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Abstract. We give upper and lower bounds on the number of delta-
matroids, and on the number of even delta-matroids.

1. Introduction

Matroids are important combinatorial structures, introduced in 1935 by
Whitney [23] as a combinatorial abstraction of the properties of linear inde-
pendence. They arise in graph theory, linear algebra, transversal theory and
have been widely studied partly due to their connection with combinatorial
optimization and particularly the greedy algorithm. A matroid comprises
a pair (E, I), where E is a finite set called the ground set and I is a non-
empty collection of subsets called independent sets, satisfying the following
two conditions.

(1) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.
(2) If I1, I2 ∈ I and |I2| > |I1|, then there exists an element x of I2− I1

such that I1 ∪ x ∈ I.

An intriguing problem has been to determine good bounds on the number
mn of labelled matroids with ground set {1, . . . , n}. The first non-trivial
upper bound was proved by Piff [18], who showed that

log logmn ≤ n− log n+O(log log n).

(In this paper log denotes logarithms taken to base two.) Only a year later
Knuth [14] showed that

log logmn ≥ n−
3

2
log n−O(1).

Little progress was made until recently Bansal, Pendavingh and van der
Pol [2] made a significant advance by proving that

n− 3

2
log n+

1

2
log

2

π
− o(1) ≤ log logmn ≤ n−

3

2
log n+

1

2
log

2

π
+ 1 + o(1).

Delta-matroids are a generalization of matroids introduced by Bouchet [4]
and extensively studied, primarily by Bouchet (e.g. [5, 6]), in the late 1980s.
They arise in the theory of embedded graphs, linear algebra and in the struc-
ture of Eulerian tours in four-regular graphs. Recently they have attracted
more attention due to the work of Brijder and Hoogeboom, Chun, Moffatt,
Noble and Rueckriemen, and Traldi. See for example [7, 8, 10, 11, 21].
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A delta-matroid (E,R) comprises a finite ground set and a non-empty
collection of subsets of E satisfying the symmetric exchange axiom:

For every pair X,Y ∈ F , if e ∈ X 4 Y then there exists
f ∈ X 4 Y so that X 4 {e, f} ∈ F .

(Note that e = f is permitted.) The sets in F are the feasible sets of the
delta-matroid.

The maximal independent sets of a matroid are called bases. It is not
difficult to show that the bases of a matroid form the feasible sets of a delta-
matroid with the same ground set (for instance, by combining Lemmas 1.2.2
and 2.1.2 of [17]). The feasible sets of a delta-matroid may differ in size, but
if the feasible sets of a delta-matroid all have the same size then they form
the bases of a matroid.

We prove the following bounds on the number dn of labelled delta-matroids
with ground set {1, . . . , n}.
Theorem 1.1. n− 1 < log log(dn + 1) ≤ n− 1 + 0.369.

Theorem 1.2. For any ε > 0 and all sufficiently large n, dn ≥ (1−ε)n22
n−1

.

These results indicate that there are many more delta-matroids than there
are matroids. A delta-matroid in which the sizes of the feasible sets all have
the same parity is called even. Our third result gives bounds on the number
en of labelled delta-matroids with ground set {1, . . . , n} which are more
reminiscent of the bounds on mn.

Theorem 1.3. n− log n− 1 ≤ log log en ≤ n− log n+O(log log n).

2. Preliminaries

We assume familiarity with the basic theory of matroids and refer the
reader to the monograph by Oxley [17]. Given a matroid M , we use rM to
denote its rank function and clM to denote its closure operator, omitting M
when the context is clear. We use [n] to denote the set {1, . . . , n}.

A set system is a pair (E,F), where E is a finite ground set and F is a
collection of subsets of E. If F is non-empty, we say that (E,F) is proper ;
otherwise it is improper. We define two operations on set systems, namely
deletion and contraction. Let S = (E,F) be a set system and let e ∈ E.
Then S\\e, the deletion of e from S, is the set system (E − e, {F ∈ F : e /∈
F}); on the other hand S//e, the contraction of e from S, is the set system
(E − e, {F − e : F ∈ F and e ∈ F})).

