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Abstract. We present an analogue of a Myhill-Nerode characterisa-
tion which will allow us to prove that classes of hypergraphs cannot
be defined by sentences in the counting monadic second-order logic of
hypergraphs. We apply this to classes of gain-graphic matroids, and
show that if the group Γ is not uniformly locally finite, then the class
of Γ-gain-graphic matroids is not monadically definable. (A group is
uniformly locally finite if and only if there is a maximum size amongst
subgroups generated by at most k elements, for every k.) In addition, we
define the conviviality graph of a group, and show that if the group Γ has
an infinite conviviality graph, then the class of Γ-gain-graphic matroids
is not monadically definable. This will be useful in future constructions.

1. Introduction

The monadic second-order logic of matroids was introduced and developed
by Hliněný [6, 7]. We use CMSO1 to refer to the counting monadic second-
order logic of matroids (and more generally, hypergraphs). This language
has predicates that let us say when a subset of the domain has cardinality
congruent to p modulo q, for any appropriate pair p and q. The fragment
of CMSO1 that does not use these predicates is denoted by MSO1. (This
language has been at various times denoted by MSOL, MSM , and MS0.)
The following conjectures appear in [5].

Conjecture 1.1. Let Γ be a finite group. The class of Γ-gain-graphic ma-
troids is MSO1-definable.

Conjecture 1.2. Let Γ be an infinite group. The class of Γ-gain-graphic
matroids is not MSO1-definable.

The first and third authors have shown that Conjecture 1.1 is true. How-
ever, this positive result requires a structural theorem giving us control over
the representations of frame matroids by biased graphs. This will allow us
to construct a monadic transduction taking frame matroids as input and
producing their biased-graphic representations as output. The proof of this
structural theorem will be lengthy and is still work in progress, so for now
we claim this definability result without proof.

In contrast to this positive result, Conjecture 1.2 is false. If, for example,
Γ is the direct product of an infinite number of copies of Z2, then the class
of Γ-gain-graphic matroids is MSO1-definable. In fact, the third author and
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Ben-Shahar have built a hierarchy of infinite groups which are constructed
by alternately using direct products and a special semi-direct product. Each
of the infinite groups in this hierarchy gives rise to an MSO1-definable class
of gain-graphic matroids. This proof again requires the structural represen-
tation theorem, so we do not provide a proof here.

The purpose of this article is to instead present some negative results:
proving that for certain infinite groups Γ, the class of Γ-gain-graphic ma-
troids is not CMSO1-definable. We do this by using a variant on the Myhill-
Nerode characterisation of regular languages [12, 13]. Say that L is a lan-
guage of finite strings. The Myhill-Nerode characterisation constructs an
equivalence relation on finite strings: two strings w1 and w2 are equivalent
(relative to L) if there exists no string z such that exactly one of w1z and
w2z is in L. (Juxtaposition of strings indicates concatenation.) Now L
is regular if and only if there are finitely many equivalence classes in this
relation. Lemma 3.7 provides an analogue of this characterisation for hyper-
graphs. Our analogue of concatenation is a coloured sum (Definition 3.3).
The result of such a sum is a hypergraph. The summing operation allows us
to define an equivalence relation (Definition 3.5) on hypergraphs in exactly
the same way that Myhill-Nerode defines an equivalence relation on strings.
Monadic definability of a class implies that the index of this relation is finite
(Lemma 3.7). With this result in hand, we can prove the non-definability
of some properties of hypergraphs. We do so by exhibiting representatives
to demonstrate that there is an infinite number of equivalent classes.

We note some other similar results in the literature. First, Lemma 3.7
is a generalisation of Lemmas 1.3 and 1.4 in [11], since those lemmas are
specific to particular types of matroid summing operation. Lemma 3.7 is
independent from [2, Corollary 3], since the notion of a hypergraph sum
in that work bounds the number of hyperedges that intersect both sides
of the sum. Our notion of a sum does not require any such bound. Our
lemma is also independent of the tool created by Kotek and Makowsky [10,
Theorem 3.5], as the binary operation of matroid sum (defined in terms of
independent subsets) is not smooth (using their language).

Let Γ be a (multiplicative) group. Then Γ has finite exponent if there is
some positive integer p such that hp is the identity for every h ∈ Γ. If every
finite subset of Γ generates a finite subgroup then Γ is locally finite. Assume
there is a function gΓ taking positive integers to positive integers such that
any subgroup of Γ generated by at most k elements has size at most gΓ(k).
In this case Γ is uniformly locally finite. It is immediate that a uniformly
locally finite group is locally finite. Moreover, any subgroup generated by a
single element has order at most gΓ(1), and hence we see that Γ has finite
exponent. So uniform local-finiteness is a sufficient condition for Γ to be
locally finite with finite exponent. The restricted version of the famous
Burnside problem says that it is also necessary. This result is known to
be true thanks to the work of Zel′manov [16, 17]. To reiterate: a group is
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uniformly locally finite if and only if it has finite exponent and is locally
finite.

Our main theorem is as follows:

Theorem 5.7. Let Γ be an infinite group that is not uniformly locally finite.
The class of Γ-gain-graphic matroids is not CMSO1-definable.

It is reasonable to ask if the other direction of Theorem 5.7 holds: is it true
for any Γ that if the class of Γ-gain-graphic matroids is not CMSO1-defin-
able, then Γ is not uniformly locally finite? This is more naturally asked in
the contrapositive: if Γ is uniformly locally finite, then is the class of Γ-gain-
graphic matroids CMSO1-definable? A counting argument shows that this
cannot be the case. There are uncountably many infinite groups that are
uniformly locally finite. It is not hard to show that in addition, there are
uncountably many distinct classes of Γ-gain-graphic matroids, where Γ is
uniformly locally finite. Since there are only countably many CMSO1-sen-
tences, it follows that the converse of Theorem 5.7 cannot hold.

In fact, it is possible to go further, and explicitly construct an infinite
group Γ such that Γ is uniformly locally finite and the class of Γ-gain-graphic
matroids is not CMSO1-definable. We do not provide the description of such
a group here, but we develop a tool that will aid in this construction. Let
F be a finite subgroup of an infinite group Γ. The F -conviviality graph of Γ
carries information about how copies of F are embedded in Γ: specifically,
how these copies of F relate to other finite subgroups of Γ. As a second
application of the Myhill-Nerode lemma, we prove our second main theorem.

Theorem 6.4. Let Γ be a group. If Γ has a finite subgroup F such that
the F -conviviality graph of Γ is infinite, then the class of Γ-gain-graphic
matroids is not CMSO1-definable.

The structure of the paper is as follows: In Section 2 we cover some
fundamental notions of hypergraphs, monadic logic, matroids, and biased
graphs. We use ultrafilters and ultraproducts to simplify the proof of The-
orem 5.7, and these concepts are explained in Section 2.4. Section 3 gives
the context and proof for an analogue of the Myhill-Nerode characterisation
for monadically-defined classes of hypergraphs. Section 4 is a purely ma-
troidal section, establishing properties of the ‘gluing’ operation that we use.
In Section 5 we use our assembled tools to prove Theorem 5.7. Section 6
introduces the notion of an F -conviviality graph and proves Theorem 6.4.

2. Preliminaries

We write N for the set of positive integers. If n is in N, we write [n] for
{1, 2, . . . , n}. We write 2U for the power set of the set U . If I is a set and i
is an element then we write I + i for I ∪ {i}. We regard each function as a
set of ordered pairs. So if σ : X → Y is a function and x is an element not
in X then σ + (x, y) is the function with domain X + x which takes each
element of x to its image under σ and which takes x to y. Graphs may have
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loops and parallel edges. If G is a graph and X is a set of edges, then G[X]
is the subgraph with X as its set of edges. The vertices of G[X] are exactly
the vertices of G that are incident with at least one edge in X. We will very
frequently blur the distinction between sets of edges and subgraphs. For
example, a cycle may be a set of edges or it may be a subgraph, according
to which is more convenient for us.

2.1. Hypergraphs. A hypergraph consists of a finite set E and a collection
I of subsets of E. We refer to E as the ground set of the hypergraph, and
call the members of I the hyperedges.

The foundations of matroid theory can be found in Oxley [14]. A matroid
is a hypergraph where the collection of hyperedges is non-empty and is
closed downwards under subset containment, and furthermore, whenever I
and J are hyperedges satisfying |I| < |J |, then there is an element e ∈ J − I
such that I + e is a hyperedge. The hyperedges of a matroid are called
independent sets. The dependent subsets are the subsets of the ground
set that are not independent. A dependent subset that does not properly
contain a dependent subset is a circuit. A (matroidal) loop is an element e
such that {e} is a circuit. A coloop is an element that is in no circuit. A
matroid is simple if every subset of size at most two is independent.

Let M = (E, I) be a matroid. If X is a subset of E then the rank of X,
written r(X), is the maximum cardinality of an independent subset of X.
Thus r(X) = |X| if and only if X is independent. We write M |X for the
matroid

(X, {I ∈ I : I ⊆ X}).

and we refer to this as the restriction of M to X. A flat is a subset F ⊆ E
such that r(F + x) > r(F ) for every x ∈ E − F . An intersection of flats is
also a flat. The closure of X, written cl(X), is the intersection of all flats
that contain X. Assume X and Y are disjoint sets. Then r(X) + r(Y ) ≥
r(X ∪ Y ) by submodularity of the rank function [14, Lemma 1.3.1]. If
r(X) + r(Y ) = r(X ∪Y ) then the pair of sets is skew. This is the case if and
only if there is no circuit contained in X ∪Y that contains elements of both
X and Y [14, Proposition 4.2.1]. A separation of the matroid is a partition
of E into a skew pair of non-empty sets.

Let E be a finite set of vectors from a vector space V . Declare a subset of
E to be a hyperedge if and only if it is linearly independent. The resulting
hypergraph is a representable matroid.

2.2. Monadic second-order logic. In this section we construct counting

monadic second-order logic for hypergraphs, which we denote by CMSOhyp
1 .

In the context of this article, monadic second-order logic always applies to
hypergraphs, so we omit the superscript and write CMSO1. Formulas will be
constructed using variables from the set {Z1, Z2, . . .}. The atomic formulas
are as follows.
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• Zi ⊆ Zj is an atomic formula for i, j ∈ N. We declare

Var(Zi ⊆ Zj) = Free(Zi ⊆ Zj) = {Zi, Zj}.
• hyp(Zi) is an atomic formula for i ∈ N. In this case

Var(hyp(Zi)) = Free(hyp(Zi)) = {Zi}.
• |Zi| ≡ p mod q is an atomic formula for i ∈ N, where p and q are integers

satisfying q > 1 and 0 ≤ p < q. We define

Var(|Zi| ≡ p mod q) = Free(|Zi| ≡ p mod q) = {Zs}.
Any formula in CMSO1 is built using the following rules.

• Every atomic formula is a formula.
• If ψ is a formula then ¬ψ is a formula and Var(¬ψ) = Var(ψ) while

Free(¬ψ) = Free(ψ).
• If ψ is a formula and Zs is in Free(ψ) then ∃Zsψ is a formula and

Var(∃Zsψ) = Var(ψ) while Free(∃Zsψ) = Free(ψ) − {Zs}.
• Assume that ψ1 and ψ2 are formulas such that

(Var(ψi) − Free(ψi)) ∩ Free(ψ3−i) = ∅
for i = 1, 2. Then ψ1 ∧ ψ2 is a formula. We declare

Var(ψ1 ∧ ψ2) = Var(ψ1) ∪ Var(ψ2) and

Free(ψ1 ∧ ψ2) = Free(ψ1) ∪ Free(ψ2).

If φ is a CMSO1-formula, then any variable in Free(φ) is a free variable of φ.
Any variable in Var(φ)−Free(φ) is a bound variable of φ. We use Bound(φ)
to denote the set of bound variables in φ. If Var(φ) = Bound(φ) then φ is
a CMSO1-sentence.

The collection of CMSO1-formulas that we construct without using any
atomic formula of the form | · | ≡ p mod q is monadic second-order logic for
hypergraphs, which we denote by MSO1. Let δ be a positive integer. We say
that a CMSO1-formula is δ-confined if it can be constructed without using
a predicate of the form | · | ≡ p mod q where q > δ. Note that a formula is
1-confined if and only if it is an MSO1-formula.

We have now discussed the syntax of monadic second-order logic for hy-
pergraphs. Let us move to the semantics. Let φ be a CMSO1-formula and
let M = (E, I) be a hypergraph. An interpretation of φ in M is a function
θ : Free(φ) → 2E . We define what it means for φ to be satisfied by (M, θ).
If φ is Zi ⊆ Zj then φ is satisfied if θ(Zi) ⊆ θ(Zj). If φ is hyp(Zi) then φ
is satisfied if θ(Zi) is in I. Next, if φ is |Zi| ≡ p mod q then φ is satisfied if
|θ(Zj)| is congruent to p modulo q.

Now we assume that φ is not atomic. We define satisfaction recursively.
If φ is ¬ψ then φ is satisfied if ψ is not satisfied by (M, θ). If φ is ∃Zsψ,
then φ is satisfied if there exists a subset X ⊆ E such that ψ is satisfied by
(M, θ+ (Zs, X)). Finally, if φ is ψ1 ∧ψ2, then we let θi be the restriction of
θ to Free(ψi) for i = 1, 2. Now φ is satisfied if ψi is satisfied by (M, θi) for
all i ∈ {1, 2}. If φ is a CMSO1-sentence, then φ has no free variables. In
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this case, an interpretation is the empty function, and we may speak of φ
being satisfied by M , rather than (M, θ).

Let M be a class of hypergraphs. Assume there is a CMSO1-sentence
φ such that φ is satisfied by a hypergraph if and only if that hypergraph
belongs to M. In this case we say that M is CMSO1-definable. If φ is a
MSO1-sentence then M is MSO1-definable.

