = 1. By orthogonality with the circuits {1,3,e,¢2} and {2,3,9,¢2},
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it follows that {53,~,d} meets {1,e} and {2,g}. Thus é € {1,e} and g € {B,7}. We
conclude that 7.3.6 holds.

Since M has {1,2,e,g,u3} as a cocircuit and ¢ is in the triangle {u,g,us},
orthogonality implies that uz € {a, 5,7}, so this triangle is {g,u1,u3}. Thus
{8,7} = {g,u;} for some i in {1,3}. Now the cocircuit C* is contained in
{g,ui,3,q2,6} and 0 € {1,2,e}. Thus Ay ({1,2,3,€,9,q2,u1,u3}) < 2; a con-
tradiction. Thus 7.3.5 holds.

Since M\3\g2 is internally 4-connected and has an N-minor, we have a contra-
diction that completes the proof of Lemma 7.3. (]

On combining Lemmas 7.1, 7.2, and 7.3, we immediately obtain the following
theorem, the main result of the section.

Theorem 7.4. Let M and N be internally 4-connected matroids with |E(M)| > 15
and |[E(N)| > 7. Assume that M has a triangle {e, f, g} such that M\e is (4,4, 5)-
connected having (1,2,3,4) as a 4-fan. Suppose that M\e,1 has an N-minor and
that Hypothesis F holds. Then one of the following holds.

(i) M has a good bowtie or a pretty good bowtie; or
(i) M has an internally 4-connected matroid M’ such that 1 < |E(M) —
E(M")| <3 and M’ has an N-minor.

8. THE CONTRACTION CASE WITH JUST ONE 4-FAN

In view of the theorem in the last section combined with the results from the
three previous sections, we may strengthen Hypothesis F and assume the following
for the rest of the proof of Theorem 3.1.

Hypothesis D. Whenever a triangle of M contains an element t such that M\t
is (4,4, 5)-connected having an N-minor, M\t has a unique 4-fan (t1,to,ts, ts)
and M\t\t1 has no N-minor; and, whenever a triad of M contains an element t
such that M/t is (4,4, S)-connected having an N-minor, M/t has a unique 4-fan
(t1,t2,t3,t4) and M/t/ty has no N-minor.

As before, we are assuming that M has a triangle T' containing an element e such
that N < M\e and (1,2,3,4) is a 4-fan of M\e. Moreover, by Hypothesis D, the
matroid M\e\1 has no N-minor. Thus, by Lemma 2.5, N < M\e/4 and M\e/4 is
(4,4, S)-connected. By orthogonality, T" meets {2,3,4} and we shall assume that

T ={3,e g}
Lemma 8.1. The matroid M/4 is (4,4, S)-connected unless
(i) M has a cocircuit {uy, us,ug} that is disjoint from {1,2,3,4,e, g} such that
each of {2,e,uz,us}, {4,e,ur,us}, and {2,4,uy,us} is a circuit; or
(ii) M/4 has a quad {e,g,t1,t2} with the element 3 in the guts; {3,e,g} and
{8,t1,t2} are circuits of M/4; and {e, g,t1,t2,4} and {3,4,t1,t2} are cir-
cuits of M.

Proof. Let (U, V) be a (4,4, S)-violator of M/4. Then neither U nor V contains
{2,3,e}. Hence we may assume that one of the following holds.

(a) {2,3} CU and e € V;

(b) {2,e} CU and 3 € V;or
(c) {3,e} CUand 2€V.
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8.1.1. If (a) or (b) holds, then g € V.

Suppose that g € U. Then (U U {e,3} U4,V — {e,3}) is a 3-separation of M.
Thus |V| =4 and V is sequential in M/4; a contradiction. Hence 8.1.1 holds.

Now consider (a). Then g € V. Clearly (U, V —e) is a 3-separation of M/4\e, so
(UU4,V —e) is a 3-separation of M\e. As M\e is (4,4, S)-connected, |V —e| < 4.
If |V — e| = 4, then we have a contradiction since V — e is not the unique 4-fan of
M\e. Hence |[V| =4. As M/4 has (U,V) as a (4,4, S)-violator, we deduce that V'
is a quad {e, g,t1,t2} having 3 in its guts. Since {3,e, g} is a circuit of M/4, we
deduce that {3,¢1,t2} is a circuit of M/4. As {e, g,t1,ta,4} is a circuit of M, so is
{3,4,t1,1t2} so (ii) of the lemma holds.

Next consider (b). By 8.1.1, g € V. Suppose 1 € U. Then (UU3 U4,V —3) is
a 3-separation of M, so V is a 4-fan in M/4; a contradiction. Thus 1 € V. Then
{2,e} Cclprya(V), s0 U is a 5-fan (e, ug,u1,us3,2) in M /4. Hence {uy,uz,us} is a
triad of M and {e, 4,uy,us} and {uy,us,2,4} are circuits of M. Thus {e, 2, uz,us}
is also a circuit of M and (i) holds.

Finally, consider (c¢). Then 1 ¢ U otherwise (UU2U4, V —2) is 3-separating in M,
so V is a 4-fan of M/4; a contradiction. Suppose g € V. Then {3,e} C clp/4(V),
so (U —{3,e},VU{3,e} U4) is 3-separating in M. Thus M/4 has U as a 5-fan
(3,u1,us2,us, e) with ¢g in the guts. Therefore M /4\e has a 5-fan; a contradiction.
We deduce that ¢ ¢ V. Thus g € U. Then (U — 3,V U 3) is a 3-separation of
M/4. We have reduced to a case symmetric to (a) unless (U — 3,V U 3) is not a
(4,4, S)-violator of M/4. In the exceptional case, U is a 5-fan in M /4 having 3 in
the guts. But U also contains the triangle {3,e,g}. Thus {e, g} is contained in a
triad of M /4 and hence of M; a contradiction. O

Lemma 8.2. Suppose M /4 has a quad {e, g,t1,t2} and has {3,e,g} and {3,t1,t2}
as circuits. Then M\g is internally 4-connected having an N-minor, or M has a
good bowtie.