Bouchet and Duchamp [6] defined the operations of deletion and contrac-
tion on a delta-matroid. These operations are similar to, but not exactly
the same as the deletion and contraction operations that we defined on set
systems. They differ in the way in which they treat the contraction of an
element that does not appear in any feasible set and the deletion of an ele-
ment that appears in every feasible set. Nevertheless, for our purposes, it is
the operations on set systems defined earlier that we need to apply to delta-
matroids. If we contract an element that does not appear in any feasible set
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or delete an element that appears in every feasible set the resulting set sys-
tem is improper and consequently not a delta-matroid. In all other cases it
is not difficult to show directly by applying the definition of a delta-matroid
that the result of contracting or deleting an element from a delta-matroid
is a delta-matroid. Because of the slight difference from standard practice,
we use the double slash notation.

A fundamental operation on delta-matroids, introduced by Bouchet in [4],
is the twist. Let D = (E,F) be a delta-matroid and A be a subset of
E. The twist of D with respect to A, written D ∗ A, is the delta-matroid
(E, {A4 X : X ∈ F}). (It is easy to see that D ∗ A genuinely is a delta-
matroid.) The dual of D is D∗ = D ∗ E.

3. How many delta-matroids are there?

In this section we prove Theorems 1.1 and 1.2 by giving upper and lower
bounds on the number dn of labelled delta-matroids with ground set [n].
The n-dimensional hypercube Qn is the graph on vertex set {0, 1}n in which
two vertices are adjacent if they differ in exactly one coordinate. Consider
each vertex as a 0,1 indicator vector: in this way the vertices of Qn are in
one-to-one correspondence with the subsets of [n]. To aid exposition, we will
sometimes conflate subsets of [n] and vertices of Qn. We say that a vertex
of Qn has even support if its corresponding indicator vector has an even
number of ones; otherwise we say that it has odd support. The hypercube
Qn is n-regular and bipartite with parts E and O, where E is the set of all
vertices with even support.

We begin by establishing a lower bound on dn.

Lemma 3.1. The complement of a stable set in Qn corresponds to the family
of feasible sets of a delta-matroid.

Proof. Let I be a stable set of vertices in Qn, and let F = V (Qn) \ I. Let
X,Y ∈ F and let e ∈ X 4 Y . If X 4 Y = {e}, then X 4 e = Y ∈ F . So
assume |X 4 Y | > 1. If X 4 e ∈ F we are done, so suppose not. Then
X4 e ∈ I, and all neighbours of X4 e in Qn are in F . Let f ∈ X4 Y − e.
Since X4{e, f} is a neighbour of X4 e in Qn and X4{e, f} /∈ I, we have
X 4 {e, f} ∈ F . �

Corollary 3.2. Let A be an arbitrary collection of subsets of [n] of even
cardinality, and let O be the collection of all subsets of [n] of odd cardinality.
Then A ∪O is the collection of feasible sets of a delta-matroid.

Proof. The elements of A∪O correspond to the complement of a stable set
in Qn. �

The next corollary follows immediately and establishes the lower bound
in Theorem 1.1.

Corollary 3.3. dn ≥ 22
n−1

.
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Proof. The number of subsets of even cardinality of a ground set of size n
is 2n−1, so the bound follows from Corollary 3.2. �

This bound can be improved by using the following result due to Kor-
shunov and Sapozhenko [15].

Theorem 3.4 (Korshunov and Sapozhenko). The number of stable sets in

Qn is 2
√
e(1 + o(1))22

n−1
.

Corollary 3.5. dn ≥ 2
√
e22

n−1
.

