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Abstract. Our splitter theorem studies pairs of the form (M,N),
where M and N are internally 4-connected binary matroids, M has
a proper N -minor, and if M ′ is an internally 4-connected matroid
such that M has a proper M ′-minor and M ′ has an N -minor, then
|E(M)|− |E(M ′)| > 3. The analysis in the splitter theorem requires the
constraint |E(M)| ≥ 16. In this article, we complement that analysis by
describing all such pairs for which |E(M)| ≤ 15.

1. Introduction

A matroid is internally 4-connected if it is 3-connected and
min{|X|, |Y |} = 3 for any 3-separation, (X,Y ). For some time, we have
been engaged in a project to develop a splitter theorem for internally 4-con-
nected binary matroids [2, 3, 4, 5, 6, 7, 8, 9]. This means that we are
concerned with what we refer to here as interesting pairs. If N and M are
matroids, we write N �M to mean that M has an N -minor, and N ≺M to
mean that M has a proper N -minor. An interesting pair is a pair (M,N),
where M and N are internally 4-connected binary matroids such that

• |E(N)| ≥ 6;
• N ≺M ;
• if M ′ is an internally 4-connected matroid for which N �M ′ ≺M ,

then |E(M)| − |E(M ′)| > 3.

Note that the last condition means that |E(M)|−|E(N)| > 3. We say that
an interesting pair, (M,N), is a fascinating pair if M ′ is isomorphic to N
whenever M ′ is an internally 4-connected matroid satisfying N �M ′ ≺M .
Thus an interesting pair is fascinating if there is no intermediate internally
4-connected matroid in the minor order.

It has been known for some time (see, for example, [11]) that there are
fascinating pairs with |E(M)|− |E(N)| arbitrarily large; indeed, this is true
even if we insist that M and N are graphic matroids, since we can produce
a fascinating pair by setting N to be the graphic matroid of a cubic planar
ladder, and letting M be the graphic matroid of a quartic planar ladder on
the same number of vertices. However, our project has shown that only a
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2 CHUN, MAYHEW, AND OXLEY

small number of constructions are needed to build M from N , whenever
(M,N) is a fascinating pair.

The analysis in our project requires E(M) to have at least 16 elements.
To complement this analysis, this article describes all interesting pairs for
which |E(M)| ≤ 15. Our first theorem will describe the fascinating pairs. Up
to duality, there are exactly 31. Before that, we introduce some important
matroids and graphs.

For n ≥ 3, we denote the cubic Möbius ladder on 2n vertices by CM2n.
This graph is obtained from a cycle on 2n vertices by joining each vertex
to the vertex of distance n. Similarly, for n ≥ 2, the quartic Möbius ladder
on 2n+ 1 vertices is denoted by QM2n+1, and is obtained from a cycle with
2n+1 vertices by joining each vertex to the two vertices of distance n. Note
that QM5 is isomorphic to K5, and CM6 is isomorphic to K3,3.

The Möbius matroids have been discovered in several contexts [13, 14].
For each positive integer n ≥ 3, let Wn be the wheel with n + 1 vertices,
and let B be the set of spoke edges. Thus B is a basis of the rank-n binary
matroid M(Wn). Let Mn be the binary matroid obtained from M(Wn)
by adding a single element, γ, so that the fundamental circuit, C(γ,B), is
B∪γ. Kingan and Lemos [13] denote Mn by F2n+1. Observe that M3 is the
Fano matroid, and M4

∼= M∗(K3,3). When n is odd, M∗n is the rank-(n+ 1)
triadic Möbius matroid, denoted by Υn+1. Hence Υ4

∼= F ∗7 . Moreover, Υ6 is
isomorphic to any single-element deletion of T12, the rank-6 binary matroid
introduced by Kingan [12]. We also observe that Υn+1\γ ∼= M∗(QMn).

For n ≥ 3, we construct the graph G+
n+2 by starting with an n-vertex

cycle, C, and then adding two additional vertices, u and w, and making
both of them adjacent to every vertex in C. We then join u and w with
an edge, γ. Note that the planar dual of G+

n+2\γ is CM2n. Let x and y be
adjacent vertices in C. Let ∆n+1 be the binary matroid that is obtained
from M(G+

n+2) by deleting the element xy and adding a new element so that
it forms a circuit with the elements wx and uy. This new element also forms
a circuit with ux and wy. Then ∆n+1 is the rank-(n+ 1) triangular Möbius
matroid. We define ∆3 to be F7. Note that ∆n+1\γ ∼= M∗(CM2n). Kingan
and Lemos [13] use B3n+1 to denote G+

n+2, and S3n+1 to denote ∆n+1.
Now we give our description of fascinating pairs. Any graphs or matroids

which we have not yet defined will be introduced in Section 3. For now, we
note that Q3 is the cube graph; H1, H2, and H3 are graphs with 13 edges,
and, respectively, 6, 7, and 8 vertices; Q×3 and Y9 have 14 edges and, respec-
tively, 8 and 9 vertices; A1, A2, A3, A4, and A5 are non-graphic matroids
with rank 8 and 14 elements, whereas A6 has rank 7 and 14 elements; the
matroids P and Q have rank 4 and 11 elements; each matroid of the form
Bi or Cj has rank 8 and 15 elements; both R and S have rank 5 and 11
elements, while D1 and E1 have rank 9 and 15 elements.
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Theorem 1.1. Assume that (M0, N0) is a fascinating pair and |E(M0)| ≤
15. Then, for some pair, (M,N) in {(M0, N0), (M

∗
0 , N

∗
0 )}, one of the fol-

lowing statements holds.