Proof. As {e,g,t1,t2} is a quad of M/4, by [2, Lemma 2.2], M/4\e = M/4\g.
Thus, as M/4\e has an N-minor, so does M\g. Since g is in a triangle of M, it
follows that M\g is 3-connected. We show next that

8.2.1. M\g is sequentially 4-connected.

Suppose (U, V) is a non-sequential 3-separation of M\g. Without loss of general-
ity, we may assume that {1,2,3} C U. If e € U, then (UUg, V) is a non-sequential
3-separation of M; a contradiction. We may now assume that the cocircuit {e, ¢, t2}
of M\g is contained in V. If 4 € U, then (U UeUg,V — e) is a non-sequential
3-separation of M; a contradiction. Thus 4 € V and, since {3,4,t1,t2} is a cir-
cuit, (U — 3,V U3Ug) is a non-sequential 3-separation of M; a contradiction. We
conclude that 8.2.1 holds.

Now suppose that M\g is not internally 4-connected. Then it has a 4-fan
(o, B,7,96). As {g,08,7,0} is a cocircuit of M, it follows that {e,3} meets {3,7,d}
in a single element. Since {e, 3, g} is a triangle of M but g & {«a, 8,7}, it follows
that [{e,3} N{a, 8,7} < 1.

Suppose that e = «. Then, by orthogonality, {2,3,4} meets {«,8}. By
Lemma 2.8, 4 ¢ {a,8} so 2 € {a,f}. Suppose 2 = 8. Then, as {1,2,3} is a
circuit of M, orthogonality implies that § = 1. Thus {2,e,1, g} is a cocircuit of
M, so (3,1,2,g) is a 4-fan in M\e; a contradiction to Hypothesis D. We may now
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assume that 2 = «. Then, by orthogonality and symmetry, we may assume that
B = t1. Hence {t1,2,e} A {1,2,3} A {3,e, g} is a circuit, {1,g,t1}, of M, so M\e
has a second 4-fan, (1,t1,¢,t2); a contradiction to Hypothesis D. Thus e # ~.
Suppose next that 3 = 4. Then {a, 8} meets {2,4,e}. Lemma 2.8 implies that
4 is not in a triangle, and e ¢ {a, 8,7}, so 2 € {«,8}. Thus {«, 8} = {1,2}.
Orthogonality between {f,7,d,g} and the circuit {3,4,¢;,t2} of M implies that
0 € {4,t1,t2}, s0 Ap({1,2,3,4,¢e,g,t1,t2}) < 2; a contradiction. We conclude that
3 # ~. Hence § € {2,3}. Thus every 4-fan in M\g has e or 3 as its coguts element,
but not as an internal element. Hence M\g has no 5-fans. Moreover, if M\g has
a 5-cofan F, then {e,3} C F, so F Ug is a 6-element 3-separating set in M; a
contradiction. Therefore M\g is (4,4, S)-connected. Moreover, M\g has a 4-fan
with e or 3 in its coguts, and Lemma 2.8 implies that M has a good bowtie. ]

By the last two lemmas, we need to consider when M/4 is (4,4, 5)-connected
but not internally 4-connected and when (ii) of Lemma 8.1 holds. We shall break
the remainder of the argument up into the following three cases.

(A) M/4is (4,4, S)-connected and every 4-fan of M /4 has e as its guts end;
(B) M/4 is (4,4, S)-connected and M/4 has a 4-fan that does not have e its
guts end; and
(C) M has a cocircuit {uq,us,us} that is disjoint from {1, 2, 3,4, e, g} such that
each of {2,e,u1,us}, {4,e,ur,us}, and {2,4, uo, us} is a circuit of M.
Note that Hypothesis D cannot be applied directly in (A) or (B) since we do not
know that 4 is in a triad of M.

Lemma 8.3. If (y1,y2,ys3,y4) s a 4-fan in M/4, then {y1,y2,vs3,4} is a circuit of
M and yr € {2,3, e}, while {ya,ys} avoids {1,2,3,4,e,g}.

Proof. Since M has no 4-fans, {y1, y2,ys3,4} is a circuit of M. By orthogonality with
the cocircuit {2, 3,4, e}, it follows that {y1, y2, y3} meets {2,3,e}. Since {y2,y3,y4}
is a cocircuit of M and this matroid has no 4-fans, it follows that {1,2,3,e, g}
avoids {y2,y3}. Thus y; € {2,3,e}. O

Now we begin the consideration of case A. We recall that M\e/4 is (4,4,5)-
connected having an N-minor.

Lemma 8.4. Assume that M/4 is (4,4, 5)-connected and that every 4-fan of M /4
has e as its guts end. Let (x1,x2,x3,24) be a 4-fan of M\e/4 and (e,y2,ys3,Ys)
be a 4-fan of M/4. Then {x1,xo,x3,4} is a circuit of M and {xa,x3,x4,€} is a
coctreuit of M. Moreover, x4 € {ya,ys} and g € {za2, x5} and x1 = 2. In particular,
if Ty = yo and g = x4, then {2,g,x3,4} is a circuit; {g,x3,y2,e} and {ys,ys, x4}
are cocircuits; and w3 € {1,2,3,4,e,9,Y2,Y3,Ya}-

Proof. Recall that M\e has (1,2,3,4) as its unique 4-fan. If {1, x2, x5} is a circuit
of M, then (x1, 2, x3,24) is a 4-fan of M\e that differs from (1,2,3,4); a contra-
diction. We deduce that {x1,x9,x3,4} is a circuit of M. By orthogonality with the
cocircuit {2, 3,4, e}, it follows that {2,3} meets {z1, z2, 3}

Now either {xo, 23,24} or {za,23,24,€e} is a cocircuit of M. In the first case,
(21,2, T3, x4) is a 4-fan of M /4 that does not have e as its guts end; a contradiction.
Thus {z2,x3, 4, €} is a cocircuit of M. Now {e, 4,y2,y3} is a circuit of M. Thus,
by orthogonality, {y2,ys} meets {z2,23,24}. By symmetry, we may assume that
Y2 € {.’ﬂQ, xs3, 1'4}.
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FIGURE 23

Suppose y2 € {x2,23}. Then the circuit {x1, 2, 23,4} must contain another
element of the triad {y2,ys,ys}. Suppose y3 € {x1,z2,23,4}. Then {x;,z2,x3,4}
contains at least three elements of the 4-circuit {e, 4,ys,ys}. Hence these two 4-
circuits are equal. This contradicts the fact that {z1,x2,z3} meets {2,3} since
{y2,y3,ys4} is a triad but neither 2 nor 3 is in a triad. Thus y3 &€ {z1,x2, 3,4}
and so yy € {21, 9, 23,4}. Therefore {x1,zq, 23,4} contains {ys2,y4,4} and either
2 or 3. Then M/4 has a 4-fan (yo, y2, Y4, y3) where yo € {2,3}; a contradiction. We
deduce that yo = x4.