2.3. Gain-graphic matroids. Let G be a graph with edge-set E and
vertex-set V . A bicycle of G is a subset X ⊆ E such that X is minimal
with respect to G[X] being connected and containing at least two cycles.
Every bicycle is a handcuff or a theta subgraph. The first of these consists of
two cycles with at most one vertex in common, along with a unique minimal
path joining the two cycles. (Note that this path may consist of a single ver-
tex that is in both cycles — in this case the handcuff is tight and otherwise
it is a loose.) A theta subgraph consists of two distinct vertices and three
pairwise internally-disjoint paths that join them. A linear class is a set B
of cycles such that no theta subgraph in G contains exactly two cycles in B.
In this case, we say that (G,B) is a biased graph. Any cycle that belongs to
B is said to be balanced.

When Ω = (G,B) is a biased graph we can define F (Ω), the frame matroid
of Ω. The ground set of F (Ω) is the edge-set of G. The circuits are the edge-
sets of balanced cycles and the edge-sets of bicycles that contain no balanced
cycle. Note that a loop edge in the graph G will only be a loop in the matroid
F (Ω) if that edge comprises a balanced cycle.

The rank of F (Ω) is obtained by subtracting the number of connected
components in Ω that contain no unbalanced cycles from the number of
vertices in Ω. A line of a matroid is a rank-2 flat. The intersection of two
distinct lines has rank at most one. A line is long if it contains at least four
rank-1 flats.

Proposition 2.1. Let Ω = (G,B) be a biased graph. Assume that the
element e is contained in two distinct long lines of F (Ω). Then e is a loop
edge of G.

Proof. We can let {a, b, c, e} and {x, y, z, e} be sets such that any 3-element
subset of either is a circuit. We can also assume that no rank-2 flat contains
both sets. Assume that {a, b, e} is the edge-set of a balanced cycle in Ω.
Then a and b form a path of two edges, and e must form a circuit with
these edges. This is only possible if {a, b, c} is also the set of edges in a
balanced cycle, which means c and e are parallel edges. Therefore {a, b, c, e}
is the edge-set of a theta subgraph, but the cycle comprising c and e is not
balanced, since {a, c, e} is a circuit. Therefore this theta subgraph contains
exactly two balanced cycles, and we have a contradiction. Exactly the same
argument shows that no three edges from {a, b, c, e} or {x, y, z, e} form a
balanced cycle. This means that {a, b, c} is a bicycle that contains no bal-
anced cycle. Subsequently G[{a, b, c}] contains exactly two vertices. Let
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these vertices be p and q. Then e is not incident with any vertex not in
{p, q}. The same argument shows that G[{x, y, z}] has exactly two vertices,
s and t, and e is not incident with any vertex not in {s, t}. If {s, t} = {p, q}
then there is a rank-2 flat that contains {a, b, c, x, y, z, e}, contrary to as-
sumption. Therefore {s, t} and {p, q} have at most one vertex in common,
which means that e is incident with at most one vertex. Thus e is a loop,
as we claimed. □

Let G be a graph and let Γ be a (multiplicative) group. A Γ-gaining of
G is a function σ that takes as input any triple (e, u, v) such that either
e is an edge joining the distinct vertices u and v, or e is a loop incident
with u and u = v. The codomain of σ is Γ. We require that if u ̸= v
then σ(e, u, v) = σ(e, v, u)−1. Now we say that (G, σ) is a Γ-gain-graph.
If Ω = (G,B) is a biased graph, and there exists a Γ-gaining σ such that
B = B(σ), then Ω is Γ-gainable. If e is a loop edge of G incident with the
vertex u and σ(e, u, u) is not the identity, then we say e is an unbalanced
loop.

Let W be a walk of G and let v0, e0, v1, e1, . . . , en−1, vn be the sequence
of vertices and edges in W . Then σ(W ) is

σ(e0, v0, v1)σ(e1, v1, v2) · · ·σ(en−1, vn−1, vn).

Let B(σ) be the collection of cycles C in G such that σ(C) is the identity
of Γ. (If this condition holds, then it will hold no matter which starting
point and orientation of the cycle is chosen.) Then B(σ) is a linear class of
cycles [15, Proposition 5.1]. We write F (G, σ) to denote the frame matroid
F (G,B(σ)). Any such matroid is said to be Γ-gain-graphic matroid.

If σ is a Γ-gaining and ρ is a function from V (G) to Γ, then σρ is the
Γ-gaining that takes (e, u, v) to

ρ(u)−1σ(e, u, v)ρ(v)

when u ̸= v. (And which takes any tuple (e, u, u) to σ(e, u, u).) It is easy
to see that B(σρ) = B(σ), and therefore F (G, σρ) = F (G, σ). We say that
σρ is obtained from σ by switching. Let T be a maximal forest of G. By
performing an appropriately chosen switching, we can obtain a Γ-gaining
that takes (e, u, v) to the identity of Γ whenever e is an edge in T [15,
Lemma 5.3].

2.4. Ultrapowers. Here we will give a brief description of the theory of
ultraproducts. All this material is standard; see for instance [8, Section 8.5].

Definition 2.2. An ultrafilter on N is a set U ⊆ P(N) such that

(i) For all S ∈ U , for all S ⊆ T ⊆ N, T ∈ U .
(ii) For all S1, S2 ∈ U , S1 ∩ S2 ∈ U .

(iii) For all S ⊆ N, exactly one of S and N \ S is in U . In particular,
∅ /∈ U .
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Remark 2.3. For any n ∈ N, {S : n ∈ S ⊆ N} is an ultrafilter on N. We
say an ultrafilter U on N is non-principal if it is not of the above form. By
the axiom of choice, such an ultrafilter must exist.

Remark 2.4. An ultrafilter U on N is non-principal iff it contains no fi-
nite set, or equivalently iff it contains every cofinite set. This follows from
properties (ii) and (iii) of the definition.

Definition 2.5. Let (Γi)i∈N be a sequence of groups, and let U be a non-
principal ultrafilter on N. Then there is a relation ∼U on ΠiΓi defined by

(ai) ∼U (bi) ⇔ {i : ai = bi} ∈ U

It follows from the definition of an ultrafilter that ∼U is a ΠiΓi-invariant
equivalence relation. Now the ultraproduct is defined as ΠiΓi/U = ΠiΓi/∼U .
It is easy to see that ΠiΓi/U is still a group. We will only be interested in
the case where all the Gi are equal. In this case, the ultraproduct is referred
to as an ultrapower, and the ultrapower of Γ is written as ΓU .

Definition 2.6. Let

{si(x1, x′1, . . . , xl, x′l) : i ∈ S} and {ti(x1, x′1, . . . , xl, x′l) : i ∈ T}

be two sets of strings in {x1, x′1, . . . , xl, x′l}∗. Given a group Γ, and elements
g1, . . . , gl ∈ Γ, there is a natural evaluation map taking an si or ti and
returning an element of Γ. We will write this si(g1, g

−1
1 , . . . , gl, g

−1
l ). Given

some l, a group Γ and two such sets of strings {si}, {ti}, let us say Γ solves
the pair ({si}, {ti}) if there are elements g1, . . . , gl such that for all i ∈ S,

si(g1, g
−1
1 , . . . , gl, g

−1
l ) = Id

and for all i ∈ T ,

ti(g1, g
−1
1 , . . . , gl, g

−1
l ) ̸= Id

The next proposition is a special case of  Loś’s Theorem. We include a
proof to make this section more self-contained.

Proposition 2.7. Fix some l, and let {si : i ∈ S}, {ti : i ∈ T} be two
finite lists of strings from {x1, x′1, . . . , xl, x′l}∗. Let Γ be a group and U be a
non-principal ultrafilter on N. Then the following are equivalent:

(i) Γ solves the pair ({si : i ∈ S}, {ti : i ∈ T}).
(ii) ΓU solves the pair ({si : i ∈ S}, {ti : i ∈ T}).

Proof. We first do the forward direction. Let α be the map Γ → ΓU given
by

g 7→ (g, g, g, . . .)/∼U

Note that α is injective, as by definition ∅ /∈ U , so for any g1 ̸= g2, we have
(g1, g1, g1 . . .) ̸∼U (g2, g2, g2 . . .). Thus, α is a group embedding. So given
g1, . . . , gl ∈ Γ satisfying condition (i), α(g1), . . . , α(gl) satisfies condition (ii).
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Now we do the backward direction. Let (g
(1)
k )k∈N, . . . , (g

(l)
k )k∈N ∈ ΓU

satisfy condition (ii). Thus, for each 1 ≤ i ≤ n,

Si = {k : si(g
(1)
k , (g

(1)
k )−1, . . . , g

(l)
k , (g

(l)
k )−1) = Id} ∈ U

and for each 1 ≤ j ≤ m,

Ti = {k : tj(g
(1)
k , (g

(1)
k )−1, . . . , g

(l)
k , (g

(l)
k )−1) ̸= Id} ∈ U

By property (ii) in the definition of ultrafilters,
⋂
Si ∩

⋂
Tj ∈ U , and is

therefore nonempty. Let k be an element in this set. It then follows that

g
(1)
k . . . g

(l)
k satisfy condition (i). □

Corollary 2.8. For any group Γ and non-principal ultrafilter U on N, a
biased graph Ω is Γ-gainable if and only if it is ΓU -gainable.

Proof. It is straightforward to see that Ω is Γ-gainable if and only if there
exist elements of Γ satisfying a certain list of equations and inequations. By
the above proposition, such elements exist in Γ if and only if they exist in
ΓU . □

Corollary 2.9. For any group Γ and non-principal ultrafilter U on N, the
class of Γ-gain-graphic matroids is equal to the class of ΓU -gain-graphic ma-
troids.

Corollary 2.10. For any group Γ and non-principal ultrafilter U on N, the
following statements are equivalent.

(i) Γ is uniformly locally finite.
(ii) ΓU is uniformly locally finite

(iii) ΓU is locally finite.

Proof. First, (i) ⇒ (ii). Assume for a contradiction that ΓU is not uni-
formly locally finite, but Γ is. There exists a K such that ΓU contains
arbitrarily large subgroups generated by at most K elements. Let gΓ(K)
be the maximum size of a subgroup of Γ generated by at most K elements.
Let h1, . . . , hK be elements of ΓU that generate a subgroup of more than
gΓ(K) elements. Then there is a finite list of inequalities certifying that
|⟨{h1, . . . , hK}⟩| > gΓ(K). We apply Proposition 2.7 to this list of inequal-
ities to deduce that there are elements g1, . . . , gK ∈ Γ also satisfying those
inequalities. But then |⟨{g1, . . . , gK}⟩| > gΓ(K), yielding a contradiction.

The fact that (ii) implies (iii) is obvious from definitions, as discussed
in the introduction. To prove (iii) ⇒ (i), we assume Γ is not uniformly
locally finite, and prove that ΓU is not locally finite. Our assumption means
that there is some positive integer K such that there is a sequence of tuples
(gi,j)1≤i≤K,j∈N in Γ generating subgroups of strictly increasing size. Consider

{(gi,1, gi,2, . . .)/∼U : 1 ≤ i ≤ K} ⊆ ΓU

Call these elements h1, . . . , hK . Suppose they generate a finite subgroup of
ΓU , and let the size of this subgroup be R. This finiteness is witnessed by
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a finite sequence of equalities {sj(h1, h−1
1 , . . . , hK , h

−1
K ) = Id : j ∈ J} (e.g.

let these equalities imply all the equalities in the Cayley table of this group,
thus forcing that any set satisfying those equalities is a quotient of this finite
group). For each j ∈ J , let Sj = {i ∈ N : sj(g1,i, g

−1
1,i , . . . , gK,i, g

−1
K,i) = Id}.

Then by the definition of ∼U , each Sj is in U , and by property (ii) of ultra-
filters, S =

⋂
j Sj is also in U , and therefore nonempty. As in Remark 2.4,

since the ultrafilter is non-principal, S must be infinite. Fix an index i in
S larger than R. Then {g1,i, . . . , gK,i} satisfy all the sj , so they must gen-
erate a subgroup of size at most R. But by definition of the sequence gi,j ,
{g1,i, . . . , gK,i} generates a subgroup of size at least i for each i. Contradic-
tion. The proposition follows. □

3. A Myhill-Nerode analogue

In this section we develop an analogue of the Myhill-Nerode characteri-
sation of regular languages [12, 13] (see also [9, Section 3.4]). The Myhill-
Nerode characterisation relies on an equivalence relation on strings, which
is defined via the operation of concatenation. In [11] we developed an idea
that was inspired by Myhill-Nerode, but which used an equivalence relation
on matroids defined via the (matroidal) operation of amalgamation. In this
section we generalise this technique to hypergraphs. In order to establish
an analogue of concatenation of strings, we develop the idea of coloured
systems and coloured complements. These can be glued together to form
a hypergraph using an operation that we call a coloured sum. This gives
us the hypergraph analogue of concatenation that we use to construct a
Myhill-Nerode-style equivalence.

Definition 3.1 (C-coloured system). Let C be a finite set. A C-coloured
system is a pair (U, c), where c is a function from 2U to C.

Definition 3.2 (C-coloured complement). Let C be a finite set. A
C-coloured complement is a finite set V along with a function d : 2V ×C →
{0, 1}.

Definition 3.3 (C-coloured sum). Let C be a finite set and let (U, c) be a
C-coloured system. Let (V, d) be a C-coloured complement, where U and V
are disjoint. The C-coloured sum is

(U ∪ V, {X ∪ Y : X ⊆ U, Y ⊆ V, d(Y, c(X)) = 1}).

We denote this hypergraph by (U, c) ⊞ (V, d).