The class of delta-matroids arising from the complement of a stable set
in the hypercube perhaps forms the natural delta-matroid analogue of the
class of sparse paving matroids, which we will need in the next section
and now define. A matroid is paving if it has no circuits of size strictly
smaller than its rank. It is sparse paving if both it and its dual are paving.
It is not difficult to show that a matroid M is sparse paving if and only
if every subset of E(M) having size r(M) is either a basis or a circuit–
hyperplane. Moreover every hyperplane of a sparse paving matroid M has
size r(M) or r(M) − 1. Welsh [22] asked whether or not most matroids
are paving and later Mayhew, Newman, Welsh and Whittle [16] conjectured
that asymptotically almost all matroids are paving, which would imply that
asymptotically almost all matroids are sparse paving. Theorem 1.2 implies
that, in contrast, the class of delta-matroids arising from the complement
of a stable set in the hypercube forms a vanishingly small proportion of the
class of all delta-matroids.

To prove Theorem 1.2 we use a strengthening of Lemma 3.1.

Lemma 3.6. Let n ≥ 2 and let S denote a subset of the vertices of Qn
such that the induced subgraph Qn[S] has maximum degree one. Then the
complement of S forms the set of feasible sets of a delta-matroid.

Proof. Let F = V (Qn)\S and let X,Y ∈ F . We may assume that |X4Y | ≥
3 else there is nothing to prove. Let e ∈ X 4 Y . If X 4 e ∈ F we are done,
so suppose not. Then X4 e ∈ S and at most one neighbour of X4 e in Qn
is in S. So every other neighbour is in F . Let f ∈ (X4 Y )− e. Then there
is at most one choice for f such that X 4 {e, f} /∈ F . Therefore there are
at least |X 4 Y | − 2 ≥ 1 choices for f such that X 4 {e, f} ∈ F . �

We now prove Theorem 1.2, establishing a better lower bound for dn.

Proof of Theorem 1.2. Choose one of the n edge cuts of Qn that separates
Qn into two copies of Qn−1. Let us denote these two copies by Qen−1 and
Qon−1. Let Ae denote the random subset of vertices of Qen−1 with even
support obtained by choosing each one independently with probability 1/2,
and let Ao be the similarly defined random subset of vertices of Qon−1 with
odd support. Then Ae is a stable set in Qen−1 and Ao is a stable set in
Qon−1. So every component of the subgraph of Qn induced by Ae ∪ Ao is
either an isolated vertex or an edge of the cut separating Qn into Qen−1 and
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Qon−1. By applying Lemma 3.6 one can show that the complement of Ae∪Ao
corresponds to the collection of feasible sets of a delta-matroid.

The n edge cuts separating Qn into two copies of Qn−1 are pairwise dis-
joint. Therefore as long as the subgraph of Qn induced by Ae ∪Ao contains
at least one edge, the set Ae ∪ Ao cannot be chosen when starting with a
different choice from amongst the n edge cuts. Hence, as long as we always
have such an edge, no double counting will occur in the following count of
the number of such choices. The maximum possible number of edges in
the subgraph of Qn induced by Ae ∪ Ao is 2n−2 and each of these is absent
independently with probability 3/4. So the probability that no such edge is

induced is (3/4)2
n−2

.
Therefore the number of delta-matroids produced in this way is

n · 22n−2 · 22n−2 ·
(
1− (3/4)2

n−2)
.

�

We have not tried hard to find a better lower bound on the number of
induced subgraphs of Qn with maximum degree one, so it may be simple to
improve this bound. As far as we know, there is no relevant previous work.

We now move on to establishing upper bounds for dn.

Theorem 3.7. The sequence Γn = log log(dn+1)−(n−1) is strictly positive
and decreasing for n ≥ 2.

