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Abstract. DeVos, Kwon, and Oum introduced the concept of branch-
depth of matroids as a natural analogue of tree-depth of graphs. They
conjectured that a matroid of sufficiently large branch-depth contains
the uniform matroid Un,2n or the cycle matroid of a large fan graph as
a minor. We prove that matroids with sufficiently large branch-depth
either contain the cycle matroid of a large fan graph as a minor or have
large branch-width. As a corollary, we prove their conjecture for matroids
representable over a fixed finite field and quasi-graphic matroids, where
the uniform matroid is not an option.

§1. Introduction

Motivated by the notion of tree-depth of graphs, DeVos, Kwon, and
Oum [3] introduced the branch-depth of a matroid M as follows. Recall
that the connectivity function λM of a matroid M is defined as λM pXq “
rpXq ` rpEpMq r Xq ´ rpEpMqq, where r is the rank function of M . A
decomposition is a pair pT, σq of a tree T with at least one internal node and
a bijection σ from EpMq to the set of leaves of T . For an internal node v
of T , the width of v is defined as

max
P 1ĎPv

λM

˜

ď

XPP 1
X

¸

,

where Pv is the partition of EpMq into sets induced by components of T ´ v
under σ´1. The width of a decomposition pT, σq is defined as the maximum
width of its internal nodes. The radius of pT, σq is the radius of T . A
decomposition is a pk, rq-decomposition if its width is at most k and its
radius is at most r. The branch-depth of a matroid M is defined to be the
minimum integer k for which M admits a pk, kq-decomposition if EpMq has
more than one element, and is defined to be 0 otherwise.

It is well known that graphs of large tree-depth contains a long path as a
subgraph (see the book of Nešetřil and Ossona de Mendez [14, Proposition
6.1]). DeVos, Kwon, and Oum [3] made an analogous conjecture for matroid
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branch-depth as follows. Since the cycle matroid of a path graph has branch-
depth at most 1, paths no longer are obstructions for small branch-depth.
Instead, they use the cycle matroid of fans.

The fan matroid MpFnq is the cycle matroid of a fan Fn, which is the
union of a star K1,n together with a path with n vertices through the leaves
of the star, see Figure 1.1. Note that the path with 2n´ 1 vertices is a
fundamental graph of MpFnq.

Figure 1.1. The fan F7. The fan matroidMpF7q is the cycle
matroid of a fan F7.

We write Un,2n to denote the uniform matroid of rank n on 2n elements.
Now, here is the conjecture.

Conjecture 1.1 (DeVos, Kwon, and Oum [3]). For every positive integer n,
there is an integer d such that every matroid of branch-depth at least d
contains a minor isomorphic to MpFnq or Un,2n.

Our main theorem verifies their conjecture for matroids of bounded branch-
width as follows. Note that Un,2n has large branch-width if n is big and
so Un,2n will not appear in the following theorem.

Theorem 1.2. For positive integers n and w, there is an integer d such
that every matroid of branch-depth at least d contains a minor isomorphic
to MpFnq or has branch-width more than w.

This allows us to obtain the following corollary for matroids representable
over a fixed finite field, since we can use a well-known grid theorem for
matroids of high branch-width by Geelen, Gerards, and Whittle [9].

Corollary 1.3. For every positive integer n and every finite field GFpqq,
there is an integer d such that every GFpqq-representable matroid with branch-
depth at least d contains a minor isomorphic to MpFnq.

Previously, Kwon, McCarty, Oum, and Wollan [12, Corollary 4.9] verified
the conjecture for binary matroids, as a corollary of their main result about
vertex-minors and rank-depth.

In a big picture, our proof follows the strategy of Kwon, McCarty, Oum,
and Wollan [12]. As branch-width is small, we can find, in every large set, a
large subset having small connectivity function value. We use that recursively
to find a long path in a fundamental graph, which results a minor isomorphic
to the fan matroid.

The paper is organized as follows. In Section 2, we will introduce our
notations and a few results for matroids, branch-depth, and branch-width.
In Section 3, we will discuss the concept of twisted matroids introduced by
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Geelen, Gerards, and Kapoor [8]. In Section 4, we prove our main theorem,
Theorem 1.2 by finding a ‘lollipop’ inside a twisted matroid. In Section 5,
we prove its consequences to matroids representable over a fixed finite fields
and quasi-graphic matroids.

§2. Preliminaries

2.1. Set systems.
A set system S is a pair pE,Pq of a finite set of E and a subset P of the

power set of E. We call E the ground set of S and may denote it by EpSq.
For i P t1, 2u let Si “ pEi,Piq be set systems. A map ϕ : E1 Ñ E2 is

an isomorphism between S1 and S2 if it is bijective and P P P1 if and
only if ϕpP q P P2. We say S1 and S2 are isomorphic if there is such an
isomorphism.

Given two sets X and Y , we denote by
X4Y :“ pX r Y q Y pY rXq

the symmetric difference of X and Y .
Given a set system S “ pE,Pq and a subset X Ď E we define

P4X :“ tP4X : P P Pu and P|X :“ tP Ď X : P P Pu.
Given an integer n, we write rns for the set ti : 1 ď i ď nu of positive

integers up to n.

2.2. Matroids.
Whitney [20] introduced matroids. We mostly follow the notation in [16].
A matroid M is a set system pE,Bq satisfying the following properties:
(B1) B is non-empty.
(B2) For every B1, B2 P B and every x P B1 rB2, there is an element y P

B2 rB1 such that pB1 r txuq Y tyu P B.
An element of B is called a base of M . We denote the set of bases of a

matroid M by BpMq.
A set X is independent if it is a subset of a base, and we denote the

set of independent sets of M by IpMq. A set X is dependent if it is not
independent.

A circuit is a minimal dependent set, and we denote the set of circuits
of M by CpMq.

The rank of a set X in a matroid M , denoted by rM pXq, is defined
as the size of a maximum independent subset of X. We write rpMq to
denote rM pEpMqq, the rank ofM . The rank function satisfies the submodular
inequality: for all X,Y Ď EpMq,

rM pXq ` rM pY q ě rM pX X Y q ` rM pX Y Y q. (2.1)
The dual matroid of M , denoted by M˚, is the matroid on EpMq where a
set B is a base of M˚ if and only if EpMqrB is a base of M . It is well
known that

rM˚pXq “ rM pEpMqrXq ` |X|´ rpMq.
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For a subset X of EpMq, we write M rX to denote the ma-
troid pEpMqrX,B1q, where B1 is the set of maximal elements
of IpMq|pEpMqrXq. This operation is called the deletion. The con-
traction is defined as M{X “ pM˚ rXq˚. The restriction is defined
as M |X “M r pEpMqrXq. A matroid N is a minor of a matroid M
if N “ pM rXq{Y for some disjoint subsets X and Y of EpMq.

The connectivity function λM of a matroid M is defined as

λM pXq “ rM pXq ` rM pEpMqrXq ´ rpMq.

It is easy to check that λM pXq “ λM˚pXq.
The connectivity function satisfies the following three inequalities.

Proposition 2.1. Let M be a matroid.
(F1) 0 ď λM pXq ď |X| for all X Ď EpMq.
(F2) λM pXq “ λM pEpMqrXq for all X Ď EpMq.
(F3) λM pXq ` λM pY q ě λM pX X Y q ` λM pX Y Y q for all X,Y Ď EpMq.