(1) M is one of M(Q3) or M(K5) ∼= M(QM5), and N is M(K4);
(2) M is one of Υ6 or Υ∗6, and N is F7

∼= Υ∗4;
(3) M is one of M(H1), M(H2), M(H3), or M(QM7), and N is

M(K3,3) ∼= M(CM6);
(4) M is one of M(Q×3 ), M(Y9), M(QM7), or M(CM10), and N is

M(K5) ∼= M(QM5);
(5) M is one of A1, A2, A3, A4, A5, A6, or Υ8, and N is ∆4;
(6) M is one of B1, B2, B3, B4, or B5, and N is P ;
(7) M is one of C1, C2, C3, or C4, and N is Q;
(8) (M,N) = (D1, R);
(9) (M,N) = (E1, S); or

(10) (M,N) = (Υ8,Υ6).

With Theorem 1.1 in hand, it is easy to find the pairs that are interesting
but not fascinating: there are only three (up to duality).

Theorem 1.2. Assume that (M0, N0) is an interesting pair that is not
fascinating and that |E(M0)| ≤ 15. Then there is a pair, (M,N)
in {(M0, N0), (M

∗
0 , N

∗
0 , )}, such that (M,N) is either (M(QM7),M(K4)),

(Υ8, F7, ), or (Υ∗8, F7).

The following table shows the number of interesting pairs (up to duality),
where the larger matroid has m elements in its ground set, and the smaller
has n elements. Note that none of the pairs we have listed consists of two
self-dual matroids, so if we were not taking duality into account, we would
just double the numbers in the table.

n
m

10 11 12 13 14 15

6 1 1 1
7 2 2
8
9 3 1
10 9 2
11 12

Next we note the specialisation of our theorems to graphic matroids.
Any graphs not already defined are described in Section 3. Let G be a
simple, 3-connected graph. For any partition, (X,Y ), of the edge set, let
V (X,Y ) be the set of vertices incident with edges in both X and Y . We say
that G is internally 4-connected if, whenever 3 ≤ |X| ≤ |Y | we have that
|V (X,Y )| ≥ 3, with equality implying that X is either a triangle or the set
of edges incident with a vertex of degree 3. In other words, G is internally
4-connected if and only if M(G) is an internally 4-connected matroid.
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Theorem 1.3. Assume G1 and G2 are internally 4-connected graphs such
that |E(G1)| ≤ 15, and G1 has a proper G2-minor. Assume also that if G
is an internally 4-connected graph such that G1 has a proper G-minor, and
G has a G2-minor, then |E(G1)| − |E(G)| > 3. Then one of the following
statements holds.

(1) G1 is one of K5, Q3, K2,2,2, or QM7, and G2 is K4;
(2) G1 is one of H1, H2, H3, or QM7, and G2 is K3,3;
(3) G1 is one of Q×3 , Y9, QM7, or CM10, and G2 is K5.

In many of the pairs in Theorems 1.1 and 1.2, we encounter structures that
are familiar from the analysis in the rest of the project. These structures lead
to operations that we can use to produce a smaller internally 4-connected
matroid from a larger one. Four such operations will be documented in
Section 2. In the following results, we explain exactly when it is possible to
perform them on our interesting pairs.

Theorem 1.4. Let the pair (M,N) be as described in one of the state-
ments (1)–(10) in Theorem 1.1. If (M,N) is not one of (M(Q3),M(K4)),
(M(K5),M(K4)), (Υ6, F7), (Υ∗6, F7), (M(QM7),M(K3,3)), or (Υ8,∆4),
then N can be obtained from M (or N∗ can be obtained from M∗) by one
of the following four operations:

(1) trimming a ring of bowties;
(2) deleting the central cocircuit of a good augmented 4-wheel;
(3) a ladder-compression move; or
(4) trimming an open rotor chain.

The next corollary deals with the three interesting pairs identified in The-
orem 1.2.

Corollary 1.5. Let (M,N) be (M(QM7),M(K4)), (Υ8, F7), or (Υ∗8, F7).
Then there is an internally 4-connected binary matroid, M0, such that N ≺
M0 ≺ M , and either M0 can be obtained from M (or M∗0 can be obtained
from M∗) by a ladder-compression move.

Three of the six exceptional pairs in Theorem 1.4 are covered by specific
scenarios from our main theorem [9]. In particular, since ∆3

∼= F7, we see
that if (M,N) is (Υ6, F7) or (Υ8,∆4), then M is a triadic Möbius matroid
of rank 2r, and N is a triangular Möbius matroid of rank r. If (M,N)
is (M(QM7),M(K3,3)), then M is the cycle matroid of a quartic Möbius
ladder, and N is the cycle matroid of a cubic Möbius ladder, K3,3

∼= CM6,
and furthermore, r(N) = r(M) − 1. Thus the only truly exceptional pairs
are (M(K5),M(K4)), (M(Q3),M(K4)), and (Υ∗6, F7).