Proof. Corollary 3.3 implies that Γn is strictly positive. Clearly dn + 1
counts the number of set systems on n elements that are either improper
or form a delta-matroid. Notice that there is a one-to-one correspondence
between set systems with ground set [n + 1] and pairs of set systems with
ground set [n] given by the mapping S 7→ (S\\n+ 1, S//n+ 1). Moreover if
the set system S is either a delta-matroid or improper, then both S\\n + 1
and S//n+ 1 are either delta-matroids or empty. Consequently dn+1 + 1 ≤
(dn + 1)2. Observe that for n ≥ 2 the set system ([n + 1], {∅, [n + 1]}) is
not a delta-matroid, but that both ([n + 1], {∅, [n + 1]})\\n + 1 = ([n], {∅})
and ([n + 1], {∅, [n + 1]})//n + 1 = ([n], {[n]}) are delta-matroids. Hence
dn+1 + 1 < (dn + 1)2, and the fact that Γn is strictly decreasing follows by
taking logs twice. �

The following corollary is immediate.

Corollary 3.8. For positive integers n and k with n ≥ k,

log log(dn + 1) ≤ n+ log log(dk + 1)− k.

Counting delta-matroids by computer, we obtain d1 = 3, d2 = 15, d3 =
155, d4 = 5959, d5 = 4980259 and d6 = 2746801811279. The code used
is available from http://eprints.bbk.ac.uk/id/eprint/19837 and the
numbers have been independently verified by Royle [20]. Briefly, for n ≤ 5 a
list of all labelled delta-matroids with ground set [n] is computed by running
through all ordered pairs (D1, D2) of labelled delta-matroids with ground set
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[n−1] and checking whether the set system D with ground set [n] such that
D//n = D1 and D\\n = D2 is a delta-matroid. If D is a delta-matroid then
we say that D1 and D2 are compatible. A proper set system D = (E,F)
is a delta-matroid if and only if for all e ∈ E, both D\\e and D//e are
delta-matroids, and D has no antipodal pair of feasible sets that violate the
symmetric exchange axiom. Bonin, Chun and Noble [3] have shown that if
|E| ≥ 5, then a set system D that is not a delta-matroid but both D\\e and
D//e are delta-matroids for all e ∈ E must have set of feasible sets comprising
a pair of antipodal sets. Thus for n = 5, the code runs through all pairs
(D1, D2) of labelled delta-matroids with ground set {1, 2, 3, 4}, forms the set
system D as described above, checks whether each single element deletion
and contraction belongs to the list of labelled delta-matroids with ground
set {1, 2, 3, 4} and finally checks D against the list of 16 set systems with a
ground set of five elements and set of feasible sets comprising two antipodal
sets.

Define an equivalence relation on labelled delta-matroids so that two la-
belled delta-matroids are equivalent if one is isomorphic to a twist of the
other. For n = 6, the number of potential delta-matroids is too large to
allow the method used for n = 5 to work in a reasonable period of time, so a
unique representative from each equivalence class is used in the role of D1.
The number of labelled delta-matroids D2 such that D1 and D2 are compat-
ible is independent of the choice of D1 from its equivalence class. For each
representative D1 of an equivalence class, the number of delta-matroids D2

such that D1 and D2 are compatible is computed exhaustively in the same
way as for n = 5 and is multiplied by the size of the equivalence class of D1.
Finally these numbers are summed as D1 ranges over representatives from
the equivalence classes.

The corresponding values of Γn are Γ1 = Γ2 = 1, Γ3 ' 0.865, Γ4 ' 0.649,
Γ5 ' 0.476, Γ6 ' 0.369. Thus, by applying the previous corollary, we obtain
the following, completing the proof of Theorem 1.1.

Corollary 3.9. log log(dn + 1) ≤ n+ log log(d6 + 1)− 6 ≤ n− 1 + 0.369.

Since the sequence (Γn)n≥2 is decreasing and bounded below by zero, the
limit limn→∞ Γn exists. Given the speed with which Γn is decreasing and
our inability to find larger classes of delta-matroids than those constructed
in the proof of Theorem 1.2, we make the following conjecture.

Conjecture 3.10. Γn → 0 as n→∞.