AmatroidM is connected if λM pXq ‰ 0 for all non-empty proper subsetsX
of EpMq. A component of a matroid M with |EpMq| ‰ 0 is a minimal
non-empty set X such that λM pXq “ 0, and the empty set is the unique
component of the empty matroid p∅, t∅uq. So a matroid is connected if and
only if it has exactly 1 component, namely its ground set. By a slight abuse
of notation, if C is a component of M , we may also refer to the matroid M |C
as a component of M .

For a matroid M “ pE,Bq, a base B P B, and an element e P E rB, the
fundamental circuit of e with respect to B, denoted by CM pe,Bq, is the
circuit that is a subset of B Y teu. It is straightforward to see that such a
circuit exists and is unique.

We omit the subscript M in rM , CM , λM if it is clear from the context.
Let [M pX,Y q :“ rM pXq ` rM pY q ´ rM pX Y Y q. This function is called

the local connectivity. Here is an easy lemma on the local connectivity.

Lemma 2.2 (Oxley, Semple, and Whittle [17, Lemma 2.4]). Let M be a
matroid and let tX,Y, Zu be a partition of EpMq into possibly empty sets.
Then

λM pXq ` [M pY, Zq “ λM pZq ` [M pX,Y q.

We use the above lemma to prove the following useful lemma.

Lemma 2.3. If N is a minor of a matroid M and X is a subset of EpNq,
then

λM pXq ď λM pEpNqq ` λN pXq.

Proof. Let Y :“ EpNqrX and let Z :“ EpMqr EpNq. Then λN pXq “
[M pX,Y q and λM pEpNqq “ λM pZq. The inequality follows from Lemma 2.2
because [M pY,Zq ě 0. �
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2.3. Branch-depth.
We will use the following lemma of DeVos, Kwon, and Oum [3]. Here we

state it for matroids.
Lemma 2.4 (DeVos, Kwon, and Oum [3, Lemma 2.3]). Let m be a non-
negative integer, let M be a matroid, and let tEi : i P rmsu be a partition
of EpMq into non-empty sets such that λM pEiq “ 0 for all i P rms. Let ki be
the branch-depth of M |Ei for i P rms, and let k :“ maxtki : i P rmsu. Then
the branch-depth of M is k or k ` 1. In particular, if the branch-depth of M
is k ` 1, then it has a pk, k ` 1q-decomposition.
Lemma 2.5. Let m be a non-negative integer. Let M be a matroid of branch-
depth m and let X, Y be disjoint subsets of EpMq such that X Y Y ‰ ∅.
Then M rX{Y has a component of branch-depth at least m´ |X|´ |Y |.
Proof. We follow the idea of [12, Lemma 2.6]. If |X Y Y | ě m, then there is
nothing to prove. So we may assume that 0 ă |X Y Y | ă m.

Suppose that every component ofM rX{Y has branch-depth at mostm´
|X Y Y | ´ 1. Let tCi : i P rtsu be the set of components of M rX{Y . For
each i P rts, if |Ci| ě 2, then let pTi, σiq be an pm´|X Y Y |´1,m´|X Y Y |´
1q-decomposition with a node ri of Ti having distance at mostm´|X Y Y |´1
to every node of Ti. If |Ci| “ 1, then we let Ti be the one-node graph on triu

and take σi : Ci Ñ triu.
We construct a decomposition pT, σq of M by letting T be a tree obtained

from the disjoint union of all Ti’s by adding a new node r and adding edges rri

for all i P rts, letting σ map v P Ci to σipvq, and appending |X Y Y | leaves
to r and assigning each element of X Y Y to a distinct leaf attached to r
with the map σ. Then pT, σq has radius at most m´ |X Y Y |. Furthermore
the width of pT, σq is at most pm´ |X Y Y |´ 1q ` |X Y Y | “ m´ 1. And
since |X Y Y | ‰ 0, this contradicts our assumption that M has branch-
depth m. Thus we conclude that M rX{Y has a component inducing a
matroid of branch-depth at least m´ |X Y Y |. �

Lemma 2.6. Let m and k be non-negative integers, let M be a matroid,
let pX,Y q be a partition of EpMq such that λM pXq ď k, and let X 1 Ď X
and Y 1 Ď Y . If all components of both pM{Y 1q|X and pM{X 1q|Y have branch-
depth at most m, then M has branch-depth at most maxpm` k,m` 2q.
Proof. By Lemma 2.4, both pM{Y 1q|X and pM{X 1q|Y have branch-depth at
most m` 1 and if any of them has branch-depth equal to m` 1, then it has
a pm,m` 1q-decomposition.

If |X| ą 1, then let pT1, σ1q be a pm,m` 1q-decomposition ofM{Y 1|X and
let r1 be a node of T1 within distancem` 1 from every node of T1. If |X| “ 1,
then let pT1, σ1q be the one-node tree on tr1u and take σ1 : X Ñ tr1u.

Similarly, if |Y | ą 1, then let pT2, σ2q be a pm,m` 1q-decomposition
of M{X 1|Y and let r2 be a node of T2 within distance m` 1 from ev-
ery node of T2. If |Y | “ 1, then let pT2, σ2q be the one-node tree on tr2u and
take σ2 : Y Ñ tr2u.
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Let T be a tree obtained from the disjoint union of T1 and T2 by adding
a new node r and adding two edges rr1 and rr2. Let σ be the bijection
from X Y Y to the set of leaves of T induced by σ1 and σ2. Then pT, σq
is a decomposition of radius at most m` 2. Furthermore by Lemma 2.3,
the width of pT, σq is at most m` k. Thus, the branch-depth of M is at
most maxpm` k,m` 2q. �

2.4. Branch-width.
Robertson and Seymour [19] introduced the concept of branch-width. A

subcubic tree is a tree such that every node has degree 1 or 3. A branch-
decomposition of a matroid M is defined as a pair pT, Lq of a subcubic tree T
and a bijection L from EpMq to the set of leaves of T . The width of an
edge e in T is defined as λM pAeq ` 1, where pAe, Beq is the partition of EpMq
induced by the components of T r e under L´1. The width of a branch-
decomposition pT, Lq is the maximum width of edges in T . The branch-width
of a matroid M , denoted by bwpMq, is defined to be the minimum integer k
for which M admits a branch-decomposition of width k if EpMq has more
than one element, and is defined to be 1 otherwise.

Here is a classical lemma on branch-width. For the completeness of this
paper, we include its proof. An equivalent lemma appears in [6, Lemma 4.2],
[15, Theorem 5.1].

Lemma 2.7. Let w and k be positive integers. Let M be a matroid of
branch-width at most w and let Z Ď EpMq. If |Z| ě 3k ` 1, then there is a
partition pX,Y q of EpMq such that

λpXq ă w and minp|Z XX|, |Z X Y |q ą k.

Proof. Let pT, Lq be a branch-decomposition of width at most w. For each
edge e “ uv of T , we orient the edge towards v if the component of T ´ e
containing v has more than k leaves in LpZq. If there is an edge directed in
both ways, then that gives a desired partition pAe, Beq. So we may assume
that no edge is directed in both directions. Since |EpT q| ă |V pT q|, there is
a node v of T having no outgoing edges. Since k ě 1, every edge incident
with a leaf is oriented away from the leaf and therefore v is an internal
node. However v has degree 3 and so |Z| ď 3k, contrary to the assumption
that |Z| ą 3k. �

The following lemma is well known and is an easy consequence of the
definitions.