We prove Theorems 1.1 and 1.2 with an exhaustive search, using the ma-
troid functionality of the Sage mathematics package (Version 6.10) [17]. All
the computations performed in this search were performed on a single desk-
top computer, and took a total of approximately 55 hours. In Section 4 we
will sketch the procedures we used. Full details can be found at arXiv:1501.

arXiv:1501.00327
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00327. Some of the objects created during the search, such as a catalogue
of 3-connected binary matroids with at most 15 elements, required a non-
trivial amount of computation. Those objects, along with the Sage work-
sheet, BinarySplitter.sws, used in the search, are available for download
at http://homepages.ecs.vuw.ac.nz/~mayhew/splittertheorem. The
files are also hosted on SageMathCloud at https://cloud.sagemath.com/
projects/fa8ea5db-9456-4875-a4a6-56f202168fdc/files/.

2. Winning Moves

In this section, we describe four different structures that appear naturally
when we examine internally 4-connected binary matroids. Each structure
allows us to perform certain deletions and contractions to obtain an inter-
nally 4-connected proper minor. These operations play an essential role in
the statement of our splitter theorem. In Section 3, we analyse the pairs in
Theorems 1.1 and 1.2, and demonstrate that, in many cases, these structures
appear there also.

A 4-element fan is a set {x1, x2, x3, x4}, where {x1, x2, x3} is a triangle
and {x2, x3, x4} is a triad. A 3-connected matroid, M , is (4, 4, S)-connected
if, for every 3-separation, (X,Y ), of M , one of X and Y is a triangle, a
triad, or a 4-element fan.

A bowtie consists of a pair of disjoint triangles whose union contains
a 4-element cocircuit. Assume k ≥ 2, and T0, T1, . . . , Tk is a sequence
of pairwise disjoint triangles. Let Ti be {ai, bi, ci} for i ∈ {0, 1, . . . , k}.
Assume Di = {bi, ci, ai+1, bi+1} is a cocircuit for i ∈ {0, 1, . . . , k − 1},
and, in addition, Dk = {bk, ck, a0, b0} is a cocircuit. Then we say that
T0, D0, T1, D1, . . . , Tk, Dk is a ring of bowties. Although the matroid M we
are dealing with need not be graphic, we follow the convention begun in [1]
of using a modified graph diagram to keep track of some of the circuits and
cocircuits in M . Figure 1 shows such a modified graph diagram. Each of
the cycles in such a graph diagram corresponds to a circuit of M while a
circled vertex indicates a known cocircuit of M . If M ′ is obtained from M
by deleting the dashed edges, then we say that M ′ is obtained from M by
trimming a ring of bowties.

ak−1

bk−1

ck−1 ak

bk

cka1

b1

c1

a0

b0

c0

Figure 1. A ring of bowties. All elements are distinct.

arXiv:1501.00327
arXiv:1501.00327
http://homepages.ecs.vuw.ac.nz/~mayhew/splittertheorem
https://cloud.sagemath.com/projects/fa8ea5db-9456-4875-a4a6-56f202168fdc/files/
https://cloud.sagemath.com/projects/fa8ea5db-9456-4875-a4a6-56f202168fdc/files/
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An augmented 4-wheel is represented by the diagram in Figure 2, where
the four dashed edges form the central cocircuit. If a matroid, M , contains
the structure in Figure 2 and M\e is (4, 4, S)-connected, then we say that
the augmented 4-wheel is good.

c0

e
s

a0
b0 a1

b1

c1

a2

b2

Figure 2. An augmented 4-wheel. All elements are distinct.

Our third structure requires a special four-element move. If M contains
the structure in Figure 3, then we say that M\c1, c2/d1, b2 is obtained from
M by a ladder-compression move.

d0

a1

b1

c1

d1

a2

b2

c2

d2

a0

b0

c0

Figure 3. A ladder-segment. All elements are distinct.

Finally, we consider the structure in Figure 4. Note that n may be either
even or odd. When there are at least three dashed elements, we refer to the
structure in Figure 4 as an open rotor chain and we refer to the operation
of deleting the dashed elements as trimming an open rotor chain.

3. The special graphs and matroids

This section has two purposes. First, we introduce the graphs and ma-
troids from Theorem 1.1 that have not already been defined. In many of
the pairs from that theorem, it is possible to apply one of the four oper-
ations described in Section 2. Thus the second purpose of this section is
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an

bn

cn−1

bn−1

cn−2

bn−2

an−2

an−1cn−3a2

c1

b1

c0

b0

a1 cn

Figure 4. An open rotor chain. All elements are distinct.

to document when we are able to perform these operations, and thereby
prove Theorem 1.4. For reference, we list the pairs from Theorem 1.1. The
bolded pairs are those that appear in Theorem 1.4; that is, the pairs that
do not admit one of the operations from Section 2 (or the dual of such an
operation).