4. How many even delta-matroids are there?

Recall that en denotes the number of labelled even delta-matroids with
ground set [n]. We first describe a construction from which a large number
of even delta-matroids arise. The Johnson graph J(n, r) has vertices corre-
sponding to all the subsets of [n] having size r, with two vertices joined by an
edge if the intersection of the corresponding subsets has size r−1. As noted
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by Bansal, Pendavingh and van der Pol [2], who include a proof, Piff and
Welsh [19] essentially showed that a collection of subsets of [n] each with size
r, for some r satisfying 0 < r < n, is the collection of circuit–hyperplanes
of a sparse paving matroid if and only if it corresponds to a stable set in
J(n, r). Furthermore it was shown by Graham and Sloane [12] that J(n, r)
contains a stable set of size at least 1

n

(
n
r

)
.

Choose a collection F of even-sized subsets of [n] so that for all r satisfying
0 ≤ r ≤ bn/2c the subsets of size 2r are the bases of a sparse paving matroid
with ground set [n] and rank 2r.

Lemma 4.1. F is the collection of feasible sets of a delta-matroid.

Proof. Choose F1, F2 ∈ F . For i = 1, 2, denote by Mi the sparse paving
matroid for which the bases are the elements of F having size |Fi|. If |F1| =
|F2|, then the symmetric exchange axiom holds because, by construction, the
collection of all elements of F having a common size forms the collection of
bases of a matroid and the basis exchange axiom holds for such a collection.

So suppose |F1| < |F2|. Let e ∈ F1 4 F2. Suppose first that e ∈ F1.
Since clM1(F1 − e) is a hyperplane of M1, we have | clM1(F1 − e)| ≤ |F1|.
Furthermore, because |F2| ≥ |F1|+ 2, there is an element f ∈ F2 − F1 with
f /∈ clM1(F1 − e). Hence F1 4 {e, f} is a basis of M1 and belongs to F .

Now suppose e ∈ F2. If |F2 − F1| ≤ 2, then F1 ⊆ F2 and |F2| = |F1|+ 2;
clearly there is an element f such that F1 4 {e, f} = F2 and we are done.
Consequently we may assume that |F2 −F1| ≥ 3. Let M3 denote the sparse
paving matroid in the construction of F with rank |F1|+ 2. Then F1 ∪ e is
independent in M3. So clM3(F1 ∪ e) is a hyperplane in M3 and | clM3(F1 ∪
e)| ≤ |F1|+2. So there is an element f ∈ F2−F1 such that f /∈ clM3(F1∪e).
Hence F1 4 {e, f} is a basis of M3 and belongs to F(D).

Finally suppose |F1| > |F2|. Consider E − F1 and E − F2 as bases of
M∗1 and M∗2 , respectively. These are both sparse paving matroids. Let
e ∈ F1 4 F2 = (E − F1) 4 (E − F2). The previous argument shows that
there is an element f ∈ (E−F1)4 (E−F2) such that (E−F1)4{e, f} is a
basis of either M∗1 or M∗3 , where M3 is as defined in the previous paragraph.
Hence f ∈ F1 4 F2 and E − ((E − F1)4 {e, f}) = F1 4 {e, f} is a basis of
M1 or M3 and consequently a member of F(D). �

We now establish the lower bound in Theorem 1.3.

Theorem 4.2. The number of even delta-matroids en satisfies

log log en ≥ n− 1− log n.

Proof. First note that the bound holds when n ≤ 2, so we may assume
n ≥ 3. Let fn denote the number of delta-matroids of the form of Lemma
4.1. Then en ≥ fn. If 0 < r < n, it follows from the discussion above that
the number of labelled sparse paving matroids with ground set [n] and rank
r is equal to the number of stable sets of J(n, r). Since J(n, r) has a stable
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set of size at least 1
n