Lemma 2.8 (Dharmatilake [4]). If N is a minor ofM , then the branch-width
of N is at most the branch-width of M . �

The branch-width of a graph G is defined as follows. Let T be a subcubic
tree, and let L be a bijection from EpGq to the set of leaves of T . Then we
say that pT, Lq is a branch-decomposition of G. Let e be an edge of T , and
let pAe, Beq be a partition of EpGq induced by the components of T r e. The
width of e is the number of vertices that are incident with edges in both Ae
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and Be. The width of the branch-decomposition is the maximum width of an
edge in T . The branch-width of G is the minimum integer k such that G has
a branch-decomposition of width k when G has at least two edges (otherwise
the branch-width of G is defined to be 0).

Hicks and McMurray [10] and, independently, Mazoit and Thomassé [13]
proved that the branch-width of the graph G is equal to the branch-width of
the graphic matroid MpGq, if G has a cycle of length at least 2.

§3. Fundamental graphs and twisted matroids

3.1. The fundamental graph.
Let M be a matroid on ground set E and let B be a base of M . We define

the fundamental graph GpM,Bq of M with respect to B as a bipartite graph
with bipartition classes B and E rB such that there is an edge between b P B
and e P E rB if and only if b is in the fundamental circuit CM pe,Bq of e
with respect to B.

The following statements about the fundamental graph are well known
and are easy consequences of the relevant definitions.
Proposition 3.1. Let M be a matroid and let B be a base of M . Then the
following statements are true.

(i) (See [16, Proposition 4.3.2].) M is connected if and only if GpM,Bq
is connected.

(ii) GpM,Bq and GpM˚, EpMqrBq are identical.
It is well known that a matroid is binary if and only if for any base B,

any circuit C is the symmetric difference of all fundamental circuits Cpe,Bq
with e P C rB [16, Theorem 9.1.2]. Hence, binary matroids are completely
determined by its fundamental graph and a colour class of any proper 2-
colouring of that fundamental graph, which is the base of the matroid.

For general matroids, such a complete determination fails; two distinct
matroids may have the same fundamental graph with respect to the same
base. But one can ask how a fundamental graph with respect to some base
will change when doing base exchange.

Note that if GpM,Bq has an edge uv, then B1 :“ B4tu, vu is a base of M .
The operation of constructing GpM,B1q from GpM,Bq is called a pivot on uv.
Proposition 3.2 (Geelen, Gerards, and Kapoor [8]). Let M be a ma-
troid, let B be a base of M , and let uv be an edge of G :“ GpM,Bq. Then
with B1 :“ B4tu, vu the following statements about G1 :“ GpM,B1q are true.

(i) NG1puq “ NGpvq4tu, vu, and NG1pvq “ NGpuq4tu, vu.
(ii) If x R NGpuq YNGpvq, then NG1pxq “ NGpxq.
(iii) If x P NGpuq and y P NGpvqr NGpxq, then xy is an edge of G1.
(iv) If Grtx, y, u, vus is a cycle of length 4, then xy is an edge of G1 if

and only if B4tx, y, u, vu is a base of M .
Note that for all pairs tx, yu, the first three rules of the above proposition

determine the adjacencies between x and y in G1 from G. This is not true of
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the fourth rule. However, if in addition to the edge set of the fundamental
graph we were given a list of ‘hyperedges’ tx, y, u, vu for which B4tx, y, u, vu
is a base, then we could apply all four rules.

As an extension of that idea, Geelen, Gerards, and Kapoor [8] introduced
twisted matroids, which can in a sense be viewed as ‘fundamental hypergraphs’.
We introduce their machinery in the next subsection.

3.2. Twisted matroids.
Let S “ pE,Pq be a set system and let X Ď E. We define the twist of S

by X as
S ˚X :“ pE,P4Xq.

Moreover, we define the restriction of S to X as

SrXs :“ pE,P|Xq.

Remark 3.3. Let S “ pE,Pq be a set system and let X,Y Ď E. Then

pS ˚Xq ˚ Y “ S ˚ pX4Y q.

A twisted matroid W is a set system pE,Fq satisfying the following
properties:
(T1) ∅ P F .
(T2) For every F1, F2 P F and every e P F14F2, there is an f P F14F2

such that
F14te, fu P F .

(T3) There is a set B Ď E such that |B X F | “ |pE rBq X F | for
all F P F .

We call E the ground set of W and may denote it by EpW q. We call
the elements of F feasible (with respect to W ), and may denote the set F
by FpW q. We call a set B which satisfies (T3) a base of W . We denote
by BpW q the set of bases of W .

We observe that (T3) implies that every feasible set has even size. And in
fact it is enough to restrict out attention to feasible sets of size two, as the
following proposition will show.

Proposition 3.4. Let W “ pE,Fq be a set system satisfying (T1) and (T2).
Then (T3) is equivalent to the following axiom.
(T31) There is a set B Ď E such that |B X F | “ |pE rBq X F | for all F P F

with |F | ď 2.

Proof. Assume (T31) holds and let B Ď E be as required. Suppose for a
contradiction that (T3) does not hold and let F P F be a set of minimum size
violating (T3). LetX,Y P tB, pE rBqu with |X X F | ă |Y X F |. With (T1),
by applying (T2) to ∅, F , and some e P F , there is an f P F such that
te, fu “ ∅4te, fu P F and hence e ‰ f by (T31). By (T31), exactly one of e
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or f is in B, so X X F is non-empty. Applying (T2) again to F , ∅, and
some x P X X F , there is some z P F such that

F 1 :“ F4tx, zu “ F r tx, zu P F .
Now

|F 1 XX| ă |F XX| ď |F X Y |´ 1 ď |F 1 X Y |,
contradicting that F was the smallest counterexample to (T3). �

Note that this axiomatic definition of twisted matroids does not coincide
with the original definition of Geelen, Gerards, and Kapoor [8], in which
they defined twisted matroids to be the twist M ˚B of a matroid M with a
base B ofM . The following proposition establishes together with Remark 3.3
the equivalence of these definitions.

Proposition 3.5. Let M “ pE,Bq and W “ pE,Fq be set systems and
let B Ď E such that W “M ˚B (equivalently M “W ˚B). Then the fol-
lowing statements are equivalent.

(a) M is a matroid and B P B.
(b) W is a twisted matroid and B P BpW q.

Proof. Suppose (a) holds. Then ∅ P B4B “ F . Since M satisfies (B2), W
satisfies (T2). Finally, every element of F4B “ B has size |∅4B| “ |B|,
so B satisfies (T3).

Suppose (b) holds. By (T1) we have B P B and hence (B1) holds. For (B2),
consider bases B1, B2 P B and e P B1 rB2. Let F1 :“ B14B and F2 :“
B24B. Then F1, F2 P F . Note that

pB1 rB2q Y pB2 rB1q “ F14F2.

Then e P F14F2 and hence by (T2) there is an f P F14F2 such
that F14te, fu P F . If f P B1 rB2, then either F1 or F14te, fu will contra-
dict (T3). Hence, f P B2 rB1. �

For a twisted matroid W we define

MpW q :“
 

pM,Bq : M is a matroid and B is a base of M such that M ˚B “W
(

.