As M has {xq,z3,24,e} as a cocircuit and has {3, e, g} as a circuit, it follows
that {3, 9} N{z2, x3,x4}| = 1. As {x4,ys3,ya} is a triad of M, and each of 3 and g is
in a triangle, we deduce that {3, g} N {z2, x5} # 0. Suppose 3 € {z2,z3}. Without
loss of generality, 3 = xo. As {1,2,3} is a circuit, {1,2} meets {z3,24}. But x4
is in a triad, so xz3 € {1,2}. Letting x¢ be the element of {1,2} — 3, we see that
(0,3, x3,x4) is a 4-fan of M\e yet x4 # 4; a contradiction.

We may now assume that g € {x2, x3} so, without loss of generality, g = x5. We
also know that 2 or 3 is in {x1,zo,23}, so 2 or 3 is in {x1,z3}. As {29, z3,24,€}
is a cocircuit and {3,e,g} is a circuit, 3 # z3. If 2 = x3, then {g,2,24,€} is a
cocircuit meeting the triangle {1,2,3}. Thus 24 = 1, so {g,2,1,e} is a quad of M;
a contradiction. Thus z3 ¢ {2,3}. We deduce that z; € {2,3}. Hence {z1, z2, 23,4}
is {3, g,x3,4} or {2, g,x3,4}. In the first case, as {3, 9, x3,4} A{3,g,e} = {e, x3,4},
we have {e,4} in a triangle; a contradiction. Thus {2, g, x3,4} is a circuit of M and
(21,22, 23,24) = (2,9,23,y2). Hence {g,x3,y2, e} is a cocircuit of M.

Clearly z5 ¢ {2,4,e,9,y92}. 1If 3 € {1,3}, then the symmetric differ-
ence of {1,2,3} and {2,g,23,4} is a triangle containing 4; a contradiction to
Lemma 2.8. If 3 € {y3,ysa}, then the symmetric difference of {ys,ys, x4} and
{g9,23,24,e} is a triad containing {e,g}; a contradiction. We conclude that
x3 €41,2,3,4,e,9,92,y3,ys4} and the lemma follows. O

Figure 23 is a geometric illustration of the situation arising in the next lemma.
As usual, the ring around {e, g, x5, 24} is to indicate that it is a cocircuit of M.

Lemma 8.5. Assume that M/4 is (4,4, 5)-connected and that every 4-fan of M /4
has e as its guts end. Let (2,g,x5,24) be a 4-fan of M\e/4 and (e, x4,ys,y4) be a
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4-fan of M /4. Then either M* has a good bowtie, or M /[y, is internally 4-connected
having an N-minor.

Proof. First we show the following.
8.5.1. N <X M/4/y,.

Since M\e/4 has an N-minor and has (2,g,23,24) as a 4-fan, either N <
M\e/4\2, or N < M\e/4/x4. Observe that M/4\e\2 = M\e\2/3 = M/3\e\1l.
Thus if N <= M\e/ys\2, then N < M\e\1, a contradiction to Hypothesis D. We
deduce that N < M\e/4/x4. Now M\e/4/xy = M/4/x4\ys = M/4\ys/ys. Hence
N = M/4/y,, that is, 8.5.1 holds.

8.5.2. M/yy is sequentially 4-connected.

Let (U, V) be a non-sequential 3-separation of M/y,. Then exactly one of y3 and
x4 is in U. Moreover, we may assume that {1,2,3} CU. If e or g is in U, then we
may assume that both are in U so we can add 4 to U. Then the circuit {e, 4, y3, x4}
means that we may assume that {ys,z4} C U; a contradiction. We deduce that
{e, g} C V. This means that 4 € V. Moreover, the circuit {3, e, g} means that we
can add 3 to V. Then we can move 2 and then 1 into V; a contradiction. Thus
8.5.2 holds.

Next we establish the following.

8.5.3. Every 4-fan in M/yy has x4 or y3 as its guts element.

Let (a,f8,7,9) be a 4-fan in M/yy. Then {y4,a, 8,7} is a circuit of M and
{B,7, 0} is a cocircuit, and exactly one of x4 and ys is in {«, 3,v}. Orthogonality
implies that {ys,x4} meets {a,,v}. Suppose first that {ys,x4} meets {5,~}.
By orthogonality between {f,v,d} and the circuit {4,e,x4,y3}, we deduce that
{B,~, 8} contains exactly two elements in {4, e, x4,y3}. Since [{z4,ys} {87} =1,
we may assume that 8 € {z4,y3}. If 4 & {v,6}, then e is in the triad {3,v,d} and
so M/4 has a 5-cofan; a contradiction. We deduce that 4 € {, d}.

Now {2,g,z3} or {2,9,x3,4} is a circuit of M. By orthogonality with the cocir-
cuit {2, 3,4, e}, it follows that {2, g, z3,4} is a circuit of M. Thus, by orthogonality,
x3 € {7,0}. Then A\y({1,2,3,4,¢e,9,23,24,y3,y4}) < 2; a contradiction. We con-
clude that {ys,z4} avoids {8,~v}. Hence o € {z4,y3} and 8.5.3 holds.

It follows, by 8.5.3, that if F' is a 5-fan or a 5-cofan in M/y4, then both x4 and
ys are in F. Hence F' Uy, is 3-separating in M; a contradiction. We conclude that
M/ys4 is (4,4, S)-connected. Then either M /y, is internally 4-connected, or M*\y,
has a 4-fan with its coguts element in {z4,ys} and so in the triangle {z4,ys,ya}
of M*. In the former case, the lemma holds while, in the latter case, Lemma 2.8
implies that M™* has a good bowtie and, again, the lemma holds. (Il

We have now completed the proof of Theorem 3.1 in case A, that is, when M /4 is
(4,4, S)-connected and every 4-fan of M /4 has e as its guts end. Next we consider
case B, that is, M/4 is (4,4, S)-connected and M /4 has a 4-fan that does not have
e as its guts end (see Figure 24(a) and (b)). By orthogonality, every 4-fan of M /4
must have a member of {2, 3, e} as its guts end.