Remark 3.4. The models that we have in mind for coloured sums are
versions of matroid sums. Standard matroid operations, such as 1-, 2-, and
3-sums can all be expressed as C-coloured sums, as can amalgams over finite
sets.

To illustrate, we let M and N be matroids on the ground sets U ∪{p} and
V ∪{p} respectively, where U , V , and {p} are pairwise disjoint, and p is not
a loop or coloop in either matroid. We define the function c : 2U → [3] as
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follows. If X ⊆ U is dependent in M , then set c(X) = 1. If X is independent
and p is contained in the closure of X, then set c(X) = 2. Otherwise, X
is independent and p is not in the closure of X. In this case, set c(X) to
be 3. Now (U, c) is a [3]-coloured system. Let d : 2V × [3] → {0, 1} be the
function such that (Y, i) is taken to 1 if Y is an independent subset of N
and either i = 3, or i = 2 and Y does not span p. All other pairs are taken
to 0. It is not difficult to check that the [3]-coloured sum (U, c) ⊞ (V, d)
is the hypergraph of independent sets of the 2-sum of M and N along the
basepoint p.

Definition 3.5. Let M be a family of hypergraphs and let C be a finite
set. We define the relation ∼M,C on C-coloured systems. Let (U1, c1) and
(U2, c2) be two such systems. Then

(U1, c1) ∼M,C (U2, c2)

holds if, for every C-coloured complement (V, d) such that V ∩U1 = V ∩U2 =
∅, we have

(U1, c1) ⊞ (V, d) ∈ M ↔ (U2, c2) ⊞ (V, d) ∈ M.

It is clear that ∼M,C is an equivalence relation.

Definition 3.6. Let s, t, and δ be positive integers and let φ be a δ-confined
CMSO1-formula. We define the integer Λφ(s, t, δ). If φ is |Zi| ≡ p mod q,
then we set Λφ(s, t, δ) to be (δ!)s. If φ is hyp(Zi), then Λφ(s, t, δ) is ts, and

if φ is Zi ⊆ Zj , then Λφ(s, t, δ) is 2s
2
.

We have defined Λφ(s, t, δ) when φ is atomic. Now assume φ is ¬ψ. In
this case we set Λφ(s, t, δ) to be Λψ(s, t, δ). If φ is ψ1 ∧ ψ2, then we set
Λφ(s, t, δ) to be the product Λψ1(s, t, δ)Λψ2(s, t, δ). Finally, we assume that
φ is ∃Ziψ. In this case we set Λφ(s, t, δ) to be

2Λψ(s,t,δ).

Lemma 3.7. Let t, δ, and s be positive integers and let φ be a δ-confined
CMSO1-sentence with s variables. Let M be the class of hypergraphs that
satisfy φ. If C is a set with cardinality t, then ∼M,C has at most Λφ(s, t, δ)
equivalence classes.

We illustrate Lemma 3.7 and build intuition by using it to strengthen
Theorem 1.1 in [11].

Theorem 3.8. The class of representable matroids is not CMSO1-definable.

We note that this does indeed strengthen [11, Theorem 1.1], since that
result applies only to MSO1-definability.

Proof of Theorem 3.8. Assume for a contradiction that φ is a CMSO1-sen-
tence that is satisfied exactly by the hypergraphs that are representable
matroids. Let s be the number of variables in φ and let δ be the smallest
positive integer such that φ is δ-confined. Let M be the class of repre-
sentable matroids.
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For any prime number p, let (Up, Ip) be a matroid isomorphic to the
finite projective plane PG(2, p). Set cp to be the function which takes every
dependent subset of Up to 1 and every independent subset to 2. Then
Mp = (Up, cp) is a [2]-coloured system. Because there are infinitely many
prime numbers [3, Proposition 20], Lemma 3.7 tells us that there are distinct
primes, p1 and p2, such that Mp1 ∼M,[2] Mp2 holds.

Let N be a matroid (V, I) that is isomorphic to PG(2, p1). Let d : 2V ×
[2] → {0, 1} be the function taking (Y, i) to 1 when Y is independent in N
and i = 2. Other pairs are taken to 0. Then Mpi⊞(V, d) is isomorphic to the
matroidal direct sum PG(2, pi)⊕N . Therefore Mp1 ⊞ (V, d) is representable
over GF(p1) [14, Proposition 4.2.11]. On the other hand, both PG(2, p1) and
PG(2, p2) are isomorphic to minors of Mp2 ⊞ (V, d) [14, 4.2.19]. It follows
from [14, Proposition 3.2.4] and [1, Proposition 7.3] that if Mp2 ⊞ (V, d) is
representable over a field, then that field must simultaneously have subfields
isomorphic to GF(p1) and GF(p2), an impossibility. To summarise, Mp1 ⊞
(V, d) is representable and Mp2 ⊞ (V, d) is not. Therefore Mp1 ≁M,[2] Mp2 ,
which is a contradiction. □

The proof of Lemma 3.7 involves several technical definitions. However,
the basic idea is not too complicated. A cleft (Definition 3.9) is a cer-
tificate that two C-coloured set systems are not equivalent under ∼M,C .
Definition 3.10 introduces the idea of a piece of information carried by each
C-coloured system. The exact form of this piece of information will depend
on the structure of φ, but the important point is that there are at most
Λφ(s, t, δ) values that this information can take (Proposition 3.14). Fur-
thermore, if two C-coloured systems carry the same piece of information,
then there can be no cleft that divides them (Corollary 3.13). Lemma 3.7
follows from these steps.

Definition 3.9 (Cleft). Let C be a finite set and for i = 1, 2, let Mi =
(Ui, ci) be a C-coloured system. Let φ be a CMSO1-formula and for i = 1, 2,
let σi be a function from Free(φ) to 2Ui . A φ-cleft for (M1, σ1) and (M2, σ2)
consists of a C-coloured complement (V, d) and a function τ : Free(φ) → 2V

such that V ∩ U1 = V ∩ U2 = ∅ and the following holds: for i = 1, 2, if we
define Ni to be

Mi ⊞ (V, d)

and let θi be the function taking each Zi ∈ Free(φ) to σi(Zi) ∪ τ(Zi), then
φ is satisfied by exactly one of (N1, θ1) and (N2, θ2).

So when φ is a sentence that defines the class M, there is a φ-cleft exactly
when M1 and M2 are not equivalent under ∼M,C .

Definition 3.10. Let S ⊆ {Z1, Z2, . . .} be a finite set of variables, let C be
a finite set, and let δ be a positive integer. We are going to define a function
RS,C,δ which takes as input any triple (M,φ, σ), where:

• M = (U, c) is a C-coloured system,
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• φ is a δ-confined CMSO1-formula such that Var(φ) ⊆ S, and
• σ is a function from S − Bound(φ) to 2U .

We define the output of RS,C,δ recursively. Let T stand for S − Bound(φ),

so that σ is a function from T to 2U . If φ is an atomic formula, then
Bound(φ) = ∅ and T = S. In this case, RS,C,δ(M,φ, σ) is defined as follows.

(i) If φ is |Zi| ≡ p mod q for some Zi ∈ S, then RS,C,δ(M,φ, σ) is the
function r1 : S → {0, 1, . . . , δ! − 1}, where r1(Zi) is the residue of
|σ(Zi)| modulo δ! for each Zi ∈ S.

(ii) If φ is hyp(Zi) for some Zi ∈ S, then RS,C,δ(M,φ, σ) is the function
r2 : S → C, where r2(Zi) is c(σ(Zi)) for each Zi ∈ S.

(iii) If φ is Zi ⊆ Zj for some Zi, Zj ⊆ S, then RS,C,δ(M,φ, σ) is the
function r3 : S × S → {0, 1}, where r3(Zi, Zj) = 1 if and only if
σ(Zi) ⊆ σ(Zj).

We have now defined RS,C,δ(M,φ, σ) in the case that φ is atomic. Assume
now that φ is not atomic. If φ is ¬ψ then Bound(φ) = Bound(ψ) and we
declare RS,C,δ(M,φ, σ) to be equal to RS,C,δ(M,ψ, σ). Next assume that
φ = ψ1 ∧ ψ2. Note that Bound(φ) = Bound(ψ1) ∪ Bound(ψ2) and

Bound(ψi) ∩ Free(ψ3−i) = ∅
for i = 1, 2. Let σi be the function

σ ∪ {(Zs, ∅) : Zs ∈ Bound(ψ3−i) − Bound(ψi)}.
Thus σi is a function from S − Bound(ψi) to subsets of U . We set
RS,C,δ(M,φ, σ) to be the ordered pair

(RS,C,δ(M,ψ1, σ1), RS,C,δ(M,ψ2, σ2)).

Finally we assume that φ = ∃Ziψ. In this case

Bound(ψ) = Bound(φ) + Zi.

We declare RS,C,δ(M,φ, σ) to be the set

{RS,C,δ(M,ψ, σ + (Zi, X)) : X ⊆ U}.
That is, we consider every extension of σ by an ordered pair of the form
(Zi, X). We then let RS,C,δ(M,φ, σ) be the set of all outputs produced by
RS,C,δ operating on these extensions.

We observe that RS,C,δ(M,φ, σ) is either a function with S or S × S
as its domain, or it is a ordered pair, or it is a set. Thus two outputs
RS,C,δ(M1, φ, σ1) and RS,C,δ(M2, φ, σ2) are equal if they are equal as func-
tions, pairs, or sets.

Definition 3.11 (Sympathetic). Let S ⊆ {Z1, Z2, . . .} be a finite set of
variables, let C be a finite set, and let δ be a positive integer. Let M = (U, c)
be a C-coloured system. Let φ be a δ-confined CMSO1-formula satisfying
Var(φ) ⊆ S and let σ be a function from S−Bound(φ) to 2U . Let Π = (V, d)
be a C-coloured complement, where we assume that U and V are disjoint.
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Let τ be a function from Free(φ) to 2V . We are going to define what it
means for RS,C,δ(M,φ, σ) and (Π, τ) to be sympathetic.

If φ is atomic then RS,C,δ(M,φ, σ) is a function. First assume that φ
is |Zi| ≡ p mod q, so that RS,C,δ(M,φ, σ) is the function r1 from S to
{0, 1, . . . , δ! − 1}. In this case we say that RS,C,δ(M,φ, σ) and (Π, τ) are
sympathetic if

r1(Zi) + |τ(Zi)| is congruent to p modulo q.

Next assume that φ is hyp(Zi), so RS,C,δ(M,φ, σ) is the function r2 : S → C.
We declare that RS,C,δ(M,φ, σ) and (Π, τ) are sympathetic if

d(τ(Zi), r2(Zi)) = 1.

In the next case we assume φ is Zi ⊆ Zj , so that RS,C,δ(M,φ, σ) is the func-
tion r3 : S×S → {0, 1}. Then RS,C,δ(M,φ, σ) and (Π, τ) are sympathetic if
r3(Zi, Zj) = 1 and τ(Zi) ⊆ τ(Zj).

We will now assume that φ is not atomic. Assume that φ is ¬ψ. Then
RS,C,δ(M,φ, σ) and (Π, τ) are sympathetic if and only if RS,C,δ(M,ψ, σ) and
(Π, τ) are not sympathetic.

Next assume that φ is ψ1∧ψ2. We define σi exactly as in Definition 3.10,
so that it is a function from S −Bound(ψi) to 2U . For i = 1, 2, let τi be the
restriction of τ to Free(ψi). Now RS,C,δ(M,φ, σ) and (Π, τ) are sympathetic
if and only if RS,C,δ(M,ψi, σi) and (Π, τi) are sympathetic, for i = 1, 2.

Finally, assume that φ is ∃Ziψ. Then RS,C,δ(M,φ, σ) and (Π, τ) are
sympathetic if and only if there exist subsets X ⊆ U and Y ⊆ V such that
RS,C,δ(M,ψ, σ + (Zi, X)) and (Π, τ + (Zi, Y )) are sympathetic.

Proposition 3.12. Let C be a finite set and let δ be a positive integer. Let
M = (U, c) be a C-coloured system. Let φ be a δ-confined CMSO1-formula.
Set S to be Var(φ) and let σ be a function from Free(φ) to 2U . Let Π = (V, d)
be a C-coloured complement where we assume U and V are disjoint, and
let τ be a function from Free(φ) to 2V . Set E to be U ∪ V and define
θ : Free(φ) → 2E so that θ(Zs) = σ(Zs) ∪ τ(Zs) for every free variable Zs.
Let N be the hypergraph M ⊞Π. Then φ is satisfied by (N, θ) if and only if
RS,C,δ(M,φ, σ) and (Π, τ) are sympathetic.

Proof. The proof is by induction on the number of steps required to con-
struct φ. First assume that φ is atomic. Then RS,C,δ(M,φ, σ) is one of the
functions r1, r2, or r3. Assume that φ is |Zi| ≡ p mod q. Then φ is satisfied
by (N, θ) if and only if

|θ(Zi)| = |σ(Zi)| + |τ(Zi)|
is congruent to p modulo q. Note that |σ(Zi)| can be expressed as r1(Zi)+κδ!
for some integer κ, by the definition of the r1 function. Since φ is δ-confined
it follows that q ≤ δ and therefore q divides δ!. It follows that |σ(Zi)| +
|τ(Zi)| is congruent to p modulo q if and only if r1(Zi)+ |τ(Zi)| is congruent
to p modulo q. This is true if and only if RS,C,δ(M,φ, σ) and (Π, τ) are
sympathetic. Therefore we are done in the case that φ is |Zi| ≡ p mod q.
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Assume that φ is the formula hyp(Zi). Then φ is satisfied by (N, θ) if
and only if θ(Zi) = σ(Zi) ∪ τ(Zi) is a hyperedge of M ⊞ Π. This set of
hyperedges is

{X ∪ Y : X ⊆ U, Y ⊆ V, d(Y, c(X)) = 1},

so φ is satisfied by (N, θ) if and only if

1 = d(τ(Zi), c(σ(Zi))) = d(τ(Zi), r2(Zi)).