If pM,Bq P MpW q, then we say M is associated with W . Note that for a
twisted matroid W and a base B of W we have pW ˚B,Bq P MpW q by
Proposition 3.5 and Remark 3.3.

We define the fundamental graph GpW q of W as the graph on vertex set E
such that there is an edge between x, y P E if and only if tx, yu P FpW q.
By (T3), the fundamental graph of W is bipartite. In fact, a set B is a base
of W if and only if there is a proper 2-colouring of GpW q in which B is a
colour class.

Proposition 3.6. LetW “ pE,Fq be a twisted matroid, let pM,Bq P MpW q
and X Ď E. Then the following statements are true.
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(i) X P FpW q if and only if B4X P BpMq.
(ii) The fundamental graph GpM,Bq coincides with the fundamental

graph GpW q.
(iii) pM˚, E rBq P MpW q.
(iv) If M is connected, then MpW q “ tpM,Bq, pM˚, E rBqu.

Proof. For (i), suppose X P F . Then M has a base B1 such that X “ B4B1.
By the properties of the symmetric difference we obtain B1 “ B4X. Con-
versely, if B4X “ B1 P B, then X “ B14B P F .

For (ii), note that f is on the fundamental circuit of e with respect to B, if
and only if pB r tfuq Y teu is a base ofM . So te, fu “ ppB r tfuq Y teuq4B
is feasible if and only if ef is an edge of GpM,Bq.

For (iii), note that for pM,Bq P MpW q we have
BpM˚q “ BpMq4EpMq “ pF4Bq4EpMq “ F4pEpMqrBq.

For (iv), suppose M is connected. It follows that GpM,Bq “ GpW q is
connected and hence every proper 2-colouring of GpW q has B and E rB as
its colour classes. �

3.3. Minors of twisted matroids.

Proposition 3.7. Let W “ pE,Fq be a twisted matroid and let X,F Ď E.
Then the following statements are true.

(i) W ˚ F is a twisted matroid if and only if F P F .
Additionally, W ˚ F “M ˚ pB4F q for any pM,Bq P MpW q.

(ii) W rXs is a twisted matroid for which
GpW rXsq “ GpW qrXs and tB XX : B P BpW qu Ď BpW rXsq

(iii) If F P F |X, then W rXs ˚ F “ pW ˚ F qrXs.
(iv) For pM,Bq P MpW q, we have

W rXs ˚ pB XXq “
`

M{pB rXq
˘

|X.

Proof. For (i), suppose F P F . If pM,Bq P MpW q, then
W ˚ F “ pM ˚Bq ˚ F “M ˚ pB4F q.

Now W ˚ F is a twisted matroid by Propositions 3.6(i) and 3.5. Conversely,
suppose that W ˚ F is a twisted matroid. Now ∅ P FpW ˚ F q “ F4F
by (T1). Hence F P F .

Both (ii) and (iii) are trivial consequences of the definitions.
For (iv), note that if B1 is a base of M for which F :“ B14B Ď X, we

have
B1 XX “ ppB14Bq4Bq XX “ ppB14Bq XXq4pB XXq “ F4pB XXq.
Now since

B
`

pM{pB rXqq|X
˘

“
 

B1 XX : B1 P BpMq and B14B Ď X
(

and
B
`

W rXs ˚ pB XXq
˘

“
 

F4pB XXq : F P F |X
(

,
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we obtain the equality of the matroids. �

A twisted matroid U is called a minor of a twisted matroid W “ pE,Fq
if there are sets X Ď E and F P F such that U “ pW ˚ F qrXs.

Proposition 3.8. Let U and W be twisted matroids. Then the following
statements are true.

(i) If U is a minor of W , then every matroid M associated with W has
a minor N associated with U .

(ii) If some matroid M associated with W has a minor N associated
with U , then U is a minor of W .
In particular, M has a base B such
that pM ˚BqrEpUqs “ N ˚ pB X EpUqq “ U .

Proof. For (i), let pM,B1q P MpW q and X Ď E and F P F such
that U “ pW ˚ F qrXs. Then

M “W ˚B1 “W ˚ pB14F4F q “ pW ˚ F q ˚ pB14F q,

and hence for B :“ B14F we have pM,Bq P MpW ˚ F q. By Proposi-
tion 3.7(iv), we have that U ˚ pB XXq is a minor of M , as desired.

For (ii), suppose for pM,B1q P MpW q and pN,B2q P MpUq we have thatN
is a minor of M . Note that by the Scum Theorem [16, Theorem 3.3.1]
there is a set Z Ď EpMqr EpNq such that N “ pM{Zq|EpNq and the rank
of M{Z is equal to the rank of N . Without loss of generality Z is inde-
pendent. Now B2 is independent in M{Z. By the equality of the ranks,
B :“ B2 Y Z is a base of M , and thus N “ pM{pB r EpNqqq|EpNq. Now
since F :“ B4B1 P FpW q we obtain that pM,Bq P MpW ˚ F q, and hence
by Proposition 3.7(iv)

pW ˚ F qrEpNqs ˚ pB X EpNqq “ N “ U ˚B2 “ U ˚ pB X EpNqq.

Therefore, pM ˚BqrEpUqs “ pW ˚ F qrEpNqs “ U , as desired. �

Lastly, let us remark that the minor relation of twisted matroids is transi-
tive.

Proposition 3.9. Let W “ pE,Fq be a twisted matroid, let X 1 Ď X Ď E,
let F P F and let F 1 P FpW ˚ F q|X. Then

F4F 1 P F and pW ˚ pF4F 1qqrX 1s “ pppW ˚ F qrXsq ˚ F 1qrX 1s.

Proof. We have that pW ˚ F q ˚ F 1 is a twisted matroid by Proposition 3.7(i).
Since pW ˚ F q ˚ F 1 “W ˚ pF4F 1q, we have that F4F 1 P F again by Propo-
sition 3.7(i).

Now by Proposition 3.7(iii) we have

pppW ˚F qrXsq˚F 1qrX 1s “ pppW ˚F q˚F 1qrXsqrX 1s “ pW ˚pF4F 1qqrX 1s. �
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3.4. More on the fundamental graph and twisted matroids.

Proposition 3.10. Let W “ pE,Fq be a twisted matroid and let X Ď E.
Then the following statements are true.

(i) (Brualdi [2]) If X P F , then GpW qrXs has a perfect matching.
(ii) (Krogdahl [11]) If GpW qrXs has a unique perfect matching,

then X P F .

We deduce the following two propositions easily from the above proposition.

Proposition 3.11. Let M1 and M2 be matroids on the common ground
set E sharing a common base B. If the fundamental graphs of M1 and M2
with respect to B are identical and have no cycles, then M1 “M2.

Proof. Let X Ď E. Let G denote the common fundamental graph with
respect to B, which by Proposition 3.6(ii) is equal to GpM1 ˚Bq “ GpM2 ˚
Bq. Since G is a forest, every induced subgraph has at most one perfect
matching and so for i P r2s by Proposition 3.10, X is feasible in Mi ˚B if
and only if GrXs has a perfect matching. Therefore, M1 ˚B “M2 ˚B, and
hence M1 “M2. �

Proposition 3.12. Let n be a positive integer. A matroid M has a minor
isomorphic to MpFnq if and only if M has a base B such that GpM,Bq has
an induced path on 2n´ 1 vertices, starting and ending in B.