Lemma 8.6. Suppose that M/4 is (4,4,5)-connected and that M/4 has a 4-fan
(o, 51, 82, 83) where a € {2,3}. Then M/4\e/s3 has an N-minor. Moreover, M/ss
is sequentially 4-connected.
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FIGURE 24. (a) M/4 has (2,s1,52,3) as a 4-fan. (b) M/4 has
(3,51, $2,83) as a 4-fan.

Proof. As M/4\e is (4,4, S)-connected, it has («, s1, s2,53) as a 4-fan. Thus we
may assume that N < M/4\e\a otherwise the first part of the lemma holds. Now
M\e\« has {4, B} as a cocircuit where {«, 5} = {2,3}. Then N < M\e\a/S. But
M\e/B\a = M\e/B\1, so N < M\e, 1; a contradiction to Hypothesis D. Hence
N <X M/4\e/s3.

Since s3 is in a triad of M, it follows that M/s3 is 3-connected. Now suppose
that M/s3 has a non-sequential 3-separation (U,V). Then we may assume that
{1,2,3} C U. Now exactly one of s; and ss is in U so we may assume that s; € U
and so € V. As {a, 4, 51, s2} is a circuit of M, it follows that 4 € V. The cocircuit
{2,3,4, e} now implies that e € V while the circuit {3, e, g} implies that g € V. But
now we can move 3 into V', and then 2 into V', and finally s; into V; a contradiction.
We conclude that M/s3 is sequentially 4-connected. [

Lemma 8.7. Suppose that M/4 is (4,4,5)-connected and that M/4 has a 4-fan
(o, 51,82, 83) where o € {2,3}. Then either M* has a good bowtie, or M/ss is
internally 4-connected having an N -minor.

Proof. By Lemma 8.6, M/s3 is sequentially 4-connected having an N-minor. First
we will identify the possible guts elements in a 4-fan in M/s;.

8.7.1. If (4, k,1,m) is a 4-fan in M/ss, then j € {s1, s2}.

Clearly {ss,j,k,l} is a circuit of M and {k,l,m} is a cocircuit. The cocircuit
{s1, 82,83} and the circuit {ss, J, k, [} imply that [{s1,s2} N {j, k,1}| = 1. Assume
that 8.7.1 fails. Then s; € {k, [}, for some 7 in {1,2}. By symmetry, we may assume
that sy = k. The circuit {4, s1, s2,a} implies that 4 € {I,m}, as « is in no triad of
M /4 otherwise M /4 is not (4,4, S)-connected. Then 4 is in a triad of M, and M/4
is (4,4, S)-connected with s3 in the coguts of a 4-fan. But, by Lemma 8.6, M/4/s3
has an N-minor. This contradiction to Hypothesis D completes the proof of 8.7.1.

Now if F' is a 5-fan or a 5-cofan in M/s3 containing {s1, s2}, then F U s3 is a
6-element 3-separating set in M; a contradiction. It follows by 8.7.1 that M/s3 is
(4,4, S)-connected. If M/s3 is internally 4-connected, then the lemma holds. Thus
we may assume that M*\s3 has a 4-fan. By 8.7.1, the coguts element of this 4-fan
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is in {s1, s2} and so is contained in a triangle in M*. It follows by Lemma 2.8 that
M* has a good bowtie. We conclude that Lemma 8.7 holds. (]

The last lemma completes the proof of Theorem 3.1 in case B. It remains
to consider case C, that is, M has a cocircuit {uy,us,us} that is disjoint from
{1,2,3,4,e,g} such that each of {2,e,us,us}, {4,e,u1,us}, and {2,4,us,us} is a
circuit. This structure can be illustrated geometrically as in Figure 25. First ob-
serve that we have the following.

Lemma 8.8. If M contains the structure shown in Figure 25, then the only triangle
of M containing 2 is {1,2,3}.

Proof. Suppose that M has a triangle T other than {1, 2,3} containing 2. Then, by
orthogonality with the cocircuit {2, 3,4, e}, one of {2, e} or {2,4} isin T. Then the
symmetric difference of T' with {2, e, u2,uz} or {2,4, u1,uz} is a triangle containing
{ug,uz} or {us,us}, so M has a 4-fan; a contradiction. O

FIGURE 25

Lemma 8.9. Suppose |[E(M)| > 16 and |E(N)| > 7. If M contains the structure
shown in Figure 25, then M has a proper minor M’ such that |E(M)|—|E(M")| < 3
and M’ is internally 4-connected with an N-minor, or M or M* has a good bowtie
or a pretty good bowtie.

Proof. We shall assume that the lemma fails. By Hypothesis D, N A M\e,1 so
N =< M\e/4. Now, in M/4, we have a 5-fan (e, us,u1, us,2). Moreover,

8.9.1. [{1,2,3,4,¢e,g9,u1,us,us}| =9.
Next we show the following.
8.9.2. N < M/4/us\e and N < M/4/u3\2.

To see this, we observe that the desired result holds unless N < M/4\e\2. In the
exceptional case, since {4, 3} is a cocircuit of M\e\2, we deduce that N < M\e, 2/3.
Hence N =< M\e, 1; a contradiction. Thus 8.9.2 holds.

Next we show the following.

8.9.3. M/us and M /us are sequentially 4-connected.
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The asymmetry that exists between us and ug arises because M\e is (4,4, .5)-
connected while we do not know that M\2 is (4, 4, S)-connected. We will prove that
M /ug is sequentially 4-connected without using this differentiating information. It
will then immediately follow that M /ug is sequentially 4-connected. Let (U, V) be
a non-sequential 3-separation of M/us. Then, without loss of generality, we may
assume that {u1,4,e} C U and {us, 1,9} C V. Suppose 3 € U. Then we may
also assume 2 € U, so we can move ug into U and then add us to U to get a non-
sequential 3-separation of M; a contradiction. Thus 3 € V. Then we can assume e
and 2 are in V. This means we can move 4 and then u; into V and then add wusg
to V to get a non-sequential 3-separation of M; a contradiction. We conclude that
M /us is sequentially 4-connected and so 8.9.3 holds.

8.9.4. Suppose (j, k,l,m) is a 4-fan of M Juy, for some h € {2,3}. Then one of the
following holds.
(i) (un,j) is (ua,e) and {k,1} = {uy,4}; or
(11) (Uh,j) is (’LL3,2) and {k7l} = {u1ﬂ4}; or
(iii) wy € {k,l} and m =4; or
(iv) j € {u1,u;} where {h,i} = {2,3}.
Moreover, if M/uy, is (4,4, 5)-connected, then (i) or (ii) holds.