This is exactly what it means for RS,C,δ(M,φ, σ) and (Π, τ) to be sympa-
thetic.

Next we assume that φ is Zi ⊆ Zj . Then φ is satisfied by (N, θ) if and only
if σ(Zi) ⊆ σ(Zj) and τ(Zi) ⊆ τ(Zj). This is true if and only if r3(Zi, Zj) = 1
and τ(Zi) ⊆ τ(Zj), which in turn is true if and only if RS,C,δ(M,φ, σ) and
(Π, τ) are sympathetic.

We are now done with the case that φ is atomic. Therefore we con-
sider the case that φ is ¬ψ. Hence φ is satisfied by (N, θ) if and only if
ψ is not satisfied by (N, θ). By induction, this is the case if and only if
RS,C,δ(M,ψ, σ) and (Π, τ) are not sympathetic, which is precisely the con-
dition for RS,C,δ(M,φ, σ) and (Π, τ) to be sympathetic.

The next case is when φ is ψ1 ∧ ψ2. For i = 1, 2, we let τi (respectively
θi) be the restriction of τ (respectively θ) to Free(ψi). Define σi to be

σ ∪ {(Zs, ∅) : Zs ∈ Bound(ψ3−i) − Bound(ψi)}.

Now θi takes each Zs ∈ Free(ψ) to σi(Zs)∪τi(Zs). We see that φ is satisfied
by (N, θ) if and only if ψi is satisfied by (N, θi) for i = 1, 2. By induction, this
is true if and only if RS,C,δ(M,ψi, σi) and (Π, τi) are sympathetic for i = 1, 2.
This is true if and only if RS,C,δ(M,φ, σ) and (Π, τ) are sympathetic.

Finally, we assume that φ is ∃Zsψ. We argue as follows.

φ is satisfied by (N, θ)

↔ there exists D ⊆ E such that ψ is satisfied by (N, θ + (Zs, D))

↔ there exists D ⊆ E such that ψ is satisfied by (N, θ′) where we

define σ′ = σ + (Zs, D ∩ U) and τ ′ = τ + (Zs, D ∩ V )

and θ′ maps each Zt ∈ Free(ψ) to σ′(Zt) ∪ τ ′(Zt)
↔ there exist X ⊆ U and Y ⊆ V such that ψ is satisfied by (N, θ′)

where we define σ′ = σ + (Zs, X) and τ ′ = τ + (Zs, Y )

and θ′ maps each Zt ∈ Free(ψ) to σ′(Zt) ∪ τ ′(Zt)
↔ there exist X ⊆ U and Y ⊆ V such that

RS,C,δ(M,ψ, σ + (Zs, X)) and (Π, τ + (Zs, Y ))

are sympathetic

↔ RS,C,δ(M,φ, σ) and (Π, τ) are sympathetic

Now the proof of Proposition 3.12 is complete. □
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Corollary 3.13. Let C be a finite set and let δ be a positive integer. For
i = 1, 2 let Mi = (Ui, ci) be a C-coloured system. Let φ be a δ-confined
CMSO1-formula and for i = 1, 2 let σi be a function from Free(φ) to 2Ui.
Let S be Var(φ). If there is a φ-cleft for (M1, σ1) and (M2, σ2), then

RS,C,δ(M1, φ, σ1) ̸= RS,C,δ(M2, φ, σ2).

Proof. Assume for a contradiction that

RS,C,δ(M1, φ, σ1) = RS,C,δ(M2, φ, σ2)

and yet we have a φ-cleft for (M1, σ1) and (M2, σ2). Let this cleft consist of
the C-coloured complement Π = (V, d) and the function τ : Free(φ) → 2V .
For i = 1, 2, let θi : Free(φ) → 2U∪V be the function taking each Zs ∈
Free(φ) to σi(Zs)∪ τ(Zs). Let Ni be Mi⊞ (V, d). Definition 3.9 means that
φ is satisfied by exactly one of (N1, θ1) and (N2, θ2).

Proposition 3.12 says that φ is satisfied by (N1, θ1) if and only
RS,C,δ(M1, φ, σ1) and (Π, τ) are sympathetic. As

RS,C,δ(M1, φ, σ1) = RS,C,δ(M2, φ, σ2)

holds, this is the case if and only if RS,C,δ(M2, φ, σ2) and (Π, τ) are sym-
pathetic, which holds if and only if φ is satisfied by (N2, θ2). Now we have
contradicted our earlier conclusion. □

Recall that the integer Λφ(s, t, δ) was described in Definition 3.6.

Proposition 3.14. Let S ⊆ {Z1, Z2, . . .} be a finite set of variables. Let
C be a finite set, and let δ be a positive integer. Let φ be a δ-confined
CMSO1-formula such that Var(φ) ⊆ S. As M ranges over all C-coloured
systems (U, c), and σ ranges over all functions from S−Bound(φ) to 2U , the
number of values taken by RS,C,δ(M,φ, σ) is no greater than Λφ(|S|, |C|, δ).

Proof. The proof is by induction on the number of steps needed to con-
struct φ. Assume φ is |Zi| ≡ p mod q. Then RS,C,δ(M,φ, σ) is a func-
tion r1 from S to {0, 1, . . . , δ! − 1}. The number of such functions is at

most (δ!)|S| = Λφ(|S|, |C|, δ), so the result holds. Similarly, if φ is hyp(Zi),
then RS,C,δ(M,φ, σ) is a function r2 from S to C, and there are at most

|C||S| = Λφ(|S|, |C|, δ) such functions. If φ is Zi ⊆ Zj , then RS,C,δ(M,φ, σ)

is the function r3 from S × S to {0, 1}, and there are at most 2|S|
2

such
functions. So the result holds in the case that φ is atomic.

If φ is ¬ψ, then Bound(φ) = Bound(ψ) and RS,C,δ(M,φ, σ) =
RS,C,δ(M,ψ, σ) for every choice of M and σ. Furthermore, Λφ(|S|, |C|, δ) =
Λψ(|S|, |C|, δ). Thus the result holds by induction. Therefore we will as-
sume that φ is ψ1∧ψ2. We recall that Bound(φ) = Bound(ψ1)∪Bound(ψ2)
and that no variable is bound in exactly one of ψ1 and ψ2. Recall also that
when σ is a function from S − Bound(φ) to 2U , then

σi = σ ∪ {(Zs, ∅) : Zs ∈ Bound(ψ3−i) − Bound(ψi)}
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for i = 1, 2. Now RS,C,δ(M,φ, σ) is the ordered pair

(RS,C,δ(M,ψ1, σ1), RS,C,δ(M,ψ2, σ2)).

So the number of values taken by RS,C,δ(M,φ, σ) is at most the product of
the numbers of values taken by RS,C,δ(M,ψ1, σ1) and RS,C,δ(M,ψ2, σ2). By
induction, this is at most Λψ1(|S|, |C|, δ)Λψ2(|S|, |C|, δ), which is equal to
Λφ(|S|, |C|, δ).

Now we must assume that φ is ∃Zsψ. Then RS,C,δ(M,φ, σ) is a set of
outputs of the form RS,C,δ(M,ψ, σ + (Zs, X)). By induction the number of
such subsets is at most

2Λψ(|S|,|C|,δ) = Λφ(|S|, |C|, δ)
so the proof is complete. □

Proof of Lemma 3.7. Let s, t, and δ, be positive integers, and let φ be a
δ-confined CMSO1-sentence with s variables. Let S be the set of variables
in φ. Let M be the class of hypergraphs that satisfy φ and let C be a
set with cardinality t. We claim that the number of equivalence classes of
∼M,C is no greater than Λφ(s, t, δ). Let M1,M2, . . . be representatives of
these equivalence classes, so that each Mi is a C-coloured system. Since
Mi ≁M,C Mj when i ̸= j, we can find a C-coloured complement (V, d) such
that exactly one of Mi ⊞ (V, d) and Mj ⊞ (V, d) is in M. Because Free(φ)
is empty, this complement is a φ-cleft for Mi and Mj . Corollary 3.13 now
implies that RS,C,δ(Mi, φ, ∅) ̸= RS,C,δ(Mj , φ, ∅) when i ̸= j. Therefore the
number of equivalence classes under ∼M,C is no greater than the number
of values taken by RS,C,δ(M,φ, ∅) as M ranges over all C-coloured systems.
This is at most Λφ(s, t, δ), by Proposition 3.14, so we are done. □

4. Amalgams

Let M1 and M2 be matroids with ground sets E1 and E2, rank functions
r1 and r2, and closure operators cl1 and cl2. Let ℓ be E1 ∩ E2. We assume
that M1|ℓ = M2|ℓ and we denote this shared restriction by N . If M is a
matroid on the ground set E1 ∪E2 and M |Ei = Mi for i = 1, 2, then we say
M is an amalgam of M1 and M2.

A matroid is modular if r(F ) + r(F ′) = r(F ∩ F ′) + r(F ∪ F ′) whenever
F and F ′ are flats. Assume that N is a modular matroid. Then [14, The-
orem 11.4.10] tells us that we can obtain an amalgam of M1 and M2 by
setting the rank of any subset X ⊆ E1 ∪ E2 to be

(1) min{r1(Y ∩ E1) + r2(Y ∩ E2) − rN (Y ∩ ℓ) : X ⊆ Y ⊆ E1 ∪ E2}
The resulting matroid is the proper amalgam of M1 and M2. We refer
to the set ℓ as the amalgam base and we denote the proper amalgam by
Amalℓ(M1,M2), or Amal(M1,M2) if the amalgam base is clear from the
context. We can easily check that every rank-2 matroid is modular. The
following result is slightly more powerful than Proposition 4.1 in [11] because
it allows the matroids to be non-simple.
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Proposition 4.1. For i = 1, 2, let Mi be a matroid with ground set Ei, rank
function ri, and closure operator cli. Let ℓ = E1 ∩ E2, where M1|ℓ = M2|ℓ
and r1(ℓ) = 2. Let X be a subset of E1 ∪E2. If X ∩E1 is dependent in M1

or if X ∩E2 is dependent in M2, then X is dependent in Amal(M1,M2). If
X ∩ E1 is independent in M1 and X ∩ E2 is independent in M2, then X is
dependent in Amal(M1,M2) if and only if

(i) ℓ ⊆ cl1(X ∩ E1) and X − E1 is not skew with ℓ in M2,
(ii) ℓ ⊆ cl2(X ∩ E2) and X − E2 is not skew with ℓ in M1, or

(iii) cl1(X − E2) ∩ cl2(X − E1) contains a non-loop element.

Proof. We useN to denoteM1|ℓ = M2|ℓ. AssumeX∩E1 is dependent inM1.
Then X ∩E1 is dependent in Amal(M1,M2) since Amal(M1,M2)|E1 = M1.
Thus X is dependent in Amal(M1,M2). By symmetry we conclude that if
X ∩ E1 is dependent in M1 or if X ∩ E2 is dependent in M2, then X is
dependent in Amal(M1,M2). Henceforth we assume X ∩E1 is independent
in M1 and X ∩ E2 is independent in M2.

Assume statement (i) holds. Then

r2((X − E1) ∪ ℓ) < r2(X − E1) + r2(ℓ) = r2(X − E1) + 2.

Let Y be X ∪ ℓ, so that

r1(Y ∩ E1) = r1((X ∩ E1) ∪ ℓ) = r1(X ∩ E1)

because ℓ is in the closure of X ∩ E1. Now

|X| = |X ∩ E1| + |X − E1|
= r1(X ∩ E1) + r2(X − E1)

> r1(X ∩ E1) + r2((X − E1) ∪ ℓ) − 2

= r1(Y ∩ E1) + r2(Y ∩ E2) − rN (Y ∩ ℓ),

so (1) implies the rank of X in Amal(M1,M2) is less than |X| and therefore
X is dependent in Amal(M1,M2). By symmetric arguments, we see that if
(i) or (ii) holds, then X is dependent in Amal(M1,M2).

Next we assume that (iii) holds. Let y be a non-loop element in

cl1(X − E2) ∩ cl2(X − E1)

so that y is necessarily in ℓ. As y is in cl1(X − E2) there is a circuit of M1

contained in (X − E2) ∪ y that contains y. Since X ∩ E1 contains no such
circuit, it follows that y is not in X.

Assume X ∩ ℓ is non-empty and let x be an arbitrary element of this set.
Assume that {x, y} is dependent in M1. Since X ∩E1 is independent in M1

it follows that x is not a loop. Therefore {x, y} is a circuit. There is a circuit
contained in (X−E1)∪y that contains y. Performing circuit elimination on
this circuit and {x, y} produces a circuit of M1 contained in X ∩ E1. This
is a contradiction, so {x, y} is independent in M1.

Assume X ∩ ℓ contains distinct elements, x and x′. As X ∩E1 is indepen-
dent in M1 we see that {x, x′} is independent in M1. The previous paragraph
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shows that {x, y} and {x′, y} are independent in M1, so r(N) = 2 implies
that {x, x′, y} is a circuit. By performing circuit elimination on {x, x′, y}
and a circuit contained in (X −E2) ∪ y that contains y, we obtain a circuit
of M1 contained in X ∩E1. This contradiction means that |X ∩ ℓ| ∈ {0, 1}.