Proof. Suppose that M has a minor N isomorphic to MpFnq. Let B1
be the base of N corresponding to the star K1,n in MpFnq. Then the
fundamental graph of N with respect to B1 is a path on 2n´ 1 vertices,
starting and ending in B1. By Proposition 3.8(ii), M has a base B such
that pM ˚BqrEpNqs “ N ˚ pB X EpNqq. Now B X EpNq is a base of N by
Proposition 3.5, so F :“ pB X EpNqq4B1 is in FpM ˚Bq|EpNq, and hence
in FpM ˚Bq. It follows that B̂ :“ B4F is a base ofM by Proposition 3.6(i).
Note that

B̂ X EpNq “ pB4ppB X EpNqq4B1qq X EpNq “ B1,

and hence pM ˚ B̂qrEpNqs “ N ˚B1. Therefore GpM, B̂qrEpNqs “ GpN,B1q
by Propositions 3.6(ii) and 3.7(ii), which is the required path.

Conversely, suppose there is a base B of M and a set X Ď EpMq such
that GpM,BqrXs is a path on 2n´ 1 vertices, starting and ending in B.
Let W :“M ˚B and U :“ pM ˚BqrXs. Since U is a minor of W , for
some B1 P BpUq the matroid N :“ U ˚B1 is a minor of M by Proposi-
tion 3.8(i). Again, by Propositions 3.6(ii) and 3.7(ii), we have that

GpM,BqrXs “ GpUq “ GpN,B1q.

Since GpM,BqrXs is a forest, by Proposition 3.11, there is a unique matroid
with base B1 whose fundamental graph is GpM,BqrXs, and that matroid is
isomorphic to MpFnq, as desired. �
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We will need the following result about the change of the fundamental
graph of a twisted matroid when twisting with a feasible set, which in
particular will not change for the vertices not involved in the twist.

Proposition 3.13. Let W “ pE,Fq be a twisted matroid, let F P F ,
let e P E r F such that there is no f P F for which te, fu is feasible, and
let x P E. Then te, xu P F if and only if te, xu P F4F .

Proof. If te, xu P F4F , then F 1 :“ te, xu4F P F . Since e P F 1, by (T1)
and (T2) there is a y P F 1 such that te, yu P F . Now by the premise of this
proposition, y “ x, as desired.

If te, xu P F , then by applying (T1) and (T2) for W ˚ F , there is a
y P te, xu4F for which te, yu P F4F . So by the previous paragraph,
te, yu P F and hence y R F . But then y “ x, as desired. �

If a matroid property is invariant under component-wise duality, then for a
twisted matroid W that property will be shared by every matroid associated
with W . So for such properties we are justified to call these properties of
the twisted matroid.

For example, we have the following proposition.

Proposition 3.14. Let W be a twisted matroid. Then for
all pM,Bq, pM 1, B1q P MpW q and all X Ď EpW q the following statements
are true.

(i) λM 1pXq “ λM pXq.
(ii) X is a component of M 1 if and only if X is a component of M .
(iii) M 1 is connected if and only if M is connected.
(iv) The branch-depth of M 1 is equal to the branch-depth of M .
(v) The branch-width of M 1 is equal to the branch-width of M . �

Motivated by this proposition, we make the following definitions for a
twisted matroid W . Let pM,Bq P MpW q be arbitrary. We define a connec-
tivity function λW of W as λM . A component of W is a component of M ,
and W is connected if M is connected. We define the branch-depth and the
branch-width of W , respectively, as the branch-depth and the branch-width
of M , respectively.

Given these definitions, the related results for matroids in Section 2 also
hold for twisted matroids, and we will apply them for twisted matroids
without further explanation.

§4. Lollipop minors of twisted matroids

In this section we complete the proof of Theorem 1.2. To do this, we
introduce the following class of twisted matroids.

4.1. Lollipops.
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Definition 4.1. Let a, b be non-negative integers. A twisted matroid L
on ground set S 9Ytzu 9YC with fundamental graph G :“ GpLq is called an
pa, bq-lollipop if

(1) |S| ě a;
(2) G is connected;
(3) GrS Y tzus is a path with terminal vertex z;
(4) GrCs is a connected component of G´ z; and
(5) LrCs has branch-depth at least b.

We call the tuple pS, z, Cq the witness of L, and the twisted matroid LrCs
the candy of L.

In order to prove Theorem 1.2, we prove the following theorem.
Theorem 4.2. For all non-negative integers a, b, and w, there is an integer d
such that every twisted matroid W of branch-width at most w and branch-
depth at least d has a minor which is an pa, bq-lollipop.

As we noted in Proposition 3.12, induced paths in the fundamental graph
are the correct object to look for when looking for fan matroids as a minor of
a matroid. So lollipops are defined in terms of a long path in the fundamental
graph to recover these minors, as we note in the following corollary. This
corollary also shows that Theorem 4.2 implies Theorem 1.2.
Corollary 4.3. Let n be a positive integer and let L be a p2n, 0q-lollipop.
Then every matroid associated with L contains a minor isomorphic to MpFnq.

�

We also remark that Theorem 1.2 implies Theorem 4.2 because for all
non-negative integers a and b, there is an integer n such that for some base B
of MpFnq the twisted matroid MpFnq ˚B is an pa, bq-lollipop.

The reason for considering lollipops as opposed to fan matroids is that
it allows an inductive approach to find lollipop minors in twisted matroids
of sufficiently high branch-depth. If we find a lollipop whose candy has
sufficiently high branch-depth, then we can iteratively find another lollipop
as a minor of the candy.

Since lollipops are defined as twisted matroids, the choice of a base of
the original matroid is important. However, the following result allows us
a large amount of flexibility in exchanging parts of the base of the matroid
associated with the candy.
Corollary 4.4. Let a and b be non-negative integers. Let L be an pa, bq-
lollipop with witness pS, z, Cq and let F P FpLq|C. Then L ˚ F is an pa, bq-
lollipop with witness pS, z, Cq.
Proof. Let G :“ GpLq and G1 :“ GpL ˚ F q. By Proposition 3.7(i), there is a
matroid M associated with both L and L ˚ F . Since G is connected, so is M
by Proposition 3.1, and hence so is G1.

By Proposition 3.7(iii), pL ˚ F qrCs is equal to LrCs ˚ F , and hence has
branch-depth at least b and is connected.
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Now by Proposition 3.13, the neighbourhood of each s P S is the same
in G and G1. Hence GrS Y tzus “ G1rS Y tzus, and no s P S has a neighbour
in C in G1. Hence G1rCs is indeed a component of G1 ´ z. �

4.2. The induction.
As mentioned in the last subsection, we aim to prove Theorem 4.2 by

induction on a. For the start of the induction we consider the following
lemma.

Lemma 4.5. Let b be a non-negative integer. Every twisted matroid W of
branch-depth at least b` 2 has a minor which is a p0, bq-lollipop.

Proof. By Lemma 2.4, W has a component C such that W rCs has branch-
depth at least b` 1. Let z P C be arbitrary. By Lemma 2.5, W rC r tzus has
a connected component C 1 of branch-depth at least b. Now W rC 1 Y tzus is a
p0, bq-lollipop witnessed by p∅, z, C 1q since GpW rC 1 Y tzusq is connected. �

For the induction step, the following two lemmas are the main tools we
will need.