(1) (M(Q3),M(K4)), (M(K5),M(K4))
(2) (Υ6, F7), (Υ∗

6, F7);
(3) (M(H1),M(K3,3)), (M(H2),M(K3,3)), (M(H3),M(K3,3)),

(M(QM7),M(K3,3));
(4) (M(Q×3 ),M(K5)), (M(Y9),M(K5)), (M(QM7),M(K5)),

(M(CM10),M(K5));
(5) (Ai,∆4) for i = 1, . . . , 6, (Υ8,∆4);
(6) (Bi, P ) for i = 1, . . . , 5;
(7) (Ci, Q) for i = 1, . . . , 4;
(8) (D1, R);
(9) (E1, S);

(10) (Υ8,Υ6).

Now we start describing various graphs and matroids, beginning with the
graphs K4, K5, and Q3, all of which are illustrated in Figure 5. The graph
Q3 is known as the cube graph. Figure 5 also shows the octahedron graph,
K2,2,2, which is the planar dual of Q3.

In Lemma 2.3 of [10], Geelen and Zhou describe five internally 4-connected
graphs having K3,3

∼= CM6 as a minor. One of the five is CM8, which has
only 12 edges. Another is isomorphic to QM7. Let the other three graphs
be H1, H2, and H3. These are shown in Figure 6.

Proposition 3.1. Let (M,N) be one of the pairs (M(H1),M(K3,3)),
(M(H2),M(K3,3)), or (M∗(H3),M

∗(K3,3)). Then N is obtained from M by
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K4 K5 Q3 K2,2,2

Figure 5. Graphs K4, K5, Q3, and K2,2,2.

H1 H2 QM7H3

0

1

23

4

5

6

0

1

2

34

5

6

70

1

23

4

5

Figure 6. Graphs H1, H2, H3, and QM7.

trimming a bowtie ring, deleting the central cocircuit from a good augmented
4-wheel, or a ladder-compression move.

Proof. Note that M(H1) has the bowtie ring shown in Figure 7, and trim-
ming this ring yields M(K3,3). Also, M(H2) has a good augmented 4-wheel
whose central cocircuit is the set of edges incident with vertex 6. Delet-
ing this cocircuit yields M(K3,3). Finally, M∗(H3) has the ladder segment
shown in Figure 3, where edges (16, 12, 01, 07, 03, 23, 34, 47, 45, 25, 56, 67)
correspond to (a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2). If we delete c1 and
c2, and contract d1 and b2, then we obtain M∗(K3,3). �

1 4 1 4

2

3 5 0

2

Figure 7. Bowtie ring in H1.

Observe that of all the pairs in statements (1), (2), and (3) are either
bolded, or dealt with by Proposition 3.1. Thus we have verified Theorem 1.4
for these pairs.



A SPLITTER THEOREM FOR BINARY MATROIDS 9

The graphs Q×3 and Y9 are shown in Figure 8, along with CM10.

Q×
3 CM10

Y9

0 1

2

3

7

6

45

1

2

3

4

5

6

7 8

0

Figure 8. Graphs Q×3 , Y9, and CM10.

Proposition 3.2. Let (M,N) be one of the pairs (M∗(Q×3 ),M∗(K5)),
(M∗(Y9),M

∗(K5)), (M(QM7),M(K5)), or (M∗(CM10),M
∗(K5)). Then N

is obtained from M by trimming a bowtie ring, deleting the central cocircuit
from a good augmented 4-wheel, or a ladder-compression move.

Proof. Figure 9 shows a labelling of some of the edges in Q×3 , along with
a good augmented 4-wheel in M∗(Q×3 ). Deleting the central cocircuit of
this augmented wheel produces M∗(K5). Figure 10 shows the labelling of a
bowtie ring in M∗(Y9). Trimming this ring produces M∗(K5). Similarly, by
trimming the bowtie ring shown in Figure 11, we can obtain M∗(K5) from
M∗(CM10). Finally, it is clear that M(QMn−2) is obtained from M(QMn)
by a ladder-compression move, so in particular this applies to M(QM7) and
M(QM5)

∼= M(K5). �

7

1

3

24
8 5

7 6

0 9

1 2

4 3

8 6

5

0

9

Figure 9. Q×3 and a good augmented 4-wheel in M∗(Q×3 ).

Since Proposition 3.2 verifies Theorem 1.4 for the pairs listed in statement
(4), we now turn to non-graphic binary matroids. We shall describe each of
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b0

b1 b2

b3

c0

a1

c1 a2

c2

a3

c3a0

Figure 10. A bowtie ring in M∗(Y9).

a0 c0

b0

a1

c1
b1

a2

c2

b2

c3

a3

b3

a4

c4

b4

Figure 11. A bowtie ring in M∗(CM10).

these matroids via reduced binary representations. For example, Figure 12
shows a matrix, A, where [I4 | A] represents ∆4 over GF(2).

1

1

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

1

1

0

1

0

A =

0

1

2

3

4 5 6 7 8 9

1

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

0

1

0

1

0

0

1

1

B =

0

1

2

3

4 5 6 7 8 9

1

1

1

1

10

Figure 12. Representations of ∆4 and P .