Suppose that j & {u1,u;} where {h,i} = {2,3}. Clearly {k,l,m} is a triad of
M and {up,j, k,1} is a circuit of M. By orthogonality with the triad {u,us,us},
the circuit {up,j, k,l} contains uy or w;. Without loss of generality, & € {u1,u;}.
Suppose k = u;. Then, by orthogonality between the triad {k,{,m} and the circuit
{ug,us,2,e} in M, we deduce that 2 or e is in a triad of M; a contradiction. Thus
k= Ul .

By orthogonality between {k,I,m} and the circuits {uj,uq,4,e} and
{u1,us, 4,2}, either 4 € {I,m}, or {I,m} = {2,e}. As 2is not in a triad, 4 € {I,m}.
If 4 =, then j = e when uj, = ug, and j = 2 when u;, = ug. Thus either (up,J,1)
is (ug,e,4) or (ug,2,4); or m = 4. We conclude that one of (i)—(iv) holds.

Now assume that M/up is (4,4, S5)-connected. Suppose (iii) holds. Then
m = 4. As M/u; has a triangle containing 4, we obtain the contradiction
that M/uj has a 5-fan. Hence (iii) does not hold. If (iv) holds, then M* has
({k,1,m}, {u1,ua,us}, {un,j,k,1}) as a good bowtie, a contradiction. We conclude
that 8.9.4 holds.

8.9.5. Neither M/ug nor M/us is (4,4, S)-connected.

Assume M /uy, is (4,4, S)-connected for some h in {2,3}. Since the lemma holds
if M/uy, is internally 4-connected with an N-minor, M /uy, has a 4-fan (4, k,1, m).
By 8.9.4, {k,l} = {u1,4}, and (up, j) is either (ug,e) or (us,2).

Suppose that (up, j, k,1) = (ua,e,u1,4). Since 8.9.2 implies that N < M/4/us\e,
and M/4/us\e = M/4/us\u1 =2 M/us\uy/m, we deduce that N < M/us/m. As
M/us is (4,4, S)-connected, this is a contradiction to Hypothesis D.

Next assume that (up,j,k,1) = (u3,2,u1,4). Again 8.9.2 implies that N =<
M/4/us\2, and M/4/us\2 = M/4/us\u; = M/ug\ui/m. Thus N < M/ug/m; a
contradiction to Hypothesis D. We conclude that 8.9.5 holds.

Next we observe the following.

8.9.6. If F is a 5-fan or a 5-cofan in M/uy for some h in {2,3}, then |F N
{ul,u2,u?,}| S 1.
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To see this, observe that if the conclusion does not hold, then F U uy is 3-
separating in M; a contradiction.

8.9.7. For each h in {2,3}, the matroid M/up has a 5-fan (£,4,uy,wy, ws) for
some elements wy and ws, where € is e or 2 depending on whether up, s ug or us.

Let 7 be the element of {2,3} — {h}. By 8.9.3 and 8.9.5, M /uj has a 5-fan or
a 5-cofan. Suppose that M/u, has a 5-cofan (z1, 29, 23, 24, 25). Then M /u;, has
(22, 23, 24, 25) and (z4, 23, 22, 21) as 4-fans. We shall apply 8.9.4 to these two 4-fans.
Suppose that (i) or (ii) holds for (29, 23, 24, 25). Then {z3, 24} = {u1,4}. Thus (iii)
or (iv) must hold for (z4, 23, 22, 21). But (iii) yields the contradiction that z; = 4.
Thus (iv) holds, so z4 € {uy,u;}. Hence, by 8.9.6, (z3,24) = (4,u1). Thus M/uy
has (21,§,4,u1,25) as a 5-cofan. But M has {2,e,us,us} as a circuit. Thus, by
orthogonality with {z1,&, 4}, we deduce that z; € {us,u3} and we contradict 8.9.6.

Using symmetry, we now know that (iii) or (iv) holds for (22, 23, 24, z5) and for
(24, 23, 22,21). But (iii) cannot hold for both fans, nor can (iv). Hence we may
assume that (iii) holds for the first and (iv) holds for the second. Thus u; €
{z3,24} and 25 = 4; and z4 € {uy,u;}. Hence, by 8.9.6, z4 = u; and z5 = 4, so
(21, 22, 23, 24, 25) = (21, 22, 23, u1,4). As M/up, has {u1,4,£} as a circuit, it follows
that (22, z3,u1,4,£) is a 5-fan of M /up, so 8.9.7 holds if M/uy has a 5-cofan.

Next assume that (wy, ws, w3, ws, ws) is a 5-fan of M/up. Then (w1, ws, ws, wy)
and (ws, wy, w3, we) are 4-fans. Assume that (i) or (ii) holds for the first of these.
Then wy = € and {wy, w3} = {u1,4}. Thus (iii) or (iv) holds for the second 4-fan.
By 8.9.6, ws & {u1,u;}. Thus we = 4 and uy € {wy,w3}. Hence (wy,wq,ws) =
(&,4,u1) and again 8.9.7 holds.

It remains to consider the case when (iii) and (iv) hold for both (w1, ws, w3, wy)
and (ws, wg, w3, wz). Using 8.9.6, we see that (iii) cannot hold for both 4-fans; nor
can (iv). Thus we may assume that u; € {wq, w3} and wy = 4; and ws € {uq,u;}.
This again contradicts 8.9.6. We conclude that 8.9.7 holds.

8.9.8. M/us has a 5-fan (e,4,u1,b,a) and M/us has a 5-fan (2,4,u1,d, c) for some
elements a,b,c, and d. Moreover, d = b.

By 8.9.7, M /us has a 5-fan (e, 4, u1,b,a) and M /ugz has a 5-fan (2,4, u;,d, c). As
M has {u1,4,b} and {u1,4,d} as triads, we must have b = d. Hence 8.9.8 holds.

By 8.9.8, we obtain the structure illustrated in Figure 26, where {u1,4,b} is a
triad. Note that we are not asserting that {a, b, c} is a triad.

8.9.9. [{1,2,3,4,e,g,u1,uz2,us,a,b,c}| =12.

Let Z = {1,2,3,4,¢e,g9,u1,us,us}. By 89.1, |Z]| = 9. If {a,b,c} meets Z, then
r(Z U{a,b,c}) < 5,50 \N(Z U{a,b,c}) < 2 as the last set contains the cocircuits
{2,3,4,¢e}, {u1,uz,us}, and {4,b,us }. This contradiction establishes 8.9.9.