Lemma 4.6. Let a, b, and b1 be non-negative integers. Let L be an pa, bq-
lollipop with witness pS, z, Cq and let C 1 Ď C be non-empty such that

(1) LrC 1s is connected and has branch-depth at least b1; and
(2) the neighbourhood of z in G :“ GpLq is disjoint from C 1.

Then there exist a set S1 Ě S and an element z1 P C r C 1 such
that LrS1 Y tz1u Y C 1s is an pa` 1, b1q-lollipop with witness pS1, z1, C 1q.

Proof. There is a shortest path P from z to C 1 in GrC Y tzus. Let x be
the unique vertex in V pP q X C 1, let z1 be the neighbour of x in P , and
let S1 :“ S Y pV pP qr tx, z1uq. Now |S1| ě |S|` 1 ě a` 1, since z has no
neighbour in C 1. Hence L1 :“ LrS1 Y tz1u Y C 1s is an pa` 1, b1q-lollipop wit-
nessed by pS1, z1, C 1q, as desired. �

Lemma 4.7. Let ` be a positive integer and let a and g` be non-negative
integers. Let W be a twisted matroid and let pgi : 0 ď i ă `q be a sequence of
integers such that

(1) W has branch-depth at least g0;
(2) every minor of W of branch-depth at least gi contains an pa, gi`1q-

lollipop as a minor for all i ă `.
Then there is a feasible set F and for each i P r`s there is a set
Ei “ Si 9Ytziu 9YCi such that for W 1 :“W ˚ F the following properties hold.

(i) Li :“W 1rEis is an pa, giq-lollipop witnessed by pSi, zi, Ciq for
all i P r`s; and

(ii) Ei`1 Ď Ci for all i P r`´ 1s.

Proof. Let W0 :“W and let C0 :“ EpW q. For i P r`s let L1i be an pa, giq-
lollipop with candy Wi such that L1i is a minor of Wi´1. Note that L1i
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exists by the premise of the lemma. Let pSi, zi, Ciq be the witness of L1i and
let Ei :“ Si Y tziu Y Ci.

Let F 10 :“ ∅. For i P r`s, let Fi´1 P FpWi´1q be such that
L1i “ pWi´1 ˚ Fi´1qrEis, and recursively define F 1i :“ F 1i´14Fi´1. We now
prove the following.

Claim. For i P r`s, we have
(a) F 1i P FpW q,
(b) L1i “ pW ˚ F 1i qrEis, and
(c) F 1`´i4F 1` Ď C`´i.

Proof of Claim. For i “ 1, (a) and (b) follow from the fact that F 11 “ F0. For
i ą 1, assume inductively that F 1i´1 P FpW q and L1i´1 “ pW ˚ F 1i´1qrEi´1s.
SinceWi´1 “ L1i´1rCi´1s, we have that L1i “ pL1i´1 ˚ Fi´1qrEis. Therefore (a)
and (b) follow from Proposition 3.9.

For i “ 1, (c) follows from the fact that F 1` “ F 1`´14F`´1, and hence
F 1`´14F 1` “ F`´1. For i ą 1, assume by induction that F 1`´pi´1q4F 1` Ď

C`´pi´1q. Since F 1`´pi´1q “ F 1`´i4F`´i, we have that F 1`´i “ F 1`´pi´1q4F`´i

and hence F 1`´i4F 1` “ pF 1`´pi´1q4F 1`q4F`´i. Hence, (c) follows from the
inductive hypothesis and the fact that both C`´pi´1q and F`´i are subsets of
C`´i. �

Define F :“ F 1`. For i P r`s, we have F4F 1i P FpW ˚ F q by (a). Therefore,
by (b) and (c), we have

L1i “ pW ˚ F 1i qrEis

“ pW ˚ pF 1i 4pF4F qqqrEis

“ ppW ˚ F qrEisq ˚ pF4F 1i q.

Hence, by Corollary 4.4, Li :“ pW ˚ F qrEis is an pa, giq-lollipop witnessed
by pSi, zi, Ciq, as required. �

Combining these two lemmas will be the heart of the induction step, as
noted in the following corollary.

Corollary 4.8. In the situation of Lemma 4.7, additionally let b be a non-
negative integer and assume that

p˚q there is an i P r`s, a set C Ď C` Ď Ci, and a feasible set F̂ P FpLiq|Ci

such that
(1) pLi ˚ F̂ qrCs is connected and has branch-depth at least b; and
(2) the neighbourhood of z in GpLi ˚ F̂ q is disjoint from C.

Then W contains an pa` 1, bq-lollipop as a minor. �

Up to this point, we have not used the fact that the twisted matroid has
bounded branch-width. In the next subsection we will prove the following
lemma, which will complete the proof of Theorem 4.2.
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Lemma 4.9. Let b ě 0 and w ą 2 be integers. Suppose we are in the
situation of Lemma 4.7 with ` :“ 3w ´ 2 and g` :“ b ` 2w ´ 1. If W has
branch-width at most w, then we satisfy assumption p˚q from Corollary 4.8.

4.3. Proof of Lemma 4.9.
The following two lemmas are the final tools we will need for this proof.

Lemma 4.10. Let w ą 2, k ą 0, and b ě 0 be integers, let W be a
twisted matroid of branch-width at most w and let Z and C be disjoint
subsets of EpW q such that |Z| ě 3k ` 1 and W rCs has branch-depth at
least b` w ´ 1. Then for some X Ď Z and Y Ď C, the following hold.

(i) |X| ě k ` 1;
(ii) W rY s is connected and has branch-depth at least b;
(iii) λW rXYY spXq ă w.

Proof. Since W has branch-width at most w, so does W 1 :“W rZ Y Cs by
Lemma 2.8. Hence by Lemma 2.7, there is a bipartition pX 1, Y 1q of EpW 1q

with λW 1pX 1q ă w such that |Z XX 1| ą k and |Z X Y 1| ą k. By Lemma 2.6,
without loss of generality W rY 1 X Cs has a component Y of branch-depth
at least b. Let X :“ X 1 X Z. Since λW 1pX 1q ă w, it follows from Lemma 2.3
that λW rXYY spXq ă w. �

Lemma 4.11. Let w ą 2 be an integer and let W be a twisted matroid. Then
for every bipartition pX,Y q of EpW q with |X| ě w and λW pXq ă w there
is a base B of W and a set O Ď X rB of size at most w such that O is a
circuit in pW ˚Bq{pB XXq.

Proof. Let B1 be a base of W . We set B2 :“ EpW qrB1, as well as
M1 :“W ˚B1 and M2 :“W ˚B2. Note that M˚

1 “M2. Now we observe
that

λW pXq “ λM1pXq “ rM1pXq ` rM2pXq ´ |X|
“ prM1pXq ´ |X XB1|q ` prM2pXq ´ |X XB2|q
“ rM1{pB1XXqpX rB1q ` rM2{pXXB2qpX rB2q.

Hence rM1{pB1XXqpX rB1q ` rM2{pXXB2qpX rB2q ă w. Since |X| ě w,
for some base B P tB1, B2u and for M :“W ˚B, we have
that |X rB| ě rM{pBXXqpX rBq ` 1. It follows that X rB contains a
circuit O of size at most w in M{pB XXq. �

Lemma 4.9. Let b ě 0 and w ą 2 be integers. Suppose we are in the
situation of Lemma 4.7 with ` :“ 3w ´ 2 and g` :“ b ` 2w ´ 1. If W has
branch-width at most w, then we satisfy assumption p˚q from Corollary 4.8.