(
n
r

)
, it has at least 2

1
n(nr) stable sets. To accommodate

the cases r = 0 and r = n, we proceed as follows.
Suppose first that n is even and consequently n ≥ 4. Then J(n, 2) has

a stable set {{1, 2}, {3, 4}, . . . , {n − 1, n}} of size n/2 and consequently, at

least 2n/2 stable sets. Since n ≥ 4,

2n/2 ≥ 2(n−1)/222/n = 2
1
n
·(n0)2

1
n
·(n2)2

1
n
·(nn)

and we have

fn ≥ 2n/2
n/2−1∏
r=2

2
1
n
·(n

2r) ≥
n/2∏
r=0

2
1
n
·(n

2r) = 2
∑n/2

r=0
1
n
·(n

2r) = 2
1
n
·2n−1

as required.
Now suppose that n is odd. Then J(n, 2) has stable sets S1 = {{1, 2},

{3, 4}, . . . , {n − 2, n − 1}} and S2 = {{2, 3}, {4, 5}, . . . {n − 1, n}} each of

size (n− 1)/2. Consequently it has at least 2 · 2(n−1)/2− 1 stable sets, as the
only common subset of S1 and S2 is the empty set. Therefore J(n, 2) has at

least 2n/2 stable sets. Since n ≥ 3,

2n/2 ≥ 2(n−1)/221/n = 2
1
n
·(n0)2

1
n
·(n2)

and we have

fn ≥ 2n/2
(n−1)/2∏
r=2

2
1
n
·(n

2r) ≥
(n−1)/2∏
r=0

2
1
n
·(n

2r) = 2
∑(n−1)/2

r=0
1
n
·(n

2r) = 2
1
n
·2n−1

as required. �

To obtain an upper bound on the number of even delta-matroids, we use a
similar procedure to that in [2], where a bounded-size stable set in a Johnson
graph together with a carefully chosen collection of flats is used to encode a
matroid.

We will assume for now that our delta-matroids only have feasible sets of
even cardinality. The map D 7→ D ∗ {1} gives a one-to-one correspondence
from delta-matroids with ground set [n] in which all feasible sets have even
cardinality to those in which all feasible sets have odd cardinality, so the
number of delta-matroids having only feasible sets of even cardinality is half
the total number of even delta-matroids.

Let Rn be the graph with vertex set V (Qn) in which two vertices are
adjacent if and only if they are at distance 2 in Qn. The graph Rn is regular
of degree

(
n
2

)
and has two isomorphic connected components, whose vertex

sets correspond to the subsets of [n] of even and odd support, respectively.
Let D = (E,F) be a delta-matroid in which all feasible sets have even

cardinality, and let L denote the vertices of Rn that have even support that
correspond to infeasible sets of D. In order to provide an upper bound on
the number of even delta-matroids, our aim is to provide a short description
of L and then to bound the total number of possible descriptions. There
are two key elements to this. First we apply an encoding procedure due
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to Bansal, Pendavingh and van der Pol [2] that takes an arbitrary set L
of vertices in a graph G and finds a pair (S,A) of sufficiently small sets
satisfying S ⊆ L ⊆ S∪N(S)∪A, where N(S) is the set of vertices of G that
are neighbours of some vertex of S. The authors of [2] adapted it from work
of Alon, Bálogh, Morris and Samotij [1], who themselves credit Kleitman
and Winston [13] with the original idea.

We describe briefly how the procedure works, following [2], where full
details and proofs are given. It takes as input a graph G = (V,E) and a
subset L of V and outputs a pair (S,A) of subsets of V . We assume that
V is given a fixed ordering, purely to break ties in the procedure. Initially
S is empty and A = V . As the procedure runs, S increases in size and A
decreases. The procedure stops when |A| ≤ α|V |, where α will be specified
later. At each stage a vertex v of A with maximum degree in the induced
subgraph G[A] is chosen, with ties broken according to the ordering of V .
If v /∈ L then v is removed from A and the procedure moves onto another
stage. If v ∈ L, then v and all of its neighbours in G[A] are removed from
A and v is added to S.

The following lemma, originally from [1] and restated in [2], is crucial.

Lemma 4.3. When the procedure terminates, the set A is completely deter-
mined by S, irrespective of L.

The following lemma is from [2].

