
CONTRACTING AN ELEMENT FROM A COCIRCUIT

RHIANNON HALL AND DILLON MAYHEW

Abstract. We consider the situation that M and N are 3-connected
matroids such that |E(N)| ≥ 4 and C∗ is a cocircuit of M with the
property that M/x0 has an N -minor for some x0 ∈ C∗. We show that
either there is an element x ∈ C∗ such that si(M/x) or co(si(M/x))
is 3-connected with an N -minor, or there is a four-element fan of M
that contains two elements of C∗ and an element x such that si(M/x)
is 3-connected with an N -minor.

1. Introduction

There are a number of tools in matroid theory that tell us when we can
remove an element or elements from a matroid, while maintaining both the
presence of a minor and a certain type of connectivity. Some recent results
are of this type, but have the additional restriction that the element(s) must
have a certain relation to a given substructure in the matroid. For example,
Oxley, Semple, and Whittle [9] fix a basis in a matroid and consider either
contracting elements that are in the basis, or deleting elements that are
not in the basis. Hall [3] has investigated when it is possible to contract
an element from a given hyperplane in a 3-connected matroid and remain
3-connected (up to parallel pairs).

We make a contribution to this collection of tools by investigating the
circumstances under which we can contract an element from a cocircuit while
maintaining both the presence of a minor and 3-connectivity (up to parallel
pairs), and the structures which prevent us from doing so. Our result has
been employed by Geelen, Gerards, and Whittle [2] in their characterization
of when three elements in a matroid lie in a common circuit.

Theorem 1.1. Suppose that M and N are 3-connected matroids such that
|E(N)| ≥ 4 and C∗ is a cocircuit of M with the property that M/x0 has an
N -minor for some x0 ∈ C∗. Then either:

(i) there is an element x ∈ C∗ such that si(M/x) is 3-connected and has
an N -minor;

(ii) there is an element x ∈ C∗ such that co(si(M/x)) is 3-connected and
has an N -minor; or,
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(iii) there is a sequence of elements (x1, x2, x3, x4) from E(M) such that
{x1, x2, x3} is a circuit, {x2, x3, x4} is a cocircuit, x1, x3 ∈ C∗, and
si(M/x2) is 3-connected with an N -minor.

The next example shows that statement (ii) of Theorem 1.1 is necessary.

a

b

c d

Figure 1. The graphic matroid M(K5\e).

Consider the rank-4 matroid M whose geometric representation is shown
in Figure 1. Note that M ∼= M(K5\e). The set C = {a, b, c, d} is a circuit
of M , and hence a cocircuit of M∗. Moreover M∗/x has a minor isomorphic
to M(K4) for any element x ∈ C. However co(M\x) is not 3-connected,
as it contains a parallel pair, so si(M∗/x) is not 3-connected. On the other
hand co(si(M∗/x)) is 3-connected, and has a minor isomorphic to M(K4).

More generally we suppose that r is an integer greater than two. Consider
a basis A = {a1, . . . , ar} in the projective space PG(r−1, R). Let l be a line
of PG(r− 1, R) that is freely placed relative to A, and for all i ∈ {1, . . . , r}
let bi be the point that is in both l and the hyperplane of PG(r − 1, R)
spanned by A − ai. Let B = {b1, . . . , br}. We will use Θr to denote the
restriction of PG(r − 1, R) to A ∪B.

Suppose that Θ′
r is an isomorphic copy of Θr with {a′

1, . . . , a
′
r} ∪ B as

its ground set. Assume also that the isomorphism from Θr to Θ′
r acts as

the identity on B and takes ai to a′
i for all i ∈ {1, . . . , r}. Let M be the

generalized parallel connection of Θr and Θ′
r. That is, M is a matroid on

the ground set A∪A′∪B and the flats of M are exactly the sets F such that
F ∩ (A∪B) is a flat of Θr and F ∩ (A′∪B) is a flat of Θ′

r. Note that if r = 3
then M is isomorphic to M(K5\e), the matroid illustrated in Figure 1.

It is easy to see that Θr is self-dual and that C = (A − a1) ∪ (A′ − a′
1)

is a circuit of M , and hence a cocircuit of M∗. Moreover M∗/x has an
isomorphic copy of Θr as a minor for every element x ∈ C. We note that
every three-element subset of A is a circuit of M∗. Thus A− x is a parallel
class of M∗/x for every x ∈ C ∩ A. However the simplification of M∗/x
contains a unique series pair, and is therefore not 3-connected. On the
other hand co(si(M∗/x)) is 3-connected, and has a minor isomorphic to Θr.

The structure described in the last example has been discovered before.
The matroid Θr is a fundamental object in the generalized ∆-Y operation
of Oxley, Semple, and Vertigan [7]. Furthermore this construction is an
example of a ‘crocodile’, as described by Hall, Oxley, and Semple [4].
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To see that statement (iii) of Theorem 1.1 is necessary consider the graph
G shown in Figure 2. Let C∗ be the cocircuit of M = M(G) comprising
the edges incident with the vertex a. It is easy to see that if x is any edge
between a and a vertex in {b, c, d, e, f} then M/x has a minor isomorphic
to M(K6), and that these are the only edges in C∗ with this property.
But in this case neither si(M/x) nor co(si(M/x)) is 3-connected. On the
other hand, if we let x1 be the edge ad, x2 be cd, x3 be ac, and x4 be bc,
then (x1, x2, x3, x4) is a sequence of the type described in statement (iii) of
Theorem 1.1.

a

bc

d

e f

Figure 2. The graph G.