Let Y be X ∪ y. Because y is in cl1(X − E2) it follows that r1(X ∩
E1) = r1(Y ∩ E1). Similarly, r2(X ∩ E2) = r2(Y ∩ E2). If X ∩ ℓ = ∅ then
0 = |X ∩ ℓ| = rN (Y ∩ ℓ) − 1. Now assume that X ∩ ℓ = {x}. Since {x, y} is
independent in N , we have rN (Y ∩ ℓ) = 2, so |X ∩ ℓ| = rN (Y ∩ ℓ) − 1 holds
in either case. Now we see that

|X| = |X ∩ E1| + |X ∩ E2| − |X ∩ ℓ|
= r1(X ∩ E1) + r2(X ∩ E2) − |X ∩ ℓ|
= r1(Y ∩ E1) + r2(Y ∩ E2) − (rN (Y ∩ ℓ) − 1)

> r1(Y ∩ E1) + r2(Y ∩ E2) − rN (Y ∩ ℓ).
Again we see that X is dependent in Amal(M1,M2), and this completes the
proof of the ‘if’ direction.

For the ‘only if’ direction, we assume that X is dependent in
Amal(M1,M2). As X ∩E1 is independent in M1 and X ∩E2 is independent
in M2, it follows that X is contained in neither E1 nor E2. There is some set
Y such that X ⊆ Y ⊆ E1∪E2 and |X| > r1(Y ∩E1)+r2(Y ∩E2)−rN (Y ∩ℓ).
Assume that amongst all such sets, Y has been chosen so that it is as small
as possible. If y is an element in Y − (X ∪ E2), then we could replace Y
with Y − y. Therefore no such element exists. By symmetry it follows that
Y −X ⊆ ℓ.

If Y contains a loop element y, then y is in Y − X, since X ∩ E1 and
X ∩ E2 are independent in M1 and M2 respectively. But in this case we
could replace Y with Y − y, so Y contains no loops.

If Y = X, then Y ∩ E1 is independent in M1 and Y ∩ E2 is independent
in M2, so |X| > r1(Y ∩ E1) + r2(Y ∩ E2) − rN (Y ∩ ℓ) = |Y | = |X|. This
contradiction means that Y −X is non-empty.

Claim 4.1.1. If y is in Y −X, then

y ∈ cl1((Y − y) ∩ E1) ∩ cl2((Y − y) ∩ E2) but y /∈ clN ((Y − y) ∩ ℓ).

Proof. The minimality of Y means that

r1(Y ∩ E1) + r2(Y ∩ E2) − rN (Y ∩ ℓ)
< r1((Y − y) ∩ E1) + r2((Y − y) ∩ E2) − rN ((Y − y) ∩ ℓ).

and the result follows. □

Claim 4.1.2. |Y ∩ ℓ| ∈ {1, 2} and if |Y ∩ ℓ| = 2, then Y ∩ ℓ is independent
in N .

Proof. Assume y and y′ are distinct elements of Y ∩ℓ. If {y, y′} is dependent
then we can assume without loss of generality that y is not in X, or else
X ∩ ℓ is dependent in N . Since Y contains no loops, it follows that {y, y′}
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is a circuit of N . This means that y is in clN ((Y − y) ∩ ℓ), and we have
contradiction to Claim 4.1.1. Therefore {y, y′} is independent.

We know that Y − X ⊆ ℓ is non-empty so Y ∩ ℓ contains at least one
element. Let y be such an element. Assume Y ∩ ℓ contains three distinct
elements and let y1 and y2 be distinct elements in (Y ∩ ℓ)−y. Then {y1, y2}
is independent by the previous paragraph, so {y1, y2} spans N . This means
that y is in clN ((Y −y)∩ℓ), a contradiction. We conclude that |Y ∩ℓ| < 3. □

Assume X ∩ ℓ contains distinct elements x and x′. Then {x, x′} is inde-
pendent by Claim 4.1.2. In this case {x, x′} spans N . We can let y be an
element in Y −X, and now y is in clN ((Y −y)∩ℓ), contradicting Claim 4.1.1.
Hence |X ∩ ℓ| is in {0, 1}.

Claim 4.1.3. X−E1 is not skew with ℓ in M2 and X−E2 is not skew with
ℓ in M1.

Proof. Let y be an arbitrary element of Y −X. Claim 4.1.1 implies there is a
circuit C of M2 contained in Y ∩E2 that contains y. If C contains an element
of X−E1, then it certifies that X−E1 and ℓ are not skew in M2. So assume
that C is contained in Y ∩ ℓ. But now y is contained in clN ((Y − y) ∩ ℓ),
and we have a contradiction. The claim follows by symmetry. □

If ℓ is contained in cl1(X ∩ E1) or cl2(X ∩ E2), then Claim 4.1.3 implies
that statement (i) or (ii) holds. In this case we have nothing left to prove,
so we assume that neither X ∩ E1 nor X ∩ E2 spans ℓ.

Assume that Y ∩ ℓ contains a single element y. Then (Y − y) ∩ E1 =
X−E2 and (Y − y)∩E2 = X−E1. Claim 4.1.1 implies that statement (iii)
holds. Therefore we assume that |Y ∩ ℓ| ̸= 1, so Claim 4.1.2 implies that
Y ∩ ℓ = {y, y′} for distinct elements y and y′.

Assume that X∩ℓ is non-empty, and therefore contains a single element x.
Without loss of generality, we assume that x = y′. NowX∩E1 = (Y−y)∩E1,
so cl1(X∩E1) contains both x and y by Claim 4.1.1. As {x, y} is independent
in N by Claim 4.1.2, it follows that cl1(X∩E1) contains ℓ, contradicting our
earlier assumption. Therefore X∩ℓ is empty and Y ∩E1 = (X∩E1)∪{y, y′}.

We reason as follows.

r1(X ∩ E1) < r1((X ∩ E1) ∪ ℓ) (since ℓ ⊈ cl1(X ∩ E1))

= r1((X ∩ E1) ∪ clN ({y, y′}))

≤ r1(cl1((X ∩ E1) ∪ {y, y′}))

= r1((X ∩ E1) ∪ {y, y′})

≤ r1((X ∩ E1) ∪ ℓ)
< r1(X ∩ E1) + 2 (since X ∩ E1 and ℓ are not skew)
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We see that r1(X ∩E1) + 1 = r1((X ∩E1)∪{y, y′}) = r1(Y ∩E1). Symmet-
rically, r2(Y ∩ E2) = r2(X ∩ E2) + 1. Therefore

|X| > r1(Y ∩ E1) + r2(Y ∩ E2) − rN (Y ∩ ℓ)
= r1(X1 ∩ E1) + r2(X ∩ E2) = |X1 ∩ E1| + |X ∩ E2| = |X|.

This final contradiction completes the proof. □

Definition 4.2. LetG1 andG2 be graphs such that V (G1)∩V (G2) = {u, v}.
We use G1 ⊕uv G2 to denote the graph with vertex-set V (G1) ∪ V (G2)
and edge-set E(G1) ∪ E(G2). Let e ∈ E(G1) ∪ E(G2) be an edge and let
w ∈ V (G1)∪ V (G2) be a vertex. Then e and w are incident in G1 ⊕uv G2 if
and only if they are incident in G1 or G2.

We note that {u, v} is a vertex cut-set of the graph G1 ⊕uv G2.

Definition 4.3 (Gain-graph amalgam). Let Γ be a group, and for i = 1, 2
let Ωi = (Gi, σi) be a Γ-gain-graph such that V (G1) ∩ V (G2) = {u, v}. Set
ℓ to be E(G1) ∩ E(G2). We assume the following conditions hold:

(i) G1[ℓ] = G2[ℓ],
(ii) σ1(e, x, y) = σ2(e, x, y) whenever (e, x, y) is in the domains of both

σ1 and σ2,

Under these circumstances, the gain-graph amalgam Ω1 ⊕uv Ω2 is defined.
Let σ be the union of σ1 and σ2. Then Ω1 ⊕uv Ω2 is the Γ-gain-graph
(G1 ⊕uv G2, σ). We say that {u, v} is the base of the amalgam.

Lemma 4.4. Let Γ be a group and for i = 1, 2, let Ωi = (Gi, σi) be a Γ-gain-
graph. Assume that V (G1) ∩ V (G2) = {u, v} and let ℓ = E(G1) ∩ E(G2).
We assume the following conditions hold.

(i) G1[ℓ] = G2[ℓ],
(ii) σ1(e, x, y) = σ2(e, x, y) whenever (e, x, y) is in the domains of both

σ1 and σ2,
(iii) ℓ contains unbalanced loop edges incident with u and v, and
(iv) whenever Pi is a path of Gi from u to v for each i = 1, 2, and

σ1(P1) = σ2(P2), then there is a non-loop edge e ∈ ℓ such that
σ1(e, u, v) = σ2(e, u, v) = σ1(P1) = σ2(P2).

Then F (Ω1 ⊕uv Ω2) = Amalℓ(F (Ω1), F (Ω2)).

Proof. Let G be G1 ⊕uv G2 and let σ be the union of σ1 and σ2. We
will prove the lemma by showing that a circuit of F (G, σ) is dependent
in Amal(F (Ω1), F (Ω2)) and a circuit in Amal(F (Ω1), F (Ω2)) is dependent
in F (G, σ). For i = 1, 2, let Ei stand for E(Gi).

We start by assuming that C is a circuit of F (G, σ). This means that C is
either a balanced cycle in (G,B(σ)), or it is a bicycle containing no balanced
cycles. If C is contained in Gi for some i, then C is dependent in F (Ωi). In
this case C is dependent in Amal(F (Ω1), F (Ω2)), by Proposition 4.1. So we
will assume that both C − E1 and C − E2 are non-empty.
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First assume that C is a theta subgraph consisting of three paths between
vertices x and y. Any cut-set in this subgraph consisting of two vertices is
contained in one of the three paths from x to y. Therefore u and v are
both on the same path of C from x to y. From this it follows that we
can assume without loss of generality that C − E1 is a path joining u to v.
Therefore C ∩ E1 contains an unbalanced cycle made of two of the paths
in C joining x to y. Let q be an unbalanced loop incident with either u
or v. Now (C ∩ E1) ∪ q is connected and contains two unbalanced cycles,
including q. This shows that q is in cl1(C ∩E1). Since we have a guarantee
that ℓ contains unbalanced loops incident with u and v, it now follows that
cl1(C ∩E1) contains ℓ. The union of C −E1 with loops incident with u and
v forms a circuit contained in ℓ ∪ (C − E1). This circuit contains elements
from both ℓ and C − E1. Therefore these sets are not skew in F (Ω2). Now
Proposition 4.1 tells us that C is dependent in Amal(F (Ω1), F (Ω2)).

Next assume that C is a handcuff. Then C contains two edge-disjoint
cycles, both unbalanced. Let these cycles be C1 and C2 and let P be the
path of C that joins a vertex of C1 to a vertex of C2. Note that P may
comprise a single vertex. Assume that both C−E1 and C−E2 contain cycles
of C. Then P contains a vertex w ∈ {u, v}. Let q ∈ ℓ be an unbalanced
loop that is incident with w. Then C − E1 contains an unbalanced cycle
and a path joining this cycle to w, so the union of q and C −E1 contains a
handcuff with two unbalanced cycles. This shows that q is in cl2(C − E1).
The same argument shows that q is also in cl1(C−E2). Proposition 4.1 now
shows that C is dependent in Amal(F (Ω1), F (Ω2)). Therefore we assume
without loss of generality that C − E1 does not contain a cycle.

Now G[C−E1] is a forest with at least one edge, and therefore it contains
at least two degree-one vertices. But G[C] contains no such vertex, so any
degree-one vertex in G[C − E1] is incident with edges in both C − E1 and
C ∩ E1. There are at most two vertices (u and v) incident with edges in
both these sets. This shows that G[C − E1] contains exactly two degree-
one vertices, and these vertices are u and v. Thus C − E1 is a subpath of
G[C] and its end vertices are u and v. No internal vertex of this path has
degree three in G[C], or else it would be a vertex incident with edges in both
C − E1 and C ∩ E1, and the only such vertices are u and v. In particular,
the vertex in both C1 and P is not an internal vertex of C −E1. The same
applies to the vertex in both C2 and P . Now, up to symmetry, there are
two possibilities: the path C − E1 is contained in C1, or is contained in P .

First consider the case that C − E1 is contained in C1. Then G[C ∩ E1]
contains the unbalanced cycle C2 as well as the vertices u and v. Since ℓ
contains unbalanced loops incident with u and v, it follows that cl1(C ∩E1)
contains ℓ. Also, C−E1 is a path joining u and v, and therefore we can find
a circuit of F (Ω2) contained in (C−E1)∪ℓ that contains elements from both
C − E1 and ℓ. Again we see that C is dependent in Amal(F (Ω1), F (Ω2)).

Next we assume that C−E1 is a subpath of P . One component of C∩E1

contains an unbalanced cycle and u. The other contains an unbalanced cycle
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and v. As before, we can argue that cl1(C ∩E1) contains ℓ, and that ℓ and
C −E1 are not skew, so once again C is dependent in Amal(F (Ω1), F (Ω2)).

The remaining case is that C is a balanced cycle of (G, σ). In this case C
contains both u and v. For i = 1, 2, let Pi be the path of Gi from u to v that
is contained in C. Since C is balanced, we see that σ(C) is the identity, and
therefore σ1(P1) = σ2(P2). The hypotheses mean that there is an edge e in
ℓ joining u to v such that σ(e, u, v) = σ1(P1) = σ2(P2). This means that
the union of Pi with e is a balanced cycle of Ωi. So e is in cli(C − E3−i).
Proposition 4.1 now tells us that C is dependent in Amal(F (Ω1), F (Ω2)).

We have concluded the argument that a circuit of F (G, σ) is depen-
dent in Amal(F (Ω1), F (Ω2)). Now we will assume that C is a circuit of
Amal(F (Ω1), F (Ω2)). If either C − E1 or C − E2 is empty, then C is a de-
pendent subset of F (Ω1) or F (Ω2). In this case C is dependent in F (G, σ)
and we are done. So we will assume that C − E1 and C − E2 are both
non-empty. Therefore C ∩Ei is an independent subset of F (Ωi) for i = 1, 2.
Now we can apply Proposition 4.1 and deduce that statement (i), (ii), or
(iii) from that result holds.