The matroids A1, A2, A3, A4, and A5 have as reduced representations
the reduced matrices shown in Figure 13. Thus each Ai, for i = 1, . . . , 5,
is a rank-8 binary matroid with 14 elements, and each contains a 4-element
independent set whose contraction produces a minor isomorphic to ∆4. The
matroid A6 is represented in Figure 14. We can produce a ∆4-minor from
A6 by contracting a 3-element independent set and deleting a single element.
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1

1

0

0

0

0

1

0

0

1

0

0

0

0

1

1

1

0

0

1

0

0

0

0

1

1

0

0

0

0

1

1

0

1

0

0

0

0

1

0

1

0

0

1

0

1

0

1

1

1

0

0

0

0

1

0

0

1

0

0

0

0

1

1

1

0

0

1

0

0

1

0

0

1

0

0

1

0

1

0

1

0

0

1

0

0

1

1

1

1

0

0

0

0

1

0

1

1

0

0

0

0

1

0

0

1

1

0

0

0

0

1

1

0

1

1

0

1

0

0

A A A

A A

A1 A2 A3

A4 A5

Figure 13. Representations of A1, A2, A3, A4, and A5.

1

1

1

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

A

A6

0

0

1

0

0

1

1

Figure 14. A representation of A6.

Proposition 3.3. Let (M,N) be one of the pairs (A∗1,∆
∗
4), (A∗2,∆

∗
4),

(A∗3,∆
∗
4), (A∗4,∆

∗
4), (A∗5,∆

∗
4), or (A∗6,∆

∗
4). Then N is obtained from M

by trimming a bowtie ring, trimming an open rotor chain, or deleting the
central cocircuit from a good augmented 4-wheel.

Proof. We will check that ∆∗4 is obtained from each of A∗1, A
∗
2, A

∗
3, and A∗5

by trimming a bowtie ring. In Figure 13, assume that the matrices inherit
the labels on rows and columns from A, so that the first four rows of any
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matrix are labelled 0, 1, 2, 3, the columns are labelled 4, 5, 6, 7, 8, 9, and
the last four rows are labelled 10, 11, 12, and 13. Now A∗1 contains a bowtie
ring, as in Figure 1, where n = 3, and the labelling is given as follows

(a0, b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3) = (3, 0, 10, 9, 2, 12, 1, 5, 11, 8, 7, 13).

Trimming this ring produces ∆∗4. Similar statements apply to A∗2, A
∗
3, and

A∗5. In those cases, the bowtie rings, (a0, b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3),
are

• (4, 8, 11, 5, 7, 12, 0, 3, 10, 2, 6, 13);
• (4, 6, 10, 3, 2, 12, 1, 5, 11, 7, 8, 13); and
• (1, 0, 12, 2, 9, 11, 7, 6, 13, 8, 4, 10)

respectively.
The matroid A∗4 contains an open rotor chain, as in Figure 4, where n = 3,

and we label so that

(b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3) = (2, 10, 3, 6, 13, 4, 8, 11, 7, 5, 12).

Trimming this rotor chain produces ∆∗4.
Finally, for A6, we assume the matrix in Figure 14 inherits the la-

bels from A, and we label the extra column 10, and the extra rows as
11, 12, and 13. Then A∗6 contains an augmented 4-wheel, as in Figure 2,
where we label so that the elements (e, s, a0, b0, c0, a1, b1, c1, a2, b2) are re-
placed by (1, 0, 13, 10, 4, 11, 12, 5, 8, 7). Now A∗6\1 is (4, 4, S)-connected, and
A∗6\4, 10, 11, 12 ∼= ∆∗4, so the proof of the proposition is complete. �

Before we continue, we recall some introductory material. A simple rank-r
binary matroid, M , can be considered as a subset, E, of points in the pro-
jective geometry PG(r− 1, 2). The complement of M is the binary matroid
corresponding to the set of points of PG(r−1, 2) not in E. The complement
of M is well-defined by [15, Proposition 10.1.7], meaning that it depends
only on M , and not on the choice of E. In particular, if two simple rank-r
binary matroids have isomorphic complements, then they are themselves
isomorphic. The complement of M∗(K3,3) in PG(3, 2) is U2,3⊕U2,3, and the
complement of ∆4 is U2,2 ⊕ U2,3. The complement of M(K5) in PG(3, 2) is
U4,5. From this, it follows that M(K5) has a unique simple rank-4 binary
extension on 11 elements. We denote this extension by P , so the comple-
ment of P is U4,4. The matrix B, shown in Figure 12, represents P over
GF(2). Note that P\10 is isomorphic to M(K5), and that 10 is in triangles
with {4, 9}, {5, 8}, and {6, 7}, where each of these pairs corresponds to a
matching in K5. The matroids B1, B2, B3, B4, and B5 are represented by
the matrices in Figure 15.

Proposition 3.4. Let (M,N) be one of the pairs (B∗1 , P
∗), (B∗2 , P

∗),
(B∗3 , P

∗), (B∗4 , P
∗), (B∗5 , P

∗). Then N is obtained from M by trimming
a bowtie ring.

