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Abstract. Split matroids form a minor-closed class of matroids, and
are defined by placing conditions on the system of split hyperplanes in
the matroid base polytope. They can equivalently be defined in terms
of structural properties involving cyclic flats. We confirm a conjecture
of Joswig and Schröter by proving an excluded-minor characterisation
of the class of split matroids.

1. Introduction

The class of split matroids was recently introduced by Joswig and Schröter
[7], who successfully deployed them as a tool in tropical linear geometry.
The definition arises from natural considerations in the polyhedral view of
matroids. Let M be a matroid on the ground set {1, . . . , n}. Any subset
of {1, . . . , n} is identified with its characteristic vector in Rn. The matroid
base polytope, P (M), is the convex hull of the characteristic vectors of the
bases of M . Roughly speaking, a split of a polytope is a division into two
polytopes by a hyperplane, called a split hyperplane. If all pairs of split
hyperplanes in a matroid polytope satisfy a certain compatibility condition,
then the matroid is split. Although the motivation for split matroids arises
from tropical linear geometry, natural questions also arise in the area of
structural matroid theory, and it is one of these questions that we address
here.

First we provide more detail on the polyhedral background. Let X be a
set of points in Rn. The convex hull of X is the intersection of all closed
half-spaces that contain X. A polytope is the convex hull of a finite set of
points. The intersection of two polytopes is also a polytope. If X is empty,
then so is its convex hull. Let P be the convex hull of the non-empty finite
set X. Let A be the affine subspace of Rn spanned by P , and let H be any
hyperplane of A. Thus A−H is partitioned into two open half-spaces of A.
If one of these has an empty intersection with P , then H ∩ P is a face of
P . Note that the empty set is a face. In addition, we declare P itself to be
a face of P . A face is a facet if it is properly contained in exactly one face,
namely P . A vertex is a minimal non-empty face. A point in P that is in no
face other than P itself is in the relative interior of P . Every vertex of P is
a point in X. Every face of P is the convex hull of the vertices it contains,
and is therefore a polytope.
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The notion of a polytope split originated in [1] (see [2, Section 5.3.3]).
The definition we use here is from [6]. We let P be a polytope. A split of P
is a collection, C, of polytopes such that:

(i) the empty polytope is in C,
(ii) if Q is in C, then all the vertices of Q are also vertices of P ,
(iii) if Q is in C, so are all the faces of Q,
(iv) the intersection of any two distinct polytopes Q1, Q2 ∈ C is a face of

both Q1 and Q2,
(v)

⋃
C∈C C = P , and

(vi) there are exactly two maximal polytopes in C.
The members of C are called the cells of the split. The affine subspace
spanned by the intersection of the two maximal cells is called a split hyper-
plane.

Let ∆(r, n) be the (n− 1)-dimensional hypersimplex : that is, the convex
hull of those 0, 1-vectors in Rn with exactly r ones. Hence ∆(r, n) is the
base polytope of the uniform matroid Ur,n. Note that the polytope of any
rank-r matroid on n elements is contained in ∆(r, n). Let M be a rank-r
matroid with ground set {1, . . . , n}. If x is in Rn, then xi stands for the
entry of x indexed by i ∈ E(M). Edmonds [3] proved that

P (M) =

{
x ∈ ∆(r, n) :

∑
i∈F

xi ≤ r(F ) for all flats F of M

}
.

Let F be a flat of M . Then H(F ) is the set{
x ∈ Rn :

∑
i∈F

xi = r(F )

}
.

If F is minimal under inclusion with respect to H(F ) intersecting P (M)
in a facet of P (M), then we say that F is a flacet of M . (This definition
originated in [4].) If, in addition, H(F ) ∩∆(r, n) spans a split hyperplane
of ∆(r, n), then we say that F is a split flacet of M . In this case, we can
think of H(F ) as separating P (M) from a portion of ∆(r, n) that does not
intersect P (M). Roughly speaking, the split flacets are the hyperplanes we
use when carving off portions of ∆(r, n) to obtain P (M).

Definition 1.1 ([7]). Assume that M is a rank-r matroid with ground set
{1, . . . , n}. Let A be the affine subspace of Rn spanned by P (M). We use
[0, 1]n to denote the closed unit cube. Assume that the following holds for
any distinct split flacets, F1 and F2, of M : no point in H(F1) ∩H(F2) is in
the relative interior of A ∩ [0, 1]n. Then we say that M is a split matroid.