Symmetrical arguments will deal with both (i) and (ii), so we assume the
former holds. Then ℓ is contained in cl1(C ∩ E1) and C − E1 is not skew
with ℓ in F (Ω2). Let w be an arbitrary vertex in {u, v} and let q be an
unbalanced loop incident with w. If q is in C ∩E1, then there is a connected
component of C ∩E1 that contains an unbalanced cycle (namely q) and w.
If q is not in C∩E1, then (C∩E1)∪q contains a circuit that contains q, and
this circuit must be a handcuff. In either case C ∩E1 contains a connected
component that contains both an unbalanced cycle and w. We choose such
a component and call it Hw.

Now let C ′ be a circuit of F (Ω2) that is contained in ℓ ∪ (C − E1) and
which contains edges from both ℓ and C − E1. Since G[C ′] is connected,
it follows that G[C ′ − E1] contains at least one of u and v. Assume that
G[C ′ − E1] contains a cycle and the vertex u. Then the union of C ′ − E1

and Hu contains a connected component that contains two distinct cycles.
Now it follows that C contains a circuit of F (G, σ). The same argument
applies if C ′ − E1 contains v instead of u. Therefore we must assume that
G[C ′−E1] is a forest. Then C ′−E1 contains at least two degree-one vertices.
Since C ′ contains no such vertex, it follows that any degree-one vertex of
C ′ −E1 must share a common vertex with an edge in ℓ. Therefore C ′ −E1

has exactly two degree-one vertices, and in fact it is a path of G2 between
u and v. We consider the union of this path with Hu and Hv. Note that
the union is a connected subgraph of C. If Hu and Hv are distinct, then
this connected subgraph contains two distinct cycles, and therefore C is
dependent in F (G, σ). So we assume Hu and Hv are the same connected
component. This component contains a path of G1 from u to v. The union
of this path with C ′ −E1 is a cycle and this cycle is distinct from the cycle
of C ∩ E1 contained in Hu = Hv. We have once again found a connected
component of G[C] that contains two distinct cycles, so C is dependent
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in F (G, σ). We have now concluded the argument when case (i) holds in
Proposition 4.1.

We can now assume that case (iii) holds. This means we can choose
an edge e ∈ ℓ and for each i = 1, 2, we can let Ci be a circuit of F (Ωi)
such that e ∈ Ci ⊆ (C − E3−i) ∪ e. Assume that e is a loop edge incident
with w ∈ {u, v}. Then each Ci is a handcuff, and C − E3−i contains a
connected component that contains a cycle and the vertex w. Now G[C]
contains a connected component with two distinct cycles and we are done.
So we assume e is an edge joining u and v. Then C −E3−i contains a path
from u to v. This means that there is a cycle of C containing edges from
both C − E1 and C − E2. If either C1 − e or C2 − e contains a cycle, then
C contains a component that contains two cycles, so we assume that both
C1 − e and C2 − e are forests. Since C1 and C2 have no degree-one vertices,
it now follows that both these subgraphs are balanced cycles. For i = 1, 2,
let Pi be the path Ci − e, directed from u to v. Because C1 and C2 are
balanced, we conclude that σ1(P1) = σ(e, u, v) = σ2(P2). This means that
the union of P1 and P2 is a balanced cycle of (G, σ). Therefore C contains
a circuit of F (G, σ) and this completes the proof. □

Lemma 4.5. For i = 1, 2, let Ωi = (Gi,Bi) be a biased graph without
balanced loops and assume that V (G1) ∩ V (G2) = {u, v}. Assume also that
in Ω1 and Ω2, every vertex is incident with an unbalanced loop, and that each
vertex w has two distinct neighbours w1 and w2 such that for each i = 1, 2,
there is an unbalanced 2-edge cycle containing w and wi. Let Ω = (G,B) be
a biased graph such that G has no isolated vertices and Amal(F (Ω1), F (Ω2))
is equal to F (Ω). Then G is isomorphic to G1 ⊕uv G2.

Proof. Let L be a set containing exactly one unbalanced loop incident with
each vertex in G1 ⊕uv G2. Then L ∩ Ei is a basis of F (Ωi) for each i =
1, 2. It is easy to verify, using Proposition 4.1, that L is independent in
Amal(F (Ω1), F (Ω2)). Let e be an arbitrary element of Amal(F (Ω1), F (Ω2))
that is not in L. We can assume without loss of generality that e is an edge
of Ω1. Either e is an unbalanced loop that has a common vertex with a loop
in L, or it is non-loop edge of Ω1. In these cases, e is in a 2- or 3-element
circuit of F (Ω1) that is contained in L ∪ e. This circuit is also a circuit
of Amal(F (Ω1), F (Ω2)). It now follows that L spans Amal(F (Ω1), F (Ω2)),
and is therefore a basis of this matroid. Let x and y be an arbitrary pair
of distinct vertices contained in an unbalanced 2-edge cycle of either Ω1 or
Ω2. The edges from the 2-edge cycle along with unbalanced loops incident
with x and y form a long line of either F (Ω1) or F (Ω2), and it is not
difficult to see that this line is also a line in Amal(F (Ω1), F (Ω2)). Now
the hypotheses imply that each element of L is in two distinct long lines of
Amal(F (Ω1), F (Ω2)). Now Proposition 2.1 implies that the elements of L
are all unbalanced loops in Ω. Since L is independent in F (Ω), we have no
more than one element of L incident with any given vertex of G, for any two
loops incident with the same vertex form a handcuff. If there exists some
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vertex of G not incident with a loop in L, then this vertex is incident with
an edge e (since G has no isolated vertices), and now e is not spanned by
L. This is a contradiction, so every vertex of G is incident with exactly one
loop in L. This induces a bijection between the vertices of G1⊕uvG2 and G.
Any edge of G1⊕uvG2 that is not in L is incident with at most two elements
of L, and this shows that the bijection between the vertices of G1 ⊕uv G2

and G gives us an isomorphism between the two graphs. □

5. Uniformly locally finite groups

In this section, we will prove that if Γ is not a uniformly locally finite
group, the class of Γ-gain-graphic matroids is not CMSO1-definable.

Definition 5.1. Let Γ be a group. A subset {a1, . . . , an} is a generating set
if it is closed under inverses. Then, for any element g ∈ ⟨a1, . . . , an⟩ there is
a string of the {ai} which evaluates to g. Let f{ai}(g) be the minimum length
of such a string (letting f{ai}(Id) = 0). Note that for g1, g2 ∈ ⟨a1, . . . , an⟩,
f{ai}(g1g2) ≤ f{ai}(g1) + f{ai}(g2). When there is only one generating set in
the context, we will drop the subscript and write f(x) = f{ai}(x)

Definition 5.2. For n,N ∈ N, the graph H∗
n,N is defined in Figure 1.

α1 α2

β1 β2

γ1 γ2 · · · (N + 1 nodes) · · · γN+1

δ1 δ2

A
...

K1

K2

...

C

...

B1
...

B2
...

BN

Figure 1. The graph H∗
n,N .

For ease of notation, we will refer to vertices by lower-case Greek letters,
and edges by upper-case Roman letters. Let G∗

ℓ,N be the subgraph enclosed
by the dotted line, and let ℓ∗N be its edge-set. Let T be the collection of
bolded edges. Note that each of A,B1, . . . ,BN and C are collections of edges:

A = {AId, A1, . . . , An, As}
Bi = {Bi,Id, Bi,1, . . . , Bi,n} for all 1 ≤ i ≤ N

C = {CId, C1, . . . , Cn, Cs}
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T has a single element in each of these: the elements AId, Bi,Id : 1 ≤ i ≤ N ,
and CId. Therefore, we have added a single bold line in each collection in
the diagram.

Next, we define Hn,N as the union of H∗
n,N and the following new edges:

α1 α2

β1 β2

γ1 γ2 · · · (N + 1 nodes) · · · γN+1

δ1 δ2

D1 D2

D3 D4

D5 D6

Q1 Q2

Q3 Q4

Q5 Q6

QN+5

QN+6 QN+7

Figure 2. The graph Hn,N \H∗
n,N .

Each Di : 1 ≤ i ≤ 6 is a collection of two edges: Di = {Di,1, Di,2}. Each
Qi is a single loop edge. Let Gℓ,N = G∗

ℓ,N ∪ {QN+6, QN+7}, and let ℓN be
its edge-set. We will use these new edges at only one point in the argument.

Suppose we have some group Γ, a generating set {a1, . . . , an}, some s,M ∈
⟨a1, . . . , an⟩. Then, H∗

n,N has a Γ-gaining σ∗ = σ∗(Γ, {a1, . . . , an}, s,M),
defined as follows:

σ∗(T ) = Id ∀ T ∈ T
σ∗(Aj) = aj ∀ 1 ≤ j ≤ n

σ∗(Bi,j) = aj ∀ 1 ≤ j ≤ n, 1 ≤ i ≤ N

σ∗(Cj) = aj ∀ 1 ≤ j ≤ n

And σ∗(K1) = σ∗(K2) = M, σ∗(As) = σ∗(Cs) = s. Note all these edges are
oriented as in the diagrams, so that, for example, σ∗(Aj) = aj is shorthand
for σ∗(Aj , α1, α2) = aj . Secondly, given elements

di,j : 1 ≤ i ≤ 6, 1 ≤ j ≤ 2, and qi : 1 ≤ i ≤ N + 7

of Γ, we can define σ = σ(Γ, {a1, . . . , an}, s,M, {di,j}, {qi}), a Γ-gaining of
Hn,N extending σ∗, by

σ(Di,j) = di,j ∀ 1 ≤ i ≤ 6, 1 ≤ j ≤ 2

σ(Qi) = qi ∀ 1 ≤ i ≤ N + 7
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These edges are also oriented as in the diagrams. We will always assume

(†)

f{ai}(s) = N ,
f{ai}(M) ≥ 2N + 1, and

the {di,j}, and {qi} are chosen so that
no cycle containing a Di,j or Qi is balanced

Subject to this assumption, the balanced cycles of σ depend only on the
choice of {a1, . . . , an} and s.

Let us also define Ω(Γ, {a1, . . . , an}, s,M, {di,j}, {qi}) as the induced bi-
ased graph on Hn,N .

Remark 5.3. Let Γ be an infinite group, and let S be a finite collection
of strings over the characters Γ ∪ {x}, where each string contains exactly
one copy of x. Given an element g ∈ Γ and s ∈ S, there is an evaluation
s(g) ∈ Γ, where we replace x with g. Since Γ is infinite, there will always
be an element g ∈ Γ such that for all s ∈ S, s(g) ̸= Id. Thus, we can always
find elements satisfying condition (†) in Definition 5.2.

Since we will use it several times, we note a specialisation of [13, Lemma
5.3]:

Fact 5.4. Let Γ be a group, G a finite graph, and σ a Γ-gaining of G. Let
G2 be a subgraph such that in (G2, σ|G2) every cycle is balanced. Then, there
is a Γ-gaining σ2 of G, with the same balanced and unbalanced cycles as σ,
such that for all e ∈ G2, σ2(e) = Id.

Lemma 5.5. Let M be a CMSO1-definable class of matroids. Let Γ be a
group, and let {(Ξj , σj) : j ∈ J} be a collection of Γ-gained finite graphs,
over an index set J , all containing a fixed copy of a fixed graph Gℓ, with
edge-set ℓ. Thus, without loss of generality, we may take Gℓ = Ξi ∩ Ξj
for any i ̸= j. Assume also that Gℓ has exactly two vertices, and in every
(Ξj , σj) each vertex has an unbalanced loop edge. Then, there is a finite
partition J = J1 ∪ · · · ∪ Jn such that for all l, for all j1, j2 ∈ Jl, and for all
k,

Amalℓ(F (Ξj1 , σj1), F (Ξk, σk)) ∈ M ↔ Amalℓ(F (Ξj2 , σj2), F (Ξk, σk)) ∈ M.

That is, whether the amalgam is in the class depends only on where in the
partition the amalgam components reside.

Proof. Let clj be the matroid closure operator of F (Ξj , σj), and let Ej be
the edge-set of Ξj for each j. We finitely colour each P(Ej) as follows: Given
X ⊆ Ej ,

tj(X) = (clj(X) ∩ ℓ, clj(X \ ℓ) ∩ ℓ,
Is X dependent?, Is X \ ℓ skew with ℓ?)

Where the last two terms are boolean values. Let T be the set of colours
(which does not depend on j). The pairs (Ej , tj) are then T -coloured sys-
tems.
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Note that for any j, k, and any set X ∪ Y ⊆ Amalℓ(F (Ξj , σj), F (Ξk, σk)),
where X ⊆ Ej and Y ⊆ Ek \ ℓ, whether X ∪ Y is dependent depends only
on tj(X) and Y , by Proposition 4.1. Thus, for each j, let

dj : P(Ej \ ℓ) × T → {0, 1}
be the function which, given a subset Y and colour c ∈ T , returns whether
X ∪ Y would be independent for any X ⊆ Ek such that tk(X) = c. Given
this definition, for any j, k, we have

Amalℓ(F (Ξj , σj), F (Ξk, σk)) ∼= (Ej , tj) ⊞ (Ek, dk).

By Lemma 3.7, there is a finite partition J = J1 ∪ · · · ∪ Jn such that for all
l ∈ [n], all j1, j2, k ∈ J ,

(Ej1 , tj1) ⊞ (Ek, dk) ∈ M ↔ (Ej2 , tj2) ⊞ (Ek, dk) ∈ M.

By the above isomorphism, this concludes the proof. □

The next theorem shows that an infinite group Γ must be locally finite in
order for the class of Γ-gain-graphic matroids to be CMSO1-definable.