Proof. We assume that each matrix, Bi, inherits the labels on B, and that
the extra rows are labelled 11, 12, 13, and 14. In B∗1 , there is a bowtie ring,
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Figure 15. Representations of B1, B2, B3, B4, and B5.

as in Figure 1, with n = 3, where (a0, b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3) is
relabelled as (1, 3, 12, 0, 6, 11, 5, 9, 13, 7, 8, 14). Similarly, for B∗2 , B∗3 , B∗4 , and
B∗5 , the relevant relabellings are

• (1, 8, 12, 10, 5, 13, 2, 0, 11, 6, 3, 14);
• (8, 5, 13, 0, 2, 11, 3, 9, 14, 4, 10, 12);
• (10, 8, 14, 3, 1, 11, 0, 4, 12, 7, 5, 13); and
• (8, 1, 12, 7, 2, 13, 5, 0, 11, 6, 3, 14). �

Let Q be the binary matroid represented by the matrix C, below. Note
that Q is obtained by extending ∆4 by the element 10 in such a way that
{0, 8, 10} is a triangle. The complement of Q in PG(3, 2) is U1,1 ⊕ U2,3.
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The matroids C1, C2, C3, and C4 are represented by the matrices in
Figure 16.
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1 1 1 0 1 10

0 0 0 1 0 01
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Figure 16. Representations of C1, C2, C3, and C4.

Proposition 3.5. Let (M,N) be one of the pairs (C∗1 , Q
∗), (C∗2 , Q

∗),
(C∗3 , Q

∗), (C∗4 , Q
∗). Then N is obtained from M by trimming a bowtie ring.

Proof. We assume that each matrix Ci inherits the row and column labels
from C, and the extra rows are labelled 11, 12, 13, and 14. For C∗1 , C∗2 ,
C∗3 , and C∗4 , we relabel the elements (a0, b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3)
in Figure 1 as

• (1, 6, 12, 7, 9, 13, 2, 0, 11, 8, 10, 14);
• (4, 9, 12, 2, 0, 11, 3, 7, 14, 8, 5, 13);
• (9, 4, 12, 8, 6, 14, 1, 10, 11, 3, 5, 13); and
• (7, 0, 11, 4, 1, 12, 5, 2, 13, 6, 3, 14). �

Propositions 3.3 to 3.5 verify Theorem 1.4 for the pairs listed in statements
(5), (6), and (7). There are two matrices in Figure 17. The matrix D
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represents the binary matroid R. Note that R is obtained from M(K5) by
coextending by the element 10 so that 10 is in a triad with two elements
that correspond to a 2-edge matching in K5. Therefore R is isomorphic to
the matroid obtained from P by performing a ∆-Y -operation on the triangle
{4, 9, 10}.
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Figure 17. Representations of R and D1.

Proposition 3.6. R∗ can be obtained from D∗1 by trimming a bowtie ring.

Proof. Label the extra rows in D1 that are not in D as 11, 12, 13, and 14.
Then (8, 3, 12, 6, 0, 11, 5, 2, 13, 7, 1, 14) is the appropriate bowtie ring. �

The matroid S is represented by the matrix E, and E1 is represented by
the matrix shown in Figure 18. We can obtain S from ∆4 by coextending
by the element 10 so that it is in a triad with 0 and 8. Thus S can also be
obtained from Q by a ∆-Y -operation.
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Figure 18. Representations of S and E1.

Proposition 3.7. S∗ can be obtained from E∗1 by trimming a bowtie ring.

Proof. Label the extra rows in E1 that are not in E as 11, 12, 13, and 14.
Then (1, 5, 11, 4, 9, 12, 7, 6, 14, 3, 2, 13) is the appropriate bowtie ring. �

Recall that the Möbius matroids are defined in Section 1.
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Proposition 3.8. When r ≥ 6 is an even integer, the matroid Υ∗r can be
obtained from Υ∗r+2 by a ladder-compression move.

Proof. Recall that Υ∗r+2 = Mr+1 and Υ∗r = Mr−1, where Mk is an ex-
tension of the rank-k wheel by the element γ. Assume that the spokes
of M(Wr+1), in cyclic order, are x0, x1, . . . , xr and that {xi, yi, xi+1} is a
triangle of M(Wr+1) for i = 0, 1, . . . , r. (We interpret subscripts modulo
r + 1.) Then, for i = 0, 1, . . . , r, the set {yi, xi+1, yi+1, γ} is a cocircuit of
Mr+1. We obtain Mr−1 from Mr+1 by contracting yr−1 and yr, and delet-
ing xr−1 and x0, and then relabelling xr as x0. To see this, observe that
Mr+1 has {x0, . . . , xr, γ} and {xr−1, xr, yr−1} as circuits, so their symmetric
difference, C = {x0, . . . , xr−2, yr−1, γ}, is a disjoint union of circuits. Or-
thogonality with the cocircuits containing γ implies that C is a circuit of
Mr+1. Next we note that {xr−1, xr, yr−2, yr} is the symmetric difference of
{yr−2, xr−1, yr−1, γ} and {yr−1, xr, yr, γ}, and is therefore a disjoint union of
cocircuits. This implies that yr is not in the closure of C in Mr+1. Therefore
C−yr−1 = {x0, . . . , xr−2, γ} is a spanning circuit of Mr+1/yr−1, yr\xr−1, x0,
and it follows easily that this matroid is Mr−1, up to relabelling.