Joswig and Schröter observe that the matroid polytopes of split matroids
are exactly those polytopes whose faces of codimension at least two are
contained in the boundary of ∆(r, n). They use split matroids and the
Dressian to construct a number of nonrepresentable tropical linear spaces,
and give a characterisation of matroid representability in terms of these
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spaces. In addition, they prove that the class of split matroids contains the
(possibly dominating) class of sparse paving matroids.

The following result is [7, Proposition 44].

Proposition 1.2. The class of split matroids is closed under duality and
under taking minors.

In light of Proposition 1.2, we naturally ask what the excluded minors are
for the class of split matroids. Joswig and Schröter identify five excluded
minors. Our main theorem shows that their list of excluded minors is com-
plete. Figure 1 shows geometric representations of four connected rank-3
matroids, each with six elements. Note that S∗1

∼= S2, whereas S3 and S4
are both self-dual matroids. In addition, we define S0 to be the matroid
constructed from the direct sum U2,3 ⊕ U2,3 by adding one parallel point to
each of the two connected components. Thus S0 is the direct sum of two
copies of M(W2), where W2 is the graph obtained by adding a parallel edge
to a triangle.

S1 S2 S3 S4

Figure 1. Connected excluded minors for split matroids.

Theorem 1.3. The excluded minors for the class of split matroids are S0,
S1, S2, S3, and S4.

Any unexplained matroid terms can be found in [8].

2. Reducing to the connected case

To prove Theorem 1.3, we employ Joswig and Schröter’s equivalent for-
mulation of Definition 1.1 that relies entirely on structural concepts.

We say that a flat, Z, of the matroid, M , is proper if 0 < r(Z) < r(M).
A set X ⊆ E(M) is cyclic if the restriction M |X contains no coloop. The
next result is [7, Proposition 1].

Proposition 2.1. Let Z be a flat of the connected matroid M . Then Z is
a flacet if and only if it is proper, and both M |Z and M/Z are connected.

Proposition 2.2. Let Z be a flat of the connected matroid M . Then Z is
a split flacet if and only if it is proper and cyclic, and both M |Z and M/Z
are connected.

Proof. Let E = {1, . . . , n} be the ground set of M , and let r be the rank
of M . Assume Z is a proper cyclic flat of M and that M |Z and M/Z are
connected. Then Z is a flacet by Proposition 2.1. We know that 0 < r(Z) <
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|Z|, since Z is a proper flat and is not independent. As Z and E − Z are
non-empty, we can find an element in E − Z that is not a coloop (since M
is connected). These are the conditions required to apply Lemma 6 of [7].
From this lemma, we see that the equation

(r − r(Z))
∑
i∈Z

xi = r(Z)
∑
i/∈Z

xi, or equivalently, r
∑
i∈Z

xi = r(Z)
∑
i∈E

xi.

defines a split hyperplane of ∆(r, n). The intersection of H(Z) with ∆(r, n)
satisfies the equation

∑
i∈Z xi = r(Z). By multiplying both sides of this

equation by r, and using the fact that in ∆(r, n) we have the equality∑
i∈E xi = r, we again obtain

r
∑
i∈Z

xi = r(Z)
∑
i∈E

xi.

This shows that the intersection H(Z)∩∆(r, n) is a split of ∆(r, n), so Z is
a split flacet, as desired.

For the converse, we let Z be a split flacet. Then Z is a proper flat and
both M |Z and M/Z are connected by Proposition 2.1. We need only show
Z is cyclic. Since H(Z) ∩ ∆(r, n) is a split of ∆(r, n), [7, Proposition 4]
asserts there is a positive integer, µ, which satisfies r > µ > r − |Z|. This
implies |Z| > 1. Proposition 13 in [7] says that any flacet of M with at
least two elements is a cyclic flat. Therefore Z is cyclic and the proof is
complete. �

Definition 2.3. Let M be a connected matroid, and let Z be a proper
cyclic flat of M . If both M |Z and M/Z are connected matroids, but at
least one of them is a non-uniform matroid, we say that Z is a certificate
for non-splitting.

Lemma 2.4. Let M be a connected matroid. Then M is split if and only if
it has no certificate for non-splitting.

Proof. Theorem 11 in [7] states that M is split if and only if M |Z and M/Z
are both uniform, for every split flacet Z. So the lemma follows immediately
from Proposition 2.2. �

The following result combines Lemma 10 and Proposition 15 of [7].

Proposition 2.5. Let U1, . . . , Ut be the connected components of the matroid
M , where t > 1. Then M is a split matroid if and only if each connected
matroid, M |Ui, is a split matroid, and at most one of these matroids is
non-uniform.