Theorem 5.6. Let Γ be a group, and let {a1, . . . , an} ⊆ Γ be a generating
set which generates an infinite subgroup. Then the class of Γ-gain-graphic
matroids is not CMSO1-definable.

Proof. We may restrict to the case where the {ai} contain two elements
α1 ̸= α2 such that α−1

1 ̸= α2, since we may freely add new pairs {g, g−1} ⊆
⟨a1 . . . an⟩ to the generating set. For each 1 ≤ N < ω, fix some

sN ,MN , di,j : 1 ≤ i ≤ 6, 1 ≤ j ≤ 2 and qi : 1 ≤ i ≤ 10

all in Γ satisfying condition (†) in Definition 5.2. Let σN be
σ(Γ, {a1, . . . , an}, sN ,MN , {di,j}, {qi}), the Γ-gaining of Hn,N . Then, for
ease of notation, for each N ≥ 1, let HN = (Hn,N , σN ), and let ΩN be the
associated biased graph. Note that any HN contains Gℓ,N , and the {Gℓ,N}
are all isomorphic as Γ-gained graphs. So, we could arrange that the Hn are
all sub-graphs of some larger graph G, and that the Gℓ,N are actually equal,
and for any N,N ′ distinct, HN∩HN ′ = Gℓ,N . Thus, given any two HN , HN ′ ,
we can construct both the matroid amalgam Amal(F (HN ), F (HN ′)) over the
base F (ℓN ) = F (ℓN ′), and the graph amalgam Hn,N ⊕δ1,δ2 Hn,N ′ over the
base {δ1, δ2} = {δ′1, δ′2}. Throughout the proof, when we amalgamate it will
always be over these bases. By Lemma 5.5, if the class of Γ-gain-graphic
matroids is CMSO1-definable, there is a finite partition of ω such that for
any N,N ′, whether Amal(F (HN ), F (HN ′)) is a Γ-gain-graphic matroid de-
pends only on which classes in the partition N and N ′ belong to. Thus, for
a contradiction it suffices to show that the amalgam Amal(F (HN ), F (HN ′))
is a Γ-gain matroid if and only if N = N ′ for all N,N ′ ≥ 1. There are two
directions to this.

First, suppose Amal(F (HN ), F (HN ′)) is a Γ-gain-graphic matroid, built
from some Γ-gained graph (X, τ0), with associated biased graph Ω. With-
out loss of generality, we may assume X has no isolated vertices. Note
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that X has the same edge-set as Y = Hn,N ⊕ Hn,N ′ . We claim that the
triple ΩN ,Ω

′
N ,Ω satisfies the conditions of Lemma 4.5. Certainly no loop

edges in HN or HN ′ are balanced. The desired unbalanced loops are sup-
plied by Q1, . . . , QN+7, Q

′
1, . . . , Q

′
N ′+7. Next, for the desired unbalanced

cycles, note that by assumption each A,A′,Bi,B′
i, C, C′ contains an unbal-

anced cycle, since we assumed {ai} contains two distinct elements which
are not reciprocals of each other. Note also by property (†) in Defini-
tion 5.2, each Di and D′

i contains an unbalanced cycle. Finally, by assump-
tion Amal(F (HN ), F (HN ′)) = F (X, τ0) and X contains no isolated vertices.
Thus, applying the lemma, we conclude X ∼= Y . So, by our assumption,
there is a Γ-gaining τ0 of Y such that F (Y, τ0) = Amal(F (HN ), F (HN ′)).
Let us distinguish the edges in F (HN ) from those in F (HN ′) by adding a
tick to those in F (HN ′), and doing the same for collections of edges. Thus,
K1 ∈ F (HN ), K ′

1 ∈ F (HN ′), and e.g. C1 = C ′
1, since these edges lie in the

amalgamation base. By Fact 5.4, without loss of generality we may assume
τ0(T ∪T ′) = {Id}. Then, let τ = τ0|Hn,N , τ ′ = τ0|Hn,N′ be the two natural re-

strictions of τ0. By switching, we can assume that τ(CId) = Id. Let hs stand
for the element τ(Cs), and let hj stand for the element τ(Cj) for all j. For

each j ∈ {1, . . . , n}, by considering the balanced cycle C−1
j δ1β1α1 Aj α2β2δ2

(where we omit an edge if it is in T ), we must have τ(Aj) = τ(Cj) = hj .
Similarly, we must have τ(As) = hs. Next, observe that since we have the
balanced cycle

α1α2β2γN+1γN · · · γ1 K−1
2 β1 K1,

we must have τ(K1) = τ(K2). For each 1 ≤ i ≤ N and each 1 ≤ j ≤ n, we
consider the balanced cycle

α1 Ai α2β2γN+1γN · · · γi+1 B
−1
i,j γiγi−1 · · · γ1 K−1

2 β1 K1 α1,

and conclude τ(Bi,j) = τ(Aj) = hj . Now, let η : {1, . . . , N} →
{h1, . . . , hn} ∪ {Id} be a string of length at most N in the hi. There is
a path Pη from γ1 to γN+1 such that for each k, the edge Pη takes between
γk and γk+1 is mapped to η(k) by τ . Let Cη be the cycle obtained from Pη by

appending γN+1β2α2 A
−1
s α1 K

−1
1 β1 K2 γ1. Thus, τ(Cη) = τ(Pη)h

−1
s . Since

f{ai}(s) = N , there exists η a string of length N such that σN (Cη) = Id, but
not one of smaller length. So there exists η of length N such that τ(Cη) = Id
but not one of smaller length. In other words, f{hi}(hs) = N . Symmetri-
cally, if we let τ ′(Cj) = h′j for all j, and τ ′(Cs) = h′s, then f{h′i}(h

′
s) = N ′.

But the edges in C are all in the amalgamation base, so τ and τ ′ agree on
C, so

N = f{hi}(hs) = f{h′i}(h
′
s) = N ′.

Now we have shown the ‘only if’ direction.
We prove the other direction. Fix some N ≥ 1. We must show that

Amal(F (HN ), F (HN )) is a Γ-gain-graphic matroid. As above, let us distin-
guish the two copies of Hn,N by adding a tick to the names of the components
of the second copy. Thus, K ′

1 ∈ Hn,N ′ , K ′
1 ̸∈ Hn,N . Let σ′N be the gaining
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σN , applied to Hn,N ′ . Note that σN and σ′N agree on the amalgamation
base.

Let Y be Hn,N ⊕ Hn,N ′ . Our goal is to use Lemma 4.4 to construct
a Γ-gaining of Y such that the corresponding frame matroid is equal to
Amal(F (HN ), F (HN ′)). We observe that we cannot simply use (Hn,N ⊕δ1,δ2

Hn,N ′ , σN ∪ σ′N ), as for instance the cycle

δ1β1 K1 α1α2β2δ2β
′
2α

′
2α

′
1 (K ′

1)
−1 β′1δ1

(where, as before, we omit an edge if it is in T ∪ T ′) would be balanced,
whereas that cycle is not balanced in the matroid amalgam. Thus, we need
our gaining to have different values on K1 and K ′

1.
Choose some M′ ∈ Γ such that f{ai}(M

′) = 4N + 2. Let us define a
gaining τ∗′ of Hn,N ′ which operates as follows:

(A, u, v) 7→


σ′N (A, u, v) : A ∈ Hn,N ′ , A ̸∈ {K ′

1,K
′
2}

M′ : (A, u, v) ∈ {(K ′
1, β

′
1, α

′
1), (K

′
2, β

′
1, γ

′
1)}

(M′)−1 : (A, u, v) ∈ {(K ′
1, α

′
1, β

′
1), (K

′
2, γ

′
1, β

′
1)}

Then, let us extend this to τ ′ a Γ-gaining of Hn,N ′ by first letting τ(Q′
i) =

σN (Qi) for i = N+6, N+7, and then choosing the remaining values of τ(Q′
i)

such that no Q′
i is a balanced loop, and then choosing values of τ(D′

i,j) such

that no cycle containing a D′
i,j is balanced. We can do this since the group

is infinite. Note τ ′ agrees with σN on ℓN = ℓN ′ .
We claim F (Hn,N ′ , τ ′) = F (Hn,N ′ , σ′N ). Note both sides agree that any

cycle containing a D′
i,j or a Q′

i is unbalanced. So the problem reduces to
showing that

F (H∗
n,N ′ , τ∗′) = F (H∗

n,N ′ , σ∗
′
N ).

Note that τ∗′ disagrees with σ∗′N only on K ′
1 and K ′

2. Further, since K ′
1 and

K ′
2 are incident with a common vertex, and

τ∗′((K ′
1)

−1K ′
2) = σ∗′N ((K ′

1)
−1K ′

2) = Id,

the only cycles they could possibly disagree on are those containing exactly
one of K ′

1 and K ′
2. But for any such cycle, both τ∗′ and σ∗′N agree that it

is unbalanced. So as desired

F (Hn,N ′ , τ ′) = F (Hn,N ′ , σ′N ).

Now that we have this identity, we want to show F (Hn,N⊕ℓN Hn,N ′ , σN ∪τ ′)
is the matroid Amal(F (HN ), F (HN ′)) = Amal(F (HN ), F (Hn,N ′ , τ ′)), by
Lemma 4.4. We must prove that this data satisfies its conditions. Note
(i), (ii) are immediate from the definition of τ ′, and (iii) is satisfied by
QN+6 and QN+7, so there is only one condition of Lemma 4.4 remaining:
to show that for any paths P ⊆ Hn,N , P ′ ⊆ Hn,N ′ , both starting at δ1 and
ending at δ2, and σN (P ) = τ ′(P ′), there is some edge E from δ1 to δ2 such
that σN (E) = σN (P ) = τ ′(P ′). Fix such P, P ′. Their union is a balanced
cycle, so they must lie in H∗

n,N and H∗
n,N ′ , respectively. Then, in particular,
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f{ai}(P ) = f{ai}(P
′). By inspection f{ai}(P ) ≤ 3N+1. If P ′ passes through

K ′
1 or K ′

2, f{ai}(P
′) ≥ 3N + 2. Therefore, P ′ passes through neither K ′

1 nor
K ′

2. Hence, τ ′(P ′) ∈ {Id, a1, . . . , an, s}, and so there is some edge E ∈ A such
that σN (E) = σN (P ) = τ ′(P ′). The conditions of the Lemma are satisfied,
so Amal(F (HN ), F (HN ′)) = F (Hn,N ⊕ℓN Hn,N ′ , σN ∪ τ ′) is a Γ-gain graphic
matroid. □

In the next result, we show how Theorem 5.7 follows from the locally
finite case (Theorem 5.6) by using ultraproducts.

Theorem 5.7. Let Γ be an infinite group that is not uniformly locally finite.
The class of Γ-gain-graphic matroids is not CMSO1-definable.

Proof. Assume Γ is not uniformly locally finite. Let U be a non-principal
ultrafilter on N, and let ΓU be the ultrapower of Γ. Corollary 2.10 says that
ΓU is not locally finite. Therefore Theorem 5.6 implies that the class of
ΓU -gain-graphic matroids is not CMSO1-definable. Corollary 2.9 now tells
us that the class of Γ-gain-graphic matroids is not CMSO1-definable. □

6. The conviviality graph

Recall that a monomorphism is an injective homomorphism.

Definition 6.1 (Conviviality graph). We fix the finite group F . Let H be
an infinite group which has a copy of F as a subgroup. Let H be the set of
all pairs (Γ, ψ), where

(i) Γ is a finite group,
(ii) there exists a monomorphism from Γ into H, and

(iii) ψ is a monomorphism from F into Γ.

Define the equivalence relation ∼ on H such that (Γ1, ψ1) ∼ (Γ2, ψ2) if and
only if there exists an isomorphism θ : Γ1 → Γ2 such that ψ2 = θ ◦ ψ1. Say
that (Γ1, ψ1) and (Γ2, ψ2) are representatives of two equivalence classes. If
there are monomorphisms θ1 : Γ1 → H and θ2 : Γ2 → H such that θ1 ◦ ψ1 =
θ2 ◦ ψ2, then we say that (Γ1, ψ1) and (Γ2, ψ2) are F -convivial in H. It
is easy to see that the choice of representatives does not change whether
the pair is F -convivial, so we can think of conviviality as being a relation
on equivalence classes. Note that every equivalence class is convivial with
itself, since if (Γ1, ψ1) ∼ (Γ2, ψ2), then there is an isomorphism θ : Γ1 → Γ2

witnessing this, and then for any θ2, a monomorphism of Γ2 into H, θ2 ◦ θ
is a monomorphism of Γ1 into H, and θ2 ◦ θ ◦ψ1 = θ2 ◦ψ2, by the definition
of θ. The elementary F -conviviality graph of Γ has the set of equivalence
classes H/∼ as its vertex-set, where (Γ1, ψ1) and (Γ2, ψ2) are adjacent if and
only if they are F -convivial.

We now define the equivalence relation ≈ on the vertices of the elementary
conviviality graph so that two vertices are equivalent if they have exactly
the same neighbours. Note that this requires that the vertices are adjacent
since every vertex is self-adjacent. Now the F -conviviality graph of H has
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the equivalence classes of ≈ as its vertices. Two equivalence classes are
adjacent in the conviviality graph if and only if representative vertices from
those classes are adjacent.

Definition 6.2. Given finite groups Γ1 ≤ Γ2, the graph Λ∗
Γ1,Γ2

is defined
by Figure 3.

α1 α2

β1 β2

γ1

γ2

γ3

δ1 δ2

A
...K1

K2

...

C

B1
. . .

B2

. .
.

...