Lemma 4.4. Suppose that G has N vertices, is d-regular and the smallest
eigenvalue of its adjacency matrix is −λ. Let α = λ

d+λ . Then at the end of

the procedure described above, we have |S| ≤
⌈ ln(d+1)

d+λ N
⌉
.

It is not difficult to find the smallest eigenvalue of the adjacency matrix
of a connected component of Rn.

Lemma 4.5. The smallest eigenvalue of the adjacency matrix of a connected
component of Rn is −n/2 if n is even, and (1− n)/2 if n is odd.

Proof. Denote the adjacency matrix of a graph G by A(G). Whenever u and
v have a common neighbour in Qn, they have exactly 2 common neighbours,
so

A(Rn) =
(A(Qn))2 − nIn

2
Therefore if v is an eigenvector of A(Qn) with eigenvalue λ, then

A(Rn)v =
1

2
(A(Qn))2v − n

2
Inv =

λ2

2
v − n

2
v =

(λ2 − n)

2
v,

so v is an eigenvector of A(Rn) with eigenvalue (λ2−n)/2. The matrix A(Qn)
is symmetric, so there is a basis B of R2n comprising eigenvectors of A(Qn).
We have just shown that all of the vectors in B are also eigenvectors of
A(Rn), so every eigenvalue of A(Rn) must be associated with an eigenvector
that is also an eigenvector of A(Qn). Thus λ′ is an eigenvalue of Rn if and
only if λ′ = (λ2 − n)/2 where λ is an eigenvalue of A(Qn).



10 FUNK, MAYHEW, AND NOBLE

The eigenvalues of Qn are −n,−n + 2, . . . , n − 2, n [9, p. 10]. Hence Rn

has eigenvalues (listed with multiplicities) (−n)2−n
2 , (−n+2)2−n

2 , . . . , n2−n
2 .

The result follows as the two components of Rn are isomorphic. �

The second key requirement of the proof is for an even sized infeasible
set X to describe concisely which sets of the form X4{e, f} are infeasible.
In other words suppose that x is a vertex of Rn corresponding to an even
sized infeasible set X, then we wish to describe concisely which neighbours
of x in Rn correspond to infeasible sets. Such a description will be used for
each vertex of S in the encoding procedure in order to specify the vertices
of S ∪N(S) corresponding to infeasible sets.

Lemma 4.6. Let D = (E,F) be a delta-matroid and let X be an infeasible
set of D. Let B denote the collection of sets Y with the smallest size possible
such that X 4 Y ∈ F . Then B forms the collection of bases of a matroid
with ground set E.

Proof. Bouchet [5] proved that the collection of feasible sets of a delta-
matroid with minimum cardinality form the bases of a matroid. Now B is
the collection of feasible sets of the delta-matroid D ∗ X having minimum
size and consequently forms the bases of a matroid with ground set E. �

Notice that there is a one-to-one correspondence between matroids with
rank two on ground set E and partitions of E ∪ z with at least three blocks,
where z is an arbitrary element not contained in E. The partition corre-
sponding to a matroid M is formed by taking one block to comprise all the
loops of M together with z and each other block to be a parallel class of
non-loop elements. In order for the matroid to have rank two, there must
be at least two parallel classes of non-loop elements.

Following [2], we introduce the notion of a local cover, which is an object
certifying that certain subsets are infeasible, enabling us to satisfy the second
requirement of the proof. More precisely, given an even delta-matroid D =
(E,F) a local cover at X, for some subset X of E, is a partition of E ∪ z,
where z is an arbitrarily chosen element that is not in E. Let x be the vertex
of R|E| corresponding to X. If X is infeasible with even size, then the local
cover at X certifies which of the subsets of E corresponding to vertices in
N(x) are infeasible as follows. If the partition has strictly fewer than three
blocks, then every subset of the form X 4 {a, b} is infeasible. Otherwise
interpret this partition as a matroid M on E with rank two, as described
above. A set X4{a, b} is infeasible if and only if {a, b} is not a basis of M .
It is clear that for any infeasible set X with even size, one may construct a
local cover at X certifying which sets of the form X 4 {a, b} are infeasible,
in the way we have just described.