Now we need only show that this operation is a ladder-compression move.
We note that Mr+1 contains a ladder segment, as depicted in Figure 3, where
the labels a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, and d2 are replaced by xr−4,
yr−4, xr−3, yr−3, xr−2, yr−2, xr−1, yr−1, xr, yr, x0, and y0, respectively.
Because r ≥ 6, these elements are all distinct. �

Proposition 3.8 now implies that Υ∗6 can be obtained from Υ∗8 by a ladder-
compression move. Thus we have completed the proof of Theorem 1.4.

Proof of Corollary 1.5. If (M,N) is (M(QM7),M(K4)), then we can set M0

to be M(QM5)
∼= M(K5), and M0 can be obtained from M by a ladder-

compression move. If (M,N) is (Υ8, F7) or (Υ∗8, F7), then we can set M0 to
be Υ6 or Υ∗6, respectively. In either case, by Proposition 3.8, we can use a
ladder-compression move to obtain M∗0 from M∗ (in the first case), or M0

from M (in the second). �

4. A proof sketch

In this section we sketch our proofs of Theorems 1.1 and 1.2. All com-
putation was carried out using Sage (Version 6.10). A full account is at
arXiv:1501.00327. Assume that (M,N) is a fascinating pair that con-
tradicts the statement of Theorem 1.1. We start by restricting the size of
N .

4.1.1. |E(N)| ∈ {10, 11}.

Certainly |E(N)| ≤ 11, since |E(M)| ≤ 15, and (M,N) is a fascinating
pair, so |E(M)| − |E(N)| > 3. Assume that |E(N)| < 10. First consider
the case that |E(N)| = 6, so that N is isomorphic to M(K4). If M has a
proper minor, M ′, such that |E(M)| − |E(M ′)| ≤ 3, and M ′ is internally

arXiv:1501.00327
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4-connected, thenM ′ has anM(K4)-minor [16, Corollary 12.2.13], and hence
(M,N) is not a fascinating pair. Therefore M has no such minor, so we can
apply our chain theorem [1, Theorem 1.3]. Since |E(M)| ≤ 15, it follows
from that theorem that M is the cycle matroid of a planar or Möbius quartic
ladder, or the dual of such a matroid. The only planar quartic ladder with
fewer than 16 edges is the octahedron, K2,2,2, which is the dual graph of
Q3, the cube. The only Möbius quartic ladders with fewer than 16 edges
have 14 or 10 edges. The former has the latter as a minor, and the latter
is isomorphic to K5. From this we deduce that, up to duality, (M,N) is
(M(Q3),M(K4)) or (M(K5),M(K4)), and that therefore (M,N) is not a
counterexample after all. Hence 6 < |E(N)| < 10. Up to duality, the only
internally 4-connected binary matroids satisfying this constraint are F7 and
M(K3,3) [10, Lemma 2.1].

From this point, we use almost exactly the same arguments as in [4,
Lemma 2.3]. Assume N is F7, so |E(M)| ≥ 11. We can use [18, Corol-
lary 1.2] to deduce that M is isomorphic to T12\e ∼= Υ6 or T12/e ∼= Υ∗6, so
(M,N) fails to contradict the theorem. Therefore we assume N is M(K3,3),
and hence |E(M)| ≥ 13. Now we can use [10, Lemma 2.3]. This lemma
defines five graphs, but only four of them have at least 13 edges. Therefore
we can deduce that M is isomorphic to one of the graphic matroids M(H1),
M(H2), M(H3), or M(QM7). Again this is a contradiction, as it implies
that (M,N) is not a counterexample, so the proof of 4.1.1 is complete.

At this point, it is appropriate to verify that the pairs mentioned in the
proof of 4.1.1 are indeed fascinating. Given a pair, (M,N), we consider all
flats, F , of M such that 0 ≤ r(F ) ≤ r(M) − r(N). If M/F has a proper
N -minor, then we examine subsets, D, of E(M/F ) such that |E(N)| <
|E(M/F\D)| < |E(M)|. If M/F\D is internally 4-connected and has an
N -minor, then we have found a certificate that (M,N) is not fascinating. If
we fail to find any such certificate, then (M,N) is fascinating. In this way,
we confirm that all the pairs in statements (1), (2), and (3) of Theorem 1.1
are fascinating.

By duality, we may assume that r(M) ≤ r∗(M). As |E(M)| ≤ 15, the
next result is a consequence.

4.1.2. r(N) ≤ r(M) ≤ 7.