Proof. By applying Lemma 4.10 to W 1, Z :“ tzi : i P r`su, and C`, there are
sets X Ď Z and Y Ď C` such that

(i) |X| ě w;
(ii) W 1rY s is connected and has branch-depth at least b` w;
(iii) λW 1rXYY spXq ă w.
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By applying Lemma 4.11 to W 2 :“W 1rX Y Y s there exists a base B
of W 2 and a set O Ď X rB of size at most w such that O is a cir-
cuit in pW 2 ˚Bq{pX XBq. It follows that O is a circuit in the re-
striction of that matroid to pO Y Y q, which we call M . Note that
since B r EpMq “ B XX, we get M “ pW 2rEpMqsq ˚ pB X Y q by Proposi-
tion 3.7(iv). Since M |Y “W 1rY s ˚ pB X Y q, it follows from (ii) that M has
branch-depth at least b` w.

Let i P r`s be minimal such that zi P O. Then we obtain O r tziu Ď Ci.
Let B̂ be a base of M such that zi R B̂ and O is the fundamental circuit of zi

with respect to B̂.
Since the branch-depth of M ˚ B̂ equals the branch-depth of M , by

Lemma 2.5 there is a component C of pM ˚ B̂qrEpMqrOs of branch-depth
at least b.

Now F̂ :“ pB X EpMqq4B̂ is feasible with respect toW 2rEpMqs by Propo-
sition 3.6(i), and since zi R F̂ we get F̂ P FpLiq|Ci. By Propositions 3.6(ii)
and 3.7(ii),

GpM, B̂q “ GpW 1rEpMqs ˚ F̂ q “ GpLi ˚ F̂ qrEpMqs.

Hence, by our choice of B̂ the neighbourhood of zi in GpLi ˚ F̂ q is O r zi,
which is disjoint from C. And since pLi ˚ F̂ qrCs “ pM ˚ B̂qrCs, we obtain
condition p˚q of Corollary 4.8, as desired. �

4.4. Proof of Theorem 4.2.
We now prove Theorem 4.2, which completes the proof of Theorem 1.2.

Definition 4.12. For each integer w ą 2, we define a function fw : N2 Ñ N
for all non-negative integers a and b we set ` :“ 3w ´ 2 and define a sequence
pgi : 0 ď i ď `q as follows. We set

fwp0, bq :“ b` 2,

and for a ě 1 we set

gi :“
#

b` 2w ´ 1 if i “ `,

fwpa´ 1, gi`1q if 0 ď i ă `,

fwpa, bq :“ g0.

Theorem 4.2. For all non-negative integers a, b, and w, there is an integer d
such that every twisted matroid W of branch-width at most w and branch-
depth at least d has a minor which is an pa, bq-lollipop.

Proof. We may assume without loss of generality that w is at least 3. Let
d :“ fwpa, bq as in Definition 4.12. We prove this theorem by induction on a.
The base case is true by Lemma 4.5. For the induction step, note that the
premise of Lemma 4.7 holds with pgi : 0 ď i ď `q as in Definition 4.12 by
Lemma 2.8 and the induction hypothesis. Hence Lemma 4.9 together with
Corollary 4.8 completes the proof. �
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§5. Consequences

5.1. Matroids representable over a fixed finite field.
Now we can prove Corollary 1.3.

Corollary 1.3. For every positive integer n and every finite field GFpqq,
there is an integer d such that every GFpqq-representable matroid with branch-
depth at least d contains a minor isomorphic to MpFnq.

Since neither U2,q`2 nor Uq,q`2 is representable over GFpqq, we will instead
show the following stronger corollary, implying Corollary 1.3.

Corollary 5.1. For any positive integers n and q, there is an integer d
such that every matroid having no minor isomorphic to U2,q`2 or Uq,q`2 with
branch-depth at least d contains a minor isomorphic to MpFnq.

The mˆ n grid is the graph with vertices tpi, jq : i P rms, j P rnsu,
where pi, jq and pi1, j1q are adjacent if and only if |i´ i1|` |j ´ j1| “ 1. The
above corollary is obtained by using the following theorem of Geelen, Gerards,
and Whittle [9], because the cycle matroid of the nˆ n grid contains MpFnq

as a minor.

Theorem 5.2 (Geelen, Gerards, and Whittle [9, Theorem 2.2]). For any
positive integers n and q, there is an integer wpn, qq such that every ma-
troid having no minor isomorphic to U2,q`2 or Uq,q`2 with branch-width at
least wpn, qq contains a minor isomorphic to the cycle matroid of the nˆ n
grid.

Proof of Corollary 5.1. Let w :“ wpn, qq given by Theorem 5.2. Let d be the
integer given by Theorem 1.2 for n and w. Since the cycle matroid of the
nˆ n grid contains MpFnq as a minor, we deduce the conclusion easily. �

5.2. Quasi-graphic matroids.
Geelen, Gerards, and Whittle [7] introduced the class of quasi-graphic

matroids, which includes the classes of graphic matroids, bicircular matroids,
frame matroids, and lift matroids. We will show that quasi-graphic matroids
of large branch-depth contain large fan minors, as a corollary of Theorem 1.2.

Though the original definition of quasi-graphic matroids is due to Geelen,
Gerards, and Whittle [7], we present the equivalent definition of Bowler,
Funk, and Slilaty [1]. Let G be a graph. A tripartition pB,L,Fq of cycles
of G into possibly empty sets is called proper if it satisfies the following
properties.

(i ) B satisfies the theta property: if C1, C2 are two cycles in B such
that EpC1q4EpC2q is the edge set of a cycle C, then C is in B.

(ii ) Whenever L is in L and F is in F , there is at least one common
vertex of L and F .

A cycle is balanced if it is in B and unbalanced otherwise. Let X be a subset
of EpGq. If the subgraph GrXs contains no unbalanced cycle, then we say
that X and GrXs are balanced, and otherwise we say they are unbalanced. A
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theta graph is a subgraph consisting of three internally disjoint paths joining
two distinct vertices. We define a matroid M “MpG,B,L,Fq by describing
its circuits as follows: a subset X of EpGq is a circuit of M if and only if X
is the edge set of one of the following.

(1) A balanced cycle.
(2) An unbalanced theta graph.
(3) The union of two edge-disjoint unbalanced cycles sharing exactly one

vertex. (Such a subgraph is called a tight handcuff.)
(4) The union of two vertex-disjoint cycles in L.
(5) The union of two vertex-disjoint cycles in F and a minimal path

joining these two cycles. (Such a subgraph is called a loose handcuff.)

If B contains every cycle of G, then M “MpGq is a graphic matroid. If L
is empty, then M is a frame matroid, and if F is empty, then M is a lift
matroid. If both B and L are empty, then M is a bicircular matroid.

Proposition 5.3. Let G be a graph, and let pB,L,Fq be a proper tripartition
of the cycles of G. If G has branch-width at most w, then the quasi-graphic
matroid M :“MpG,B,L,Fq has branch-width at most w ` 2.