Theorem 4.7. The number of even delta-matroids en on n elements satisfies

log log en ≤ n− log n+O(log log n)
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Proof. We first count the number of even delta-matroids with ground set [n]
such that every feasible set has even size, following the encoding procedure
of Bansal, Pendavingh, and van der Pol [2]. Let D be such a delta-matroid
and let L be the set of its infeasible sets having even size. Recall that each
component of Rn is regular with degree d =

(
n
2

)
and the adjacency matrix

of a component of Rn has smallest eigenvalue −λ equal to −
⌊
n
2

⌋
.

To specify L, we first run the encoding procedure from [2] described above
with α = λ

d+λ to obtain subsets S and A of the vertices of one component of

Rn such that S ⊆ L ⊆ S ∪N(S) ∪A, |S| ≤
⌈ ln(d+1)

d+λ N
⌉

and |A| ≤ λ
d+λ2n−1.

Let σ = ln(d+1)
d+λ .

We have

α =

{
1
n if n is even,
1

n+1 if n is odd
and σ =


2 ln
(
(n2)+1

)
n2 if n is even,

2 ln
(
(n2)+1

)
n2−1 if n is odd.

Recall that A is determined by S. All members of L − A are contained
in S ∪ N(S). Thus in order to specify L − A, we require the set S and a
local cover for each subset of [n] corresponding to a member of S. To specify
L ∩A we simply list the infeasible sets contained within A.

This bounds the number of even delta-matroids with ground set [n] by
twice the product of the number of ways of choosing S, the number of ways
of choosing the corresponding sequence of local covers, one for each element
of S, and the number of subsets of A. Let B(n) denote the nth Bell number,
that is, the number of partitions of a set of n elements. A crude upper bound
for B(n) is given by B(n) ≤ nn. We have

en ≤ 2

dσ2n−1e∑
i=0

((
2n−1

i

)
(B(n+ 1))i

)
2

1
n
2n−1

.

Let σ′ = 1+dσ2n−1e
2n−1 . Hence σ ≤ σ′ ≤ σ + 1

2n−2 . Applying the inequality(
n
k

)
≤ (nek )k and noting that σ′ ≤ 1/2 gives

en ≤ σ′2n
(

2n−1

σ′2n−1

)
(B(n+ 1))σ

′2n−1
2

1
n
2n−1

≤ σ′2n
( e
σ′

)σ′2n−1

(n+ 1)(n+1)σ′2n−1
2

1
n
2n−1

.

Hence

log en ≤ log σ′ + n+ σ′2n−1(log e− log σ′) + (n+ 1)σ′2n−1 log(n+ 1) +
2n−1

n

= 2n−1
( log σ′

2n−1
+

n

2n−1
+ σ′ log e− σ′ log σ′ + (n+ 1)σ′ log(n+ 1) +

1

n

)
.

We have

σ′ ≤ 2 log((n+ 1)2)

n2 − 1
+

1

2n−2
≤ c0

log(n+ 1)

(n+ 1)2
,
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and similarly

σ′ ≥ c1
log(n+ 1)

(n+ 1)2
,

for some positive constants c0 and c1. Thus σ′ log σ′ ≥ −c2 (log(n+1))2

(n+1)2
for

some positive constant c2. So

log en ≤ 2n−1
( n

2n−1
+ c0 log e

log(n+ 1)

(n+ 1)2
+ c2

(log(n+ 1))2

(n+ 1)2

+ c0
(log(n+ 1))2

n+ 1
+

1

n

)
≤ 2n−1c3

(log(n+ 1))2

n+ 1
,

for some positive constant c3, as all the terms in the brackets in the previous

line have order at most (log(n+1))2

n+1 . Finally we obtain

log log en ≤ n− log n+O(log log n).

�
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