Next we create a catalogue of all 3-connected binary matroids with ground
sets of cardinality between 6 and 15 and rank at most 7. Every 3-connected
binary matroid with at least 6 elements contains anM(K4)-minor [16, Corol-
lary 12.2.13]. We populate our catalogue by starting with this matroid, and
enlarging the catalogue through single-element extensions and coextensions.
When we extend, we ensure we produce no coloops, no loops, and no parallel
pairs. Dually, when we coextend, we create no loops, coloops, or series pairs.
Thus we only ever create 3-connected matroids [15, Proposition 8.1.10]. Ev-
ery 3-connected binary matroid can be constructed in this way, with the
exception of wheels [16, Theorem 8.8.4], so we initiate by adding the wheels
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of rank 3, 4, 5, 6, and 7. In this way, we guarantee that our catalogue will
contain every 3-connected binary matroid with suitable size and rank.

The generation of the catalogue is initially quick, but it becomes time-
consuming as we process larger matroids. In total, populating the catalogue
takes about 24 hours. The file, catalogue.sobj, which contains the cata-
logue, is available for download. Table 1 shows the number of 3-connected
binary matroids with rank r and size n.

n
r

3 4 5 6 7

6 1 0 0 0 0
7 1 1 0 0 0
8 0 3 0 0 0
9 0 4 4 0 0
10 0 4 16 4 0
11 0 3 37 37 3
12 0 2 68 230 68
13 0 1 98 983 983
14 0 1 121 3360 10035
15 0 1 140 10012 81218

Table 1. 3-connected binary matroids.

We examine each of these 3-connected matroids to find those that
are internally 4-connected. In this way, we create a catalogue file,
ifccatalogue.sobj, containing all internally 4-connected binary matroids
with size at most 15 and rank at most 7. Table 2 shows the number of such
matroids.

n
r

3 4 5 6 7

6 1 0 0 0 0
7 1 1 0 0 0
8 0 0 0 0 0
9 0 1 1 0 0
10 0 2 2 2 0
11 0 2 7 7 2
12 0 2 24 46 24
13 0 1 52 272 272
14 0 1 84 1389 3385
15 0 1 116 5816 36962

Table 2. Internally 4-connected binary matroids.
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Now we know that there are exactly 24 internally 4-connected binary
matroids with ground sets of cardinality 10 or 11. We think of these as
“target” matroids. We process each of the internally 4-connected matroids
in our catalogue with a ground set of cardinality 11, 12, 13, or 14, and record
in a lookup table, targetminors.sobj, which of the 24 target matroids it
has as a proper minor.

Next we search for fascinating pairs of the form (M,N), where |E(M)| =
15. In this case, N must be one of the 24 target matroids. For each internally
4-connected matroid, M , with |E(M)| = 15, we seek to eliminate target
matroids as candidates for N . If a target matroid is not isomorphic to a
minor of M , then it is certainly not a candidate for N . Having eliminated
any such target matroids, we then process internally 4-connected matroids
of size 11, 12, 13, and 14. Let M ′ be such a matroid. If M has an M ′

minor, then we use the lookup table to find the target matroids that are
isomorphic to minors of M ′. Any such target matroid cannot be N , because
M ′ is an intermediate matroid in the minor-order. If we eliminate every
target matroid as a candidate for N , then we know that M does not appear
in a fascinating pair, and we stop processing it. On the other hand, if we
have considered every possible M ′, and the target matroid N has not been
eliminated, then we know that (M,N) is a fascinating pair. Processing the
15-element matroids in this way takes approximately 21 hours and produces
a list of 14 pairs.

We repeat this procedure for fascinating pairs, (M,N), where |E(M)| =
14. In this case, |E(N)| = 10, so we need consider only six of the target
matroids. Furthermore, the potential intermediate matroid, M ′, can be
assumed to have size 11, 12, or 13. This procedure take only 17 minutes,
and produces 11 pairs. However, two of these pairs are duals of other pairs,
so up to duality, the procedure discovers 9 new pairs. Therefore, amongst
fascinating pairs, (M,N), with |E(M)| ≤ 15, there are, up to duality, two
containing M(K4), two containing F7, and four containing M(K3,3). The
computer search finds an additional 23 pairs. The proof of Theorem 1.1 is
completed by simply checking that the 23 pairs found by the computer are
all contained in the statement of the theorem, up to duality.

From Theorem 1.1, it is straightforward to prove Theorem 1.2. If (M,M0)
is interesting but not fascinating, then there is an internally 4-connected
matroid, M1, satisfying M0 ≺ M1 ≺ M . Now (M,M1) is an interesting
pair, so we can repeat this argument. Continuing in this way, we see that
if (M,M0) is interesting but not fascinating, then M0 ≺ N ≺ M for some
internally 4-connected matroid, N , such that (M,N) is a fascinating pair.

This observation gives us our strategy for finding all interesting pairs.
Let (M,N) range over all fascinating pairs (up to duality) with |E(M)| ≤
15. Consider each matroid, T , from the catalogue of internally 4-connected
matroids, such that N has a proper T -minor. We test to see whether any
proper minor of M produced by deleting and contracting at most three
elements is internally 4-connected with a T -minor. If not, then (M,T ) is
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interesting but not fascinating. Applying this check to all the fascinating
pairs in Theorem 1.1 produces the pairs (M(QM7),M(K4)), (Υ∗8, F7), and
(Υ∗8, F

∗
7 ). This completes the proof of Theorem 1.2.
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