8.9.10. N < M/ua/b\a and N = M/usz/b\c.

We know that (e, 4,u1,b,a) and (2,4,u1,b,c) are 5-fans of M/uy and M /us,
respectively. By 8.9.2, N < M/4/uz\e. But M/4/uz\e = M/uz/b\a so the first
part of 8.9.10 holds. The second part follows by symmetry.

Now we have symmetry between ¢ and a provided we do not use the fact that
M\e is (4,4, S)-connected. This symmetry will be exploited in the next part of the
argument. If M\c or M\a is internally 4-connected, then the lemma holds, so we
assume not.
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FIGURE 26. M also has {u1,4,b} as a triad.

8.9.11. M\c and M\a are sequentially 4-connected.

Suppose (U, V) is a non-sequential 3-separation of M\c. Then we may assume
that {uy,us,us} C U. If @ or b is in U, then the various 4-circuits we have mean
that we can add ¢ to U to get a non-sequential 3-separation of M; a contradiction.
Hence we must have that {a,b} C V. If 4 € U, then the cocircuit {4,b, u;} means
that we can move b into U; a contradiction. Thus 4 € V. This means we can move
u1, then us, and finally ug into V. This gives us a contradiction as we can now add
¢ to V. Hence M \c is sequentially 4-connected and, by symmetry, so is M\a.

8.9.12. If (21, 22, 23, 24) s a 4-fan in M\c, then z4 = b and a € {22, z3}. Symmet-
rically, if (y1,Y2,Ys3,v4) is a 4-fan in M\a, then y4 = b and c € {y2,ys}.

Let (21, 22, 23, 24) be a 4-fan on M\c. Then M has {29, 23, 24, ¢} as a cocircuit and
has {c,a,u9,us}, {c,b,2,4}, and {c, b, u1,us} as circuits. Thus, by orthogonality,
{22, 23, 24} meets {a,us,usz}, {b,2,4}, and {b,u1,uz}. But, since each element of
{z1, 22, 23} is in a triangle while each element of {u, us,us,b,4} is in a triad, these
two sets are disjoint. Thus

(i) 24 € {a,ug,usz} or a € {29, 23};
(i) 24 € {b,2,4} or 2 € {z2,23}; and

(111) zZ4 € {b7’u,1,U3}.

We look first at (iii) and suppose that z4 = uy. Then, by (i) and (ii), {22, 23} =
{a,2}. Thus M has a triangle containing {a, 2}; a contradiction to Lemma 8.8. Next
suppose that z4 = us. Then, by (ii) and symmetry, we may assume that 2 = z3.
By Lemma 8.8 again, it follows that {z1, 29, 23} = {1, 2,3}. Then, by orthogonality
between the circuit {c, a, 1, g} and the cocircuit {c, 22, 23, 24}, we deduce that z = 1
and z; = 3. Letting Z = {1,2,3,4, e, 9, u1, us2,us, a,b, c}, we see that r(Z) < 6 while
r*(Z) < |Z|—4 since Z contains the cocircuits {2, 3,4, e}, {u1, u2, us}, {4,b,u1 }, and
{1,2,c,us}. Hence A\(Z) < 2. This is a contradiction as |E(M)| > 16.
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We may now assume that z4 = b. Then, by (i), a € {22, 23}. Hence the first part
of 8.9.12 holds, and the second part follows by symmetry.

FIGURE 27. M also has {u1,4,b} as a triad.

By 8.9.12, M\c and M\a have 4-fans (z, a,y,b) and (z, ¢, w, b) for some elements
z,y,z, and w. Then {a,b,c,y} and {a,b,c,w} are cocircuits of M, so w = y.
Thus M contains the structure illustrated in Figure 27, where {u1,4,b} is a triad.
Moreover,

8.9.13. [{1,2,3,4,¢e,9,u1,us2,us,a,b,c,x,y,z}| = 15.

By 8.9.9, |Z'| = 12 where Z' = {1,2,3,4, e, g, u1,us, us, a,b, c}. If {x,y, 2} meets
Z', then r(Z' U{x,y,z}) <6, s0 \(Z') < 2; a contradiction. Hence 8.9.13 holds.
We continue the proof of the lemma by showing that

8.9.14. M\e/4,us is internally 4-connected, or M has a triad {p,q,s} such that
{p, ¢, u2,u;} is a circuit of M for some i in {1,3}.

Assume that this does not hold. Since M\e/4 is (4,4, 5)-connected having
(2,us,u1,uz) as a 4-fan, we see that M\e/4,us is 3-connected. Observe that this
matroid has {uj,us, 2} as a circuit. Next we show the following.

8.9.15. M\e/4,us has a (4,3)-violator (U, V) such that {uy,us} CU.

Assume that this fails. Certainly M\e/4,up has a (4,3)-violator (U,V).
Then we may assume that {u;,2} C U and u, € V where {i,h} = {1,3}.
Then up, € clypejau,(U), so (U U wup, V — up) is a 3-separation of M\e/4,us.
Since, by assumption, it cannot be a (4,3)-violator, we deduce that V is
a 4-fan (up,p,q,s) of M\e/4,us. Then {p,q,s} or {e,p,q,s} is a cocircuit
of M. Suppose {e,p,q,s} is a cocircuit. Then orthogonality with the cir-
cuits {e, 3,9}, {e,4,u1,u2}, {e,2,us,usz}, and {a,c,e,2} implies that {p,q,s} C
{3,9,u1,us,a,c}, so Ay({1,2,3,4,e,9,a,b,c,u1,us,us}) < 2; a contradiction.
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We deduce that {p,q,s} is a triad of M. Now {ua,un,p,q},{4,un,p,q}, or
{4, ua,up,p,q} is a circuit C of M. If 4 € C, then orthogonality with the co-
circuit {2,3,4,e} implies that 2,3, or e is in the triad {p,q, s}; a contradiction.
Thus {p, q, s} is a triad of M and {p, ¢, ua,up} is a circuit of M, so 8.9.14 holds; a
contradiction. We conclude that 8.9.15 holds.