B3

Figure 3. The graph Λ∗
Γ1,Γ2

For ease of notation, we will refer to vertices by lower-case Greek letters,
and edges by upper-case Roman letters. Let ℓ∗Γ1

be the edge set of the
subgraph enclosed by the dotted line (we will see its structure depends
only on Γ1). Let T be the collection of bolded edges. Note that each of
A,B1,B2,B3 and C are collections of edges:

A = {Ag : g ∈ Γ1}
Bi = {Bi,g : g ∈ Γ2} : i = 1, 2, 3

C = {Cg : g ∈ Γ1}
T has a single element in each of these: the elements AId, B1,Id, B2,Id, B3,Id,
and CId. Therefore, we have added a single bold line in each collection in
the diagram.

Next, we define ΛΓ1,Γ2 as the union of Λ∗
Γ1,Γ2

and the following new edges:
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α1 α2

β1 β2

γ1

γ2

γ3

δ1 δ2

D1

D2

D3

D5 D6

D7

D4 D8

D9 D11

D10

Q1 Q2

Q4 Q5

Q6

Q3

Q7

Q8 Q9

Figure 4. The graph ΛΓ1,Γ2 \ Λ∗
Γ1,Γ2

Each Di : 1 ≤ i ≤ 11 is a collection of two edges: Di = {Di,1, Di,2}. Each
Qi is a single loop edge. Let ℓΓ1 = ℓ∗Γ1

∪ {Q8, Q9} ∪ D10. We will use these
new edges at only one point in the argument.

Suppose we have an infinite group Γ3 containing Γ2, and M some element
in Γ3. Then, Λ∗

Γ1,Γ2
has a Γ2-gaining σ∗ = σ∗(Γ1,Γ2,M), defined as follows:

σ∗(T ) = Id ∀ T ∈ T
σ∗(Ag) = g ∀ g ∈ Γ1

σ∗(Bg) = g ∀ g ∈ Γ2

σ∗(Cg) = g ∀ g ∈ Γ1

And σ∗(K1) = σ∗(K2) = M. Note all these edges are oriented as in the
diagrams. Secondly, given elements di,j : 1 ≤ i ≤ 11, 1 ≤ j ≤ 2, and
qi : 1 ≤ i ≤ 9 of Γ, we can define σ = σ(Γ1,Γ2,M, {di,j}, {qi}), a Γ3-gaining
of Hn,N extending σ∗, by

σ(Di,j) = di,j ∀ 1 ≤ i ≤ 11, 1 ≤ j ≤ 2

σ(Qi) = qi ∀ 1 ≤ i ≤ 9

All these edges are also oriented as in the diagrams. We will always assume

(†)
M ̸∈ Γ2, and

the {di,j}, and {qi} are chosen so that
no cycle containing a Di,j or Qi is balanced

Subject to this assumption, the balanced cycles of σ depend only on the
isomorphism type of the pair (Γ1,Γ2).

Note that by Remark 5.3, we can always find such {di,j} and {qi}.
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Proposition 6.3. Let Γ be an infinite group, and let Γ0 be a finite subgroup.
Fix two representatives (H1, ϕ1) and (H2, ϕ2) of vertices of the elementary

Γ0-conviviality graph. Fix, for each k = 1, 2, some data (M(k), {d(k)i,j }, {q
(k)
i })

satisfying condition (†) in Definition 6.2 with respect to the pair (Γ0, Hk),
and let (Λk, σk) be the gained graph

(Λϕk(Γ0),Hk , σ(ϕk(Γ0), Hk,M
(k), {d(k)i,j }, {q

(k)
i })).

We assume ℓϕ1(Γ0) = ℓϕ2(Γ0). Then (H1, ϕ1) and (H2, ϕ2) are Γ0-convivial
in Γ if and only if the matroid amalgam of F (Λ1, σ1) and F (Λ2, σ2) over
ℓϕ1(Γ0) is Γ-gainable.

Proof. Fix (H1, ϕ1), (H2, ϕ2), M
(k), {d(k)j,k} and {q(k)j }, and (Λ1, σ1), (Λ2, σ2)

as above. For each k = 1, 2, let

(Λ∗
k, σ

∗
k) = (Λ∗

ϕk(Γ0),Hk
, σ∗(ϕk(F ), Hk,M

(k))).

As in Theorem 5.6, let us distinguish the edges in Λ1 and Λ2 by adding a tick
to those edges in Λ2. We have assumed that ℓσ1(Γ0) and ℓσ2(Γ0) are equal.
In addition, we assume V (Λ1) ∩ V (Λ2) = {δ1, δ2}. Therefore, for example,
Q8 = Q′

8 and δ1 = δ′1. Whenever we gain-graph amalgamate in this proof,
it will be over the base {δ1, δ2}. Whenever we matroid amalgamate, it will
be over the base ℓϕ1(Γ0), which is the set of edges adjacent only to δ1 and δ2.

The proof has two directions. First, suppose the matroid amalgam is
Γ-gain-graphic. Let this be witnessed by a graph X with Γ-gaining τ0,
without loss of generality with no isolated vertices. As in Theorem 5.6,
we wish to apply Lemma 4.5. We note that (Λ1, σ1) and (Λ2, σ2) have
no balanced loop edges. The desired unbalanced loops are supplied by
Q1, . . . , Q10, Q

′
1, . . . , Q

′
10. The desired unbalanced cycles are supplied by

the Di,D′
i. By definition, X has no isolated vertices and

F (X, τ0) ∼= Amalℓϕ1(Γ0)
(F (Λ1, σ1), F (Λ2, σ2)).

Thus Lemma 4.5 implies X ∼= Λ1 ⊕ Λ2.
Define τ to be the restriction τ0|Λ1 , and let τ ′ be τ0|Λ2 . By Fact 5.4, we

may assume that τ0(T ∪ T ′) = {Id}. For any fixed element g ∈ ϕ1(Γ0),
by considering the balanced cycle δ1 Cg δ2β2α2 Ag α1β1δ1 (where we omit
an edge if it is in T ), we deduce that τ(Cg) = τ(Ag). Similarly, the bal-
anced cycle α1 AId α2β2γ3 B3,Id γ1 K2 β1 K1 implies that τ(K1) = τ(K2),
and also the balanced cycle α1 Ag α2β2γ3 B3,g γ1 K2 β1 K1 implies
that τ(B3,g) = τ(Ag). Finally, by considering the list of balanced cycles
γ1 B3,g γ3 B2,h γ2 B1,g+h, and noting that τ(Bi,Id) = Id for all i, we de-
duce that for all g ∈ ϕ1(Γ0), and all i, j, τ(Bi,g) = τ(Bj,g), and also for
all g, h ∈ H1, τ(B1,g)τ(B1,h) = τ(B1,gh). Similarly for all g ∈ ϕ2(Γ0),
τ ′(A′

g) = τ ′(B′
3,g) = τ ′(C ′

g); for all g ∈ H2, and all i, j, τ ′(B′
i,g) = τ ′(B′

j,g);

for all g, h ∈ H2, τ
′(Bi,g)τ

′(Bi,h) = τ ′(Bi,gh). For i = 1, 2, let χi : Hi → Γ
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be the function defined by

g 7→

{
τ(Bg) : i = 1

τ ′(B′
g) : i = 2

By the above results, for each i, χi is an embedding of Hi into Γ, and since
for all g ∈ Γ0 we have Cϕ1(g) = C ′

ϕ2(g)
, it follows that χ1 ◦ϕ1 = χ2 ◦ϕ2. Thus

(H1, ϕ1) and (H2, ϕ2) are Γ0-convivial in Γ.
Now we prove the other direction. Let (H1, ϕ1) and (H2, ϕ2) be Γ0-con-

vivial in Γ, witnessed by embeddings χi : Hi → Γ such that χ1◦ϕ1 = χ2◦ϕ2.
For ease of notation, let us identify Hi with its image under χi for each i, so
now each Hi is a specific subgroup of Γ. Note that since χ1◦ϕ1 = χ2◦ϕ2, this
is consistent with our assumption ℓϕ1(Γ0) = ℓϕ2(Γ0). We will define a Γ-gain-
ing τ0 on Λ1 ⊕ Λ2 such that F (Λ1 ⊕ Λ2, τ0) ∼= Amal(F (Λ1, σ1), F (Λ2, σ2)).

As in Theorem 5.6, we need to change the gaining of a few edges to make
sure there are no ‘unintentional’ balanced cycles.

Fix some M′
1 ∈ Γ \ ⟨H1, H2⟩, M′

2 ∈ Γ \ ⟨H1, H2,M
′
1⟩. Let

∆+ = {(γ1, γ2), (γ2, γ3), (γ3, γ1)}.

Then define a partial gaining τ∗ which maps (E, u, v) to the following ele-
ments:

Id : E ∈ T
g : E ∈ {B1,g, B2,g, B3,g} for some g ∈ H1, (u, v) ∈ ∆+

ϕ1(g) : (E, u, v) ∈ {(Aϕ1(g), α1, α2), (Cϕ1(g), δ1, δ2)} for some g ∈ Γ0

M′
1 : (E, u, v) ∈ {(K1, β1, α1), (K2, β1, γ1)}

We extend it to a full gaining using the rule τ∗(E, u, v) = τ∗(E, v, u)−1.
Let τ∗′ be defined symmetrically, with τ∗′(K ′

1) = τ∗′(K ′
2) = M′

2. Note
they agree on ℓϕ1(Γ0), the amalgamation base. Thus, we can define τ∗0 =

τ∗ ∪ τ∗′. Next, we define τ0 by extending τ∗0 such that any cycle containing
any Di,j , D

′
i,j , Qi or Q′

i is unbalanced. We can do this since Γ is infinite.

Now we must show F (Λ1 ⊕ Λ2, τ0) is as desired.

Claim 6.3.1. F (Λ1, τ0|Λ1) ∼= F (Λ1, σ1), and similarly for Λ2

Proof. By symmetry, it suffices to prove the result for Λ1. Note that the
LHS and RHS both agree that any cycle containing any Di,j or Qi is un-
balanced, so it suffices to check F (Λ∗

1, τ0|Λ∗
1
) ∼= F (Λ∗

1, σ
∗
1). But note that

τ0|Λ∗
1

= σ∗(ϕ1(Γ0), H1,M
′
1). Since M′

1 ̸∈ H1, the balanced cycles induced
by this gaining depend only on the isomorphism type of (ϕ1(Γ0), H1) (as
noted in Definition 6.2). Thus, since (ϕ1(Γ0), H1) ∼= (ϕ1(Γ0), H1), and

σ∗1 = σ∗(ϕ1(Γ0), H1,M
(1)) we have the desired isomorphism. □

This implies

Amal(F (Λ1, σ1), F (Λ2, σ2)) ∼= Amal(F (Λ1, τ0|Λ1), F (Λ2, τ0|Λ2))
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Now, we aim to apply Lemma 4.4, with Ωi = (Λ1, τ0|Λi) for i = 1, 2. The
conclusion of that lemma would imply

Amal(F (Λ1, τ0|Λ1), F (Λ2, τ0|Λ2)) ∼= F (Λ1 ⊕ Λ2, τ0),

proving the proposition. So it suffices to check that for any two paths
P1 ⊆ Λ1, P2 ⊆ Λ2, each going from δ1 to δ2, if P1 ∪ P2 is balanced, then
there is an edge E going from δ1 to δ2 such that τ0(P1) = τ0(P2) = τ0(E).
Fix some such P1, P2. Note that if either contains any Di,j , D

′
i,j , Qi or

Q′
i, then P1 ∪ P2 is automatically unbalanced, which would yield a con-

tradiction. Since M′
2 ̸∈ ⟨H1, H2,M

′
1⟩, by the same reasoning we know

K ′
1,K

′
2 ̸∈ P2. Similarly K1,K2 ̸∈ P1. By inspecting Definition 6.2, we

deduce that τ0(P1) ∈ ϕ1(Γ0), since it can only consist of an element of C,
or an element of A and some elements of T . Let τ0(P1) = ϕ1(g). Then
τ0(P1) = τ0(P2) = τ0(Cϕ1(g)), as desired. Thus, we have satisfied the con-
ditions of the lemma, so Amal(F (Λ1, τ0|Λ1), F (Λ2, τ0|Λ2)) ∼= F (Λ1 ⊕ Λ1, τ0),
which concludes the proof. □

Theorem 6.4. Let Γ be a group. If Γ has a finite subgroup Γ0 such that
the Γ0-conviviality graph of Γ is infinite, then the class of Γ-gain-graphic
matroids is not CMSO1-definable.

Proof. Note that if Γ is finite, then for any Γ0 ≤ Γ, the Γ0-conviviality graph
of Γ must be finite, so the theorem is vacuously true. Therefore, suppose Γ
is infinite. Fix the pairs (H1, ϕ1), (H2, ϕ2), representatives of vertices in the
elementary Γ0-conviviality graph of Γ. Also fix, for each k = 1, 2, some data

(M(k), {d(k)i,j }, {q
(k)
i })

satisfying condition (†) in Definition 6.2 with respect to the pair (Γ0, Hk),
and let

(Λk, σk) = (Λϕk(Γ0),Hk , σ(ϕk(Γ0), Hk,M
(k), {d(k)i,j }, {q

(k)
i })).

Then, by Proposition 6.3, the amalgam Amal(F (Λ1, σ1), F (Λ2, σ2)) is
Γ-gain-graphic if and only if (H1, ϕ1), (H2, ϕ2) are Γ0-convivial. Note by
Lemma 5.5 if the class of Γ-gain-graphic matroids is CMSO1-definable, there
is a finite partition of {(H,ϕ) in the elementary Γ0-conviviality graph of Γ}
such that whether Amal(F (Λ1, σ1), F (Λ2, σ2)) is Γ-gain-graphic depends
only on which classes (H1, ϕ1) and (H2, ϕ2) are in. But then, by the Propo-
sition, whether (H1, ϕ1) and (H2, ϕ2) are Γ0-convivial would depend only on
which classes they are in, which would imply the Γ0-conviviality graph is
finite. □
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