Note that a characterisation of connected split matroids now immediately
leads to a characterisation of all split matroids, by use of Proposition 2.5.
Note also that S0 has two connected components that are non-uniform,
and hence S0 is not a split matroid. It is also easy to check that S0 is an
excluded minor for the class of split matroids. We now show that it is the
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only disconnected excluded minor. The following result is a consequence of
[5, Theorem 4.1].

Proposition 2.6. Every connected non-uniform matroid has an
M(W2)-minor.

Proposition 2.7. The only disconnected excluded minor for the class of
split matroids is S0.

Proof. Suppose M is a disconnected excluded minor, so M is not a split
matroid, but every proper minor of M is. Let the connected components of
M be U1, . . . , Ut, where t > 1. As each M |Ui is a proper minor of M , we
see that M |Ui is a split matroid for each i. If at most one component of
M is non-uniform, then M is split, which is a contradiction. So let M |Ui

and M |Uj be non-uniform, where 1 ≤ i < j ≤ t. Now M |(Ui ∪ Uj) has two
components, Ui and Uj . Both M |Ui and M |Uj are split but non-uniform,
so M |(Ui ∪ Uj) is not split. Therefore it cannot be a proper minor of M .
From this we deduce that i = 1 and j = t = 2. By Proposition 2.6, each of
the two components of M contains M(W2) as a minor. Hence M contains
a minor isomorphic to S0 ∼= M(W2)⊕M(W2). As S0 is an excluded minor,
and no excluded minor can properly contain another, we now see that M is
isomorphic to S0, as desired. �

3. Proof of the main theorem

Lemma 3.1. Let M be a connected matroid. If M has a proper cyclic flat,
Z, such that M |Z is connected and has an M(W2)-minor, then M has a
minor isomorphic to S2, S3, or S4.

Proof. LetM be a counterexample chosen so that its ground set is as small as
possible. We let Z be a proper cyclic flat of M such that M |Z is connected
with an M(W2)-minor. Amongst all such flats, we assume that we have
chosen Z to be as small as possible. Since M is a counterexample, it has no
minor isomorphic to S2, S3, or S4.

3.1.1. If e is any element of Z, then (M |Z)\e has no M(W2)-minor.

Proof. We assume otherwise. It is well-known and easy to verify that Z−e is
a flat of M\e. As Z contains an M(W2)-minor, we see that |Z| ≥ 4. First we
consider the case that (M |Z)\e = M |(Z − e) is connected. Since M |(Z − e)
is a connected, non-empty matroid, it contains no coloops. This shows that
Z − e is a cyclic flat of M\e. Since M |(Z − e) has an M(W2)-minor, it has
rank greater than zero. As e is not a coloop of M , or of M |Z, we also have
rM\e(Z − e) = rM (Z) < r(M) = r(M\e). This establishes that Z − e is a
proper cyclic flat of M\e. Assume that M\e is not connected, and let (U, V )
be a separation. Since M |(Z − e) is connected, we can assume that Z − e is
a subset of U . As Z is a cyclic flat, e is spanned by Z−e in M . From this it
follows that (U ∪ e, V ) is a separation of M , which is impossible. Therefore
M\e is a connected matroid, and Z − e is a proper cyclic flat of M\e such
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that (M\e)|(Z − e) = (M |Z)\e is connected and has an M(W2)-minor. We
have shown that M\e is a smaller counterexample to the lemma, and from
this contradiction we deduce that (M |Z)\e is not connected.

Let (U1, . . . , Ut) be the partition of Z − e into connected components
of (M |Z)\e, where t > 1. Thus (M |Z)\e = (M |U1) ⊕ · · · ⊕ (M |Ut). Since
M(W2) is a connected matroid, we can assume thatM |U1 has anM(W2)-mi-
nor [8, Proposition 4.2.20]. As U1 is a connected component of (M |Z)\e with
at least four elements there are no coloops in M |U1. It follows that U1 is a
cyclic flat of (M |Z)\e. Assume that U1 is not a flat of M , and let z be an
element in clM (U1)−U1. Note that clM (U1) ⊆ clM (Z) = Z, so z is in Z. If
z = e, then (U1 ∪ e, U2 ∪ · · · ∪ Ut) is a separation of the connected matroid
M |Z, so z 6= e. Let C be a circuit containing z such that C ⊆ U1 ∪ z. Then
C contains elements from both U1 and U2∪· · ·∪Ut, and as (U1, U2∪· · ·∪Ut)
is a separation of (M |Z)\e, we have a contradiction. Therefore U1 is a cyclic
flat of M . Now rM (U1) ≤ rM (Z) < r(M), and obviously rM (U1) > 0, so
U1 is a proper cyclic flat of M . Moreover M |U1 is connected and has an
M(W2)-minor. But we chose Z to be the smallest possible cyclic flat with
these properties, and U1 does not contain any element of U2 ∪ · · · ∪ Ut so it
is strictly smaller than Z. This contradiction completes the proof. �

3.1.2. If x is an element in the complement of Z, then M\x is not connected.

Proof. Assume otherwise. Note that rM\x(Z) = rM (Z) < r(M) = r(M\x),
so it is obvious that Z is a proper cyclic flat of M\x. Moreover (M\x)|Z =
M |Z is connected and has an M(W2)-minor. This contradicts the minimal-
ity of M , so M\x is not connected. �

3.1.3. The complement of Z is a series pair of M .

Proof. Choose an arbitrary element, x, in the complement of Z. Using 3.1.2,
we let (U1, . . . , Ut) be the partition of E(M)−x into connected components
of M\x, where t > 1. As M |Z is connected, we can assume that Z ⊆ U1.
Then Z is a cyclic flat of M |U1. If it is a proper cyclic flat of M |U1, then
M |U1 is a connected matroid with a proper cyclic flat such that the restric-
tion to this cyclic flat is connected with an M(W2)-minor. This contradicts
the minimality of M , so Z spans U1. It is straightforward to verify that U1

is a flat of M , using some of the same arguments as in 3.1.1. Hence Z = U1.
Let y be an element of U2. Again using 3.1.2, we see that M\y is not

connected. Therefore M/y is connected [8, Theorem 4.3.1]. We can easily
check that clM/y(Z) is a cyclic flat of M/y, and that (M/y)|(clM/y(Z)) is
connected with an M(W2)-minor. So if clM/y(Z) is a proper cyclic flat of
M/y, we have contradicted the minimality of M . Therefore Z is not a proper
cyclic flat of M/y, meaning that r(Z) = r(M)− 1. Hence Z is a hyperplane
of M , and its complement is a cocircuit. However,

r(M) = r(M\x) = r(U1) + · · ·+ r(Ut) = r(Z) + r(U2) + · · ·+ r(Ut).

From this, and the fact that M has no loops, we deduce that t = 2, and
that r(U2) = 1. Assume that |U2| > 1, and let z be an element in U2 − y.
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Then {y, z} is a parallel pair. But deleting an element from a parallel pair
in a connected matroid always produces another connected matroid, so we
are led to a violation of 3.1.2. Thus U2 = {y}, and we conclude that the
complement of Z is the series pair {x, y}. �

Let {x, y} be the complement of Z, so that {x, y} is a series pair. Since
M |Z has an M(W2)-minor, but 3.1.1 implies we cannot produce such a mi-
nor by deleting any element, we see that there is a subset I ⊆ Z such that
(M |Z)/I is isomorphic to M(W2). Assume I is not independent, and let e be
an element contained in a circuit of M |I. Then (M |Z)/I = (M |Z)/(I−e)\e,
so we have a contradiction to 3.1.1. Therefore I is an independent set. Dual-
ising, we see that (M |Z)∗ = (M\{x, y})∗ = M∗/{x, y} has a coindependent
set, I, such that M∗/{x, y}\I is isomorphic to M(W2) (as M(W2) is self-
dual). Note that {x, y} is a parallel pair in M∗. As I is coindependent,
r(M∗/{x, y}) = r(M∗/{x, y}\I) = r(M(W2)) = 2, so r(M∗) = 3.

We choose elements a, b, c, and d, so that (M∗/{x, y})|{a, b, c, d} is iso-
morphic to M(W2), where {a, b} is a parallel pair in M∗/{x, y}. Note that
{a, b, x} has rank two in M∗, that {c, d, x} is independent, and that neither c
nor d is on the line spanned by {a, b, x}. We divide into two cases, according
to whether or not {a, b} is a parallel pair in M∗.

First assume that {a, b} is not a parallel pair, so that it is independent in
M∗. Note that M∗|{a, b, x, y} is isomorphic to M(W2). The lines cl∗M ({c, d})
and cl∗M ({a, b, x, y}) intersect in a flat of rank at most one, and this flat
cannot contain x. Hence the intersection of cl∗M ({c, d}) and {a, b, x, y} is
either empty, or it contains a (up to symmetry between a and b). In the
first case, the restriction M∗|{a, b, c, d, x, y} is isomorphic to S4, and in the
second it is isomorphic to S3. In these cases, M also has a minor isomorphic
to S3 or S4. Since this is a contradiction, we assume that {a, b} is a parallel
pair of M∗.