Proof. We may assume that G has at least 2 edges. Let pT, Lq be a branch-
decomposition of the graph G with width at most w. This means that
whenever e is an edge of T , there are at most w vertices incident with both
sides of a partition pAe, Beq of EpGq induced by the components of T ´ e
under L´1. We will demonstrate that λM pAeq ď w ` 1 for every edge e, and
then pT, Lq will certify the branch-width of M to be at most w ` 2.

Let X be a subset of EpGq. Let cpXq denote the number of connected
components in the subgraph GrXs, and let bpXq denote the number of these
components that are balanced. Moreover, let `pXq be 1 if GrXs contains
a cycle in L, and otherwise set `pXq be 0. The rank rM pXq is given by
the formula |V pXq|´ bpXq when GrXs contains a cycle in F , and otherwise
by |V pXq|´ cpXq ´ `pXq [1, Lemma 2.4].

Let n be the number of vertices in G and let E :“ EpGq. Let nA

and nB be the number of vertices in the subgraphs GrAes and GrBes, so
that nA ` nB ´ n is the number of vertices incident both with edges in Ae

and edges in Be. First assume that F is non-empty. Then rpMq “ n´ bpEq.
Assume that both GrAes and GrBes contain cycles in F . Any subgraph of a
balanced subgraph is itself balanced, and it follows that bpAeq ` bpBeq ě bpEq.
Therefore

λM pAeq “ rM pAeq ` rM pBeq ´ rpMq

“ pnA ´ bpAeqq ` pnB ´ bpBeqq ´ pn´ bpEqq

ď |V pAeq X V pBeq|
ď w
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as desired. Now assume that GrAes contains a cycle in F but that GrBes

does not. In this case bpAeq ` cpBeq ě bpEq, so

λM pAeq “ pnA ´ bpAeqq ` pnB ´ cpBeq ´ `pBeqq ´ pn´ bpEqq

ď |V pAeq X V pBeq| ď w.

If neither GrAes nor GrBes contains a cycle in F , then
since cpAeq ` cpBeq ě cpEq ě bpEq, we can again reach the conclusion
that λM pAeq ď w.

Now we assume that F is empty. Therefore

rpMq “ n´ cpEq ´ `pEq, rpAeq “ nA ´ cpAeq ´ `pAeq,

and rpBeq “ nB ´ cpBeq ´ `pBeq.

As cpAeq ` cpBeq ě cpEq, it follows easily that λM pAeq ď w ` 1, and this
completes the proof. �

We will use the following grid theorem due to Robertson and Seymour.
Note that in [18] they proved this theorem in terms of tree-width, but in [19]
they established that graphs have small tree-width if and only if they have
small branch-width, yielding the following version of the theorem.
Theorem 5.4 (Robertson and Seymour [18, (2.1)] and [19, (5.1)]). For
any positive integer n, there is an integer Npnq such that every graph of
branch-width at least Npnq contains a minor isomorphic to the nˆ n grid.

For a positive integer n, let P ˝n be the graph obtained from the path on n
vertices by adding one loop at each vertex. By comparing circuits, it is easy
to observe the following lemma.
Lemma 5.5. For every positive integer n, the bicircular matroid
MpP ˝n ,∅,∅, C˝nq is isomorphic to MpFnq, where C˝n is the set of cycles
of P ˝n . �

Proposition 5.6. For every positive integer n, there is an integer w such
that every quasi-graphic matroid with branch-width at least w contains a
minor isomorphic to MpFnq.
Proof. We may assume that n ą 2. Let w :“ Npn2q ` 2 where Npn2q is the
integer given in Theorem 5.4.

Let M “MpG,B,L,Fq be a quasi-graphic matroid of branch-width at
least w. Assume for a contradiction thatM does not have a minor isomorphic
to MpFnq.

By Proposition 5.3, G has branch-width at least Npn2q. By Theorem 5.4,
G has a minor G1 isomorphic to the n2 ˆ n2 grid. We may assume that G1
is equal to the n2 ˆ n2 grid.

As G1 is obtained from G by deleting edges and contracting non-loop
edges, it follows immediately from [1, Theorem 4.5] that there is a proper
tripartition pB1,L1,F 1q of the cycles of G1 such that M 1 :“MpG1,B1,L1,F 1q
is a minor of M .
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First assume L1 contains a cycle of length 4 with edge set tc1, c2, c3, c4u.
By [1, Theorem 4.5], M2 :“M 1{tc1, c2, c3u is a quasi-graphic matroid. Let
G2 :“ G1{tc1, c2, c3u, and let pB2,L2,F2q be a proper tripartition of the cy-
cles of G2 so that M2 “MpG2,B2,L2,F2q. Again by Theorem [1, The-
orem 4.5] we may assume that the cycle with edge set tc4u is in L2.
Let v be the vertex of G2 that is incident with c4. By definition, ev-
ery cycle in F2 contains v. This means that M2 “MpG2,B2,L2 Y F2,∅q
(see [1, Section 2.3]). For S Ď EpM2{c4q, the set S Y tc4u is dependent
in M2 if and only if S contains the edge set of some cycle of G2{c4,
so M2{c4 “MpG2{c4q “MpG1{tc1, c2, c3, c4uq. As n2 is greater than four, it
follows that for some α P rn2s the graph G2rtpi, jq : i P tα, α` 1u, j P rn2sus
is a subgraph of G2{c4 isomorphic to the 2ˆ n2 grid. By contracting the
edges in the path pα, 1qpα, 2q ¨ ¨ ¨ pα, n2q, we obtain a minor isomorphic to Fn2 .
Now n2 ą n implies that M has a minor isomorphic to MpFnq, a contradic-
tion. Therefore L1 contains no cycle of length 4.

Consider the subgraph G1 :“ G1rtpi, jq : i P t1, 2u, j P rn2sus. If G1 con-
tains n vertex-disjoint cycles of length 4 in F 1, thenM 1 has a minor isomorphic
to MpP ˝n ,∅,∅, C˝nq, where C˝n is the set of cycles of P ˝n , contradicting our
assumption by Lemma 5.5.

Since the 2ˆ n grid contains Fn as a minor, by our assumption, any se-
quence of consecutive balanced cycles of length 4 in G1 contains at most n´ 2
such cycles. As G1 contains no cycles of length 4 in L1, and at most n´ 1
vertex-disjoint cycles of length 4 in F 1, it follows that G1 contains at
most pn´ 2qn` 2pn´ 1q “ n2 ´ 2 cycles of length 4. This is impossible,
as G1 has at least n2 ´ 1 cycles of length 4. �

Now it is routine to combine Proposition 5.6 with Theorem 1.2 to deduce
the following result.
Corollary 5.7. For every positive integer n, there is an integer d such that
every quasi-graphic matroid with branch-depth at least d contains a minor
isomorphic to MpFnq. �

5.3. General matroids.
The following conjecture about branch-width is due to Johnson, Robertson,

and Seymour.
Conjecture 5.8 (Johnson, Robertson, and Seymour; see [5, Conjecture 6.1]).
For every positive integer n, there is an integer d such that every matroid of
branch-width at least d contains a minor isomorphic to either

‚ the cycle matroid of the nˆ n grid;
‚ the bicircular matroid of the nˆ n grid; or
‚ the uniform matroid Un,2n.

Corollary 5.9. Conjecture 5.8 implies Conjecture 1.1.
Proof. Since both the cycle matroid and the bicircular matroid of the nˆ n
grid are quasi-graphic and both have large branch-depth, this follows from
Corollary 5.7. �
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