Since {u1,uz} C U, we see that (U Uug, V) is a (4, 3)-violator of M\e/4. But
the last matroid is (4, 4, S)-connected, so either UUug or V' is a 4-fan of M\e/4. As
|U|,|V| > 4, it follows that V' is a 4-fan (¢,p, q, s) of M\e/4, and V = fclppc/4(V).
As (t,p, q, s) is not the unique 4-fan of M\e, we deduce that {4,¢,p, ¢} is a circuit
of M. Observe that, since {u1,4,b} and {a,c,y,b} are cocircuits of M, so is their
symmetric difference, {a,c,y,4,u1}.

Since M has {b,u1,4}, {2, 3,4, e}, and {a, ¢, y,4,u1} as cocircuits and {4,¢,p, ¢}
as a circuit, and {t,p,q} C V, it follows by orthogonality that b € V and that each
of {2,3} and {a,c,y} meets V. Thus at least two elements in b,2,3, a,y, or ¢ are
contained in {p, q, s}. Each of 2,3,a,y, and ¢ is in a triangle of M so none is in a
triad. Hence {p, ¢, s} is not a triad of M, so {e, p,q, s} is a cocircuit of M.

Suppose b € {p,q,s}. Then the triangle {b, ¢, 2} of M\e/4 meets this triad in
at least two elements, so ¢ or 2 is in {p,q, s}. Also, the circuit {u1, us,a,b} meets
the triad {p, ¢, s} of M\e/4 in two elements. But {ui,us} avoids {¢t,p,q, s}. Thus
a € {p,q,s}. Hence {e, b, a,c} or {e, b, a,2} is a cocircuit of M that meets the circuit
{u1, us, e, 4} in exactly one element; a contradiction. We conclude that b &€ {p, q, s}.

We may now assume that b = ¢. Thus {4, b, p, ¢} is a circuit of M. Orthogonality
between this circuit and the cocircuits {2, 3,4, e} and {a, b, ¢, y} implies that {p, ¢}
meets both {2,3} and {a,c,y}. Suppose first that 3 € {p,q}. Then, as neither
{4,b,3,a} nor {4, b, 3, c} is a circuit of M, it follows that {4, b, 3, y} is a circuit of M,
that is, {p,q} = {3,y}. Then {e,3,y, s} is a cocircuit of M. Thus, by orthogonality
with the circuits {3,2,1}, {y,c,z} and {y,a,z}, we obtain a contradiction. We
deduce that 3 & {p, q}. Thus 2 € {p, q}, so the circuit {4,b, p, ¢} has three elements
in common with the circuit {4,b,2,c} so must equal this circuit. Hence {p,q} =
{2,c}, so {e,2,c¢, s} is a cocircuit of M. As M is binary and {a,c,e,2} is a circuit,
we see that s = a, so M has {a,c,e,2} as a quad; a contradiction. This completes
the proof of 8.9.14.

By 8.9.2, N < M\e/4/us. Thus, by 8.9.14, M contains the structure illustrated
in Figure 28, or M contains the same structure with the line {p, ¢} moved so that
it goes through the point where the lines {4, e} and {a, b} meet.

8.9.16. ‘{1,2,3,4,6,9,71,1,712,1&3,0,, bv cvxayazvpaquH =18

By 8.9.13, |Z'| = 15 where Z’' = {1,2,3,4, ¢, g,uy, us,us,a,b,¢,x,y,z}. Suppose
{p,q, s} meets Z'. Since {p,q,s} is a triad, it cannot contain any element that
is in a triangle. Thus {p,q,s} N Z" C {4,b,u1,u2,uz}. The circuit {p,q, us,u;}
implies that {p,q} avoids {uy,us2,us}. Suppose {p,q,s} meets {4,b}. Then, by
orthogonality with the circuit {4,2,b,c}, it follows that {p,q,s} contains {4,b}.
Hence the triads {p,q,s} and {4,b,u;} coincide. Now M has a 4-circuit C' that
contains {p, q,us} and exactly one of u; and uz. Thus ug € C. It follows that
{4,b,u2,u3} is a circuit of M. As this set is also a cocircuit, we have a quad in
M; a contradiction. We deduce that {p,q, s} avoids {4,b}. The only remaining
possibility is that s € {uy,us,us}. But now one of the circuits {4,2,us,u;} or
{2, e,u2,us} gives a contradiction to orthogonality. We conclude that 8.9.16 holds.
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FIGURE 28

Now M\e/4,us has an N-minor and has (u;,p, ¢, s) as a fan. Thus N is a minor
of M\e/4,us\u; or M\e/4,us, s. Suppose N < M\e/4,us\u; Then, as {ua, up} is a
cocircuit in M\u; where {i,h} = {1,3}, we deduce that N < M\e/4,up, As {2,u;}
is a circuit in the last matroid, N < M\e, 2. But {3,4} is a cocircuit of the last
matroid, so N = M\e,2/3. Hence N < M/3\e\1, so N < M\e, 1; a contradiction.
We conclude that N < M\e/4, us, s.

We finish the proof of this lemma by showing that M* has a good bowtie. First
we show that

8.9.17. M/s is (4,4, 5)-connected.

Suppose instead that (U, V) is a (4,4, S)-violator of M/s. Without loss of gen-
erality, we may assume that p € U and ¢ € V. If U contains {us,u;}, then
(UUqUs,V —gq) is a (4,3)-violator of M; a contradiction. By the symmetry of
{p,q}, we may assume without loss of generality that us € U and u; € V. Then
(UUu;UqUs, V—qg—u;) or (U—p—us, VUusUpUs) is a 3-separation of M depend-
ing on whether uy, is in U or V. Hence either V is a 5-cofan (u;, g, ts,ts,t5) of M/s
avoiding {usg, up }, or U is a 5-cofan (usg, p, t3,t4,t5) in M/s avoiding {u1,uz}. In the
first case, as M has {uy,us,b,c} and {uy,us,2,4} as circuits, it follows by orthog-
onality with the triad {u;,q,t3} that {q,t3} meets both {b,c} and {2,4}. Thus, by
8.9.16, t5 € {b, c}N{2,4}; a contradiction. In the second case, as M has {u1,uz,e,4}
and {u,us,a,b} as circuits, it follows by orthogonality that t3 € {e,4} N {a,b}; a
contradiction. We conclude that 8.9.17 holds.