If {a, c, d} is independent, then M∗|{a, b, c, d, x, y} is isomorphic to S1,
which implies that M has a minor isomorphic to S∗1

∼= S2. This is a con-
tradiction, so {a, c, d} has rank two. Note that the restriction to {a, b, c, d}
is isomorphic to M(W2). As M∗ is a connected rank-3 matroid, the com-
plement of the line cl∗M ({a, b, c, d}) has rank at least two. We let z be an
element in this complement, chosen so that {x, z} is independent. The in-
tersection of cl∗M ({x, y, z}) and {a, b, c, d} is either ∅, {a, b}, or {c} (up to
symmetry between c and d). In the first case, M∗|{a, b, c, d, x, z} is isomor-
phic to S4. In the second and third cases, M∗|{a, c, d, x, y, z} is isomorphic
to S3. Thus we have a contradiction in any case, and this completes the
proof of the lemma. �

Proposition 3.2. Let Z be a proper cyclic flat of the matroid M . If E(M)−
Z is not a proper cyclic flat of M∗, then every element in E(M) − Z is a
coloop of M .

Proof. Let E be the ground set of M . The fact that E − Z is a cyclic
flat of M∗ is well-known and easy to verify. Suppose it is not proper; that
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is, r∗(E − Z) = r(M∗) or r∗(E − Z) = 0. First, consider the case where
r∗(E − Z) = r(M∗) = |E| − r(M). Then the corank function gives

|E| − r(M) = r(Z) + |E − Z| − r(M).

This implies that r(Z) = |Z|, so Z is an independent set in M . The only
independent cyclic flat is the empty set, and Z is non-empty since it is a
proper flat of M . So if E − Z is not a proper flat, then r∗(E − Z) = 0, and
this implies that every element in E − Z is a coloop of M . �

Proposition 3.3. Let M be a connected matroid that is not split. There
exists M ′ ∈ {M,M∗} such that the following holds: M ′ has a proper cyclic
flat, Z, where M ′|Z is connected and non-uniform.

Proof. Let E be the ground set of M . As M is connected and not split,
it contains a certificate, Z, for non-splitting, by Lemma 2.4. Thus Z is a
proper cyclic flat such that both M |Z and M/Z are connected matroids and
either M |Z or M/Z is non-uniform. If M |Z is non-uniform, then we set M ′

to be M and we are done. So we assume that M/Z is non-uniform. If M
contains a coloop, then it is isomorphic to the uniform matroid U1,1, and
is therefore a split matroid. This is impossible, so M has no coloops. We
apply Proposition 3.2 and deduce that E − Z is a proper cyclic flat of M∗.
Note that M∗|(E − Z) = (M/Z)∗ and M∗/(E − Z) = (M |Z)∗. Both of
these matroids are connected, and M∗|(E − Z) = (M/Z)∗ is non-uniform.
Therefore we set M ′ to be M∗ and relabel E − Z as Z. �

As an aside, this gives us an alternative characterisation of connected split
matroids.

Corollary 3.4. Let M be a connected matroid. Then M is split if and only
if, for every M ′ ∈ {M,M∗} and every proper cyclic flat Z of M ′, when
M ′|Z is connected it is uniform.

Proof. Proposition 3.3 provides us with the “if” direction. For the “only
if” direction, we assume there exists M ′ ∈ {M,M∗} and a proper cyclic
flat Z of M ′ such that M ′|Z is connected and non-uniform. By Proposition
2.6, M ′|Z has an M(W2)-minor. Lemma 3.1 tells us that M ′ has a minor
isomorphic to S2, S3, or S4, so M has a minor isomorphic to S1, S2, S3, or
S4. This implies M is not split. �

We can now easily prove our main result.

Proof of Theorem 1.3. The connected matroids S1, S2, S3, and S4 all con-
tain certificates for non-splitting. It is routine to verify that they are ex-
cluded minors. Let M be an excluded minor for the class of split matroids. If
M is not connected, then it is isomorphic to S0 by Proposition 2.7. Therefore
we assume that M is connected. By using Proposition 3.3 and duality, we
can assume that M has a proper cyclic flat, Z, such that M |Z is connected
and non-uniform. Proposition 2.6 implies that M |Z has an M(W2)-minor.
Lemma 3.1, and the fact that no excluded minor properly contains another,
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implies that M is isomorphic to S2, S3, or S4. (Note that S1 does not appear
in this analysis because of our duality assumption.) �
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