If M/s is internally 4-connected, then the lemma holds, so we may assume that
M /s contains a 4-fan (s1, s2, 83, 84). Then {s, s1, 2,83} is a circuit of M, which, by
orthogonality, must contain p or q. Without loss of generality, ¢ € {s1, $2,53}.
Then p avoids {s1, s2,S83,84}. Suppose ¢ € {s2,s3,84}. If i = 3, then, by
orthogonality, {so,ss,s4} contains at least two elements in each of the circuits
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{2,e,p,q},{a,¢,p,q}, and {us,us,p,q}. Since p ¢ {s1, 2, $3, 84}, this is a contra-
diction. If ¢ = 1, then, by orthogonality, {s2, s3,s4} contains at least two elements
in each of the circuits {4,e,p,q},{a,b,p,q}, and {uy,us,p,q}. Again we obtain a
contradiction. We deduce that ¢ = s1, and ({p, q, s}, {s2, s3,84},{4q, s, 52, s3}) is a
good bowtie in M*. This completes the proof of Lemma 8.9 (]

9. THE IMPLICATIONS OF A PRETTY GOOD BOWTIE

Pretty good bowties appear in Theorem 3.1 but not in Theorem 1.3. In this
section, we show why.

Lemma 9.1. Let (x1,x2,x3,24) be a 4-fan in a (4,4, S)-connected binary matroid
My that has at least ten elements. Then My has no triangle containing 4.

Proof. If My has triangle T containing x4, then, by orthogonality, |T° N
{za, x5, 24} = 2. Then {x1,x2,x3,24} UT is a 5-element 3-separating set in My; a
contradiction as |E(Mp)| > 10. O

Lemma 9.2. Let M be an internally 4-connected binary matroid with |E(M)| > 13
and |[E(N)| > 7. Suppose M has a pretty good bowtie labelled as in Figure 29, where
each of M\2 and M\T has an N-minor, M\2 is (4,5, 5, +)-connected, and M\7 is
(4,4, 5)-connected. Then

(i) M has an internally 4-connected minor M’ having an N-minor such that
|[E(M)| — E(M")|=1; or
(ii) M has a good bowtie; or
(iii) M has a good augmented 4-wheel labelled as in Figure 30.

Proof. As M\2 is (4,5, S, +)-connected, we see that
9.2.1. {3,4,5,6,7} is fully closed in M\2.

Assume that none of (i)-(iii) holds. Then M\7 is not internally 4-connected.
Thus M\7 has a 4-fan (21, x2,z3,24). By Lemma 9.1, x4 & {1,2,3,4,5,6,7}. As
{xa,x3,24,7} is a cocircuit of M, it follows by orthogonality with the triangle
{3,5, 7} that exactly one of 3 and 5 is in {x2,z5}. Therefore, by symmetry, we may
assume that z3 € {3,5}.

FI1Gure 30
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9.2.2. If x3 = 3, then (x1,x2,23) = (2,1,3).

To see this, observe that, by Lemma 2.8, {z1,2z2,23} = {1,2,3}. If 253 = 2,
then M has {2,3,24,7} as a cocircuit. But x4 ¢ {1,2,3,4,5,6,7}. Thus z4 €
clin2({3,4,5,6,7}), a contradiction to 9.2.1. Hence 9.2.2 holds.

9.2.3. 23 #5.

Suppose z3 = 5. Then, by Lemma 2.8, {z1, 22,23} = {4,5,6}. Thus {4,5,7, 24}
or {5,6,7,24} is a cocircuit of M, which contradicts 9.2.1. Hence 9.2.3 holds.

On combining 9.2.2 and 9.2.3, we see that M has a cocircuit {1,3,7,s}. Now
N < M\2. The last matroid has (7,3,5,4,6) as a 5-fan. Hence N < M\2\6, so
N < M\6. As (i) of the lemma does not hold, M\6 is not internally 4-connected.

Next we show the following.

9.2.4. M\6 is (4,4, S)-connected.

Suppose M\6 is not (4,4, S)-connected. Then, by Lemma 2.6, {4,5,6} is the
central triangle of a quasi rotor whose other triangles are {1,2,3}, {z,y,8}, and
{8,9,0} and whose cocircuits are {2,3,4,5} and {y,6,8,9}, for some z in {2,3}
and some y in {4,5}. If x = 3, then {3,4,5,6,8,9} is 3-separating in M\2; a
contradiction. Hence 2 = 2. The triangle {3,5,7} implies that y # 5. Hence y = 4
and M contains the configuration shown in Figure 30 where ¢ = 9; a contradiction.
We conclude that 9.2.4 holds.

Now M\1 has (5,7,3,s) as a 4-fan, so it is not internally 4-connected. Thus (iv)
of Lemma 2.6 does not hold. Therefore (ii) or (iii) of that lemma holds. But (ii)
gives that M has a good bowtie. Hence (iii) holds. Then M has a triangle {x,y, z}
and a cocircuit {y, z,6,u} where z € {2,3} and y € {4,5}. Now (x,y) # (3,5) oth-
erwise z = 7 and {3,4,5,6,7,u} is 3-separating in M\2; a contradiction. Similarly,
(z,y) # (3,4) otherwise {3,4,5,6,7,z} is 3-separating in M\2; a contradiction.
We deduce that z = 2. If y = 4, then the configuration in Figure 30 occurs as
a restriction of M; a contradiction. We may now assume that y = 5. Then, as
{5,2,6,u} is a cocircuit of M and {3,5,7} is a triangle, orthogonality implies that
{3,7} meets {z,u}. But, by (iii) of Lemma 2.6, |{1,2,3,4,5,6,2,u}| = 8. Thus
7€ {z,u}. Clearly z # 7, s0o u = 7. Then {3,4,5,6,7, 2} is 3-separating in M\2; a
contradiction. We conclude that Lemma 9.2 holds. (]

10. THE PROOF THE MAIN RESULT

This section completes the final details of the proof of the main result. We begin
with the following.

Proof of Theorem 3.1. In Section 3, we outlined the steps in the proof of this the-
orem. These steps were completed in Sections 4-8, so the theorem holds. ([

Proof of Theorem 1.3. By combining Theorem 3.1 with Lemma 9.2, we immedi-
ately obtain that Theorem 1.3 holds when |E(N)| > 7. But the hypothesis of
the last theorem allows |E(N)| to be 6. In that case, N & M(K,). Since every
3-connected binary matroid with at least six elements has an M (K,)-minor, when
N = M(K,), provided we maintain internal 4-connectivity, we also preserve an
N-minor. It is straightforward to apply the main theorem of [1] to verify that
Theorem 1.3 holds when |E(N)| = 6. |
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