Our main result shows that there are essentially only two structures that
prevent us from finding an element x ∈ C∗ such that si(M/x) is 3-connected
with an N -minor. These structures are named ‘segment-cosegment pairs’
and ‘four-element fans’. The dual of the matroid in Figure 1 contains a
segment-cosegment pair, and the graph in Figure 2 contains a four-element
fan. Before describing our result in detail we fix some terminology. Sup-
pose that M is a matroid. Recall that a triangle of M is a three-element
circuit, and a triad is a three-element cocircuit. A four-element fan of
M is a sequence (x1, x2, x3, x4) of distinct elements from E(M) such that
{x1, x2, x3} is a triangle and {x2, x3, x4} is a triad. A segment of M is a set
L such that |L| ≥ 3 and every three-element subset of M is a triangle, and
a cosegment of M is a segment of M∗. We say that (L, L∗) is a segment-
cosegment pair if L = {x1, . . . , xt} is a segment of M , and L∗ = {y1, . . . , yt}
is a set such that L ∩ L∗ = ∅ and for every xi ∈ L the set (cl(L) − xi) ∪ yi

is a cocircuit. Segment-cosegment pairs will be considered in detail in Sec-
tion 3. A spore is a pair (P, s) such that P is a rank-one flat, and P ∪ s is
a cocircuit. A matroid M is 3-connected up to a unique spore if M contains
a single spore (P, s), and whenever (X, Y ) is a k-separation of M for some
k < 3 then either X ⊆ P ∪ s or Y ⊆ P ∪ s. Theorem 1.1 follows from the
next result. It gives a more detailed analysis of the structures we encounter.

Theorem 1.2. Suppose that M and N are 3-connected matroids such that
|E(N)| ≥ 4 and C∗ is a cocircuit of M with the property that M/x0 has an
N -minor for some x0 ∈ C∗. Then either:

(i) there is an element x ∈ C∗ such that si(M/x) is 3-connected and has
an N -minor;
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(ii) there is a four-element fan (x1, x2, x3, x4) of M such that x1, x3 ∈ C∗,
and si(M/x2) is 3-connected with an N -minor;

(iii) there is a segment-cosegment pair (L, L∗) such that L ⊆ C∗, and
cl(L)−L contains a single element e. In this case e /∈ C∗ and si(M/e)
is 3-connected with an N -minor. Moreover M/ cl(L) is 3-connected
with an N -minor, and if xi ∈ L then M/xi is 3-connected up to a
unique spore (cl(L)− xi, yi); or,

(iv) there is a segment-cosegment pair (L, L∗) such that L is a flat and
|L− C∗| ≤ 1. In this case M/L is 3-connected with an N -minor, and
if xi ∈ L then M/xi is 3-connected up to a unique spore (L− xi, yi).

We note that if (L, L∗) is a segment-cosegment pair of the matroid M ,
and M/ cl(L) has an N -minor, then |E(M) − cl(L)| ≥ 4. Under these hy-
potheses Proposition 3.6 tells us that M/ cl(L) is isomorphic to co(si(M/xi))
for any element xi ∈ L. Therefore Theorem 1.1 does indeed follow from The-
orem 1.2.

By dualizing we immediately obtain the following corollary of Theo-
rem 1.1.

Theorem 1.3. Suppose that M and N are 3-connected matroids such that
|E(N)| ≥ 4 and C is a circuit of M with the property that M\x0 has an
N -minor for some x0 ∈ C. Then either:

(i) there is an element x ∈ C such that co(M\x) is 3-connected and has
an N -minor;

(ii) there is an element x ∈ C such that si(co(M\x)) is 3-connected and
has an N -minor; or,

(iii) there is a four-element fan (x1, x2, x3, x4) in M such that x2, x4 ∈ C,
and co(M\x3) is 3-connected with an N -minor.

We note that Lemos [5] has considered the situation that a 3-connected
matroid M contains a circuit C with the property that M\x is not 3-con-
nected for any element x ∈ C. He shows that in this case C meets at least
two triads of M .

In Section 2 we introduce essential notions of matroid connectivity. Sec-
tion 3 contains a detailed discussion of one of the structures we uncover:
segment-cosegment pairs. In Section 4 we collect some preliminary lem-
mas, and in Section 5 we complete the proof of Theorem 1.2. Notation
and terminology generally follow that of Oxley [6], except that the simple
(respectively cosimple) matroid associated with the matroid M is denoted
si(M) (respectively co(M)). We consistently write z instead of {z} for the
set containing the single element z.

2. Essentials

This section collects some elementary results on matroid connectivity.
Let M be a matroid on the ground set E. The connectivity function of M ,
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denoted by λM (or λ when there is no ambiguity), takes subsets of E to
Z+ ∪ {0}. It is defined so that

λM (X) = rM (X) + rM (E −X)− r(M)

for any subset X ⊆ E. Note that λ(X) = λ(E −X) and λM∗(X) = λM (X)
for any subset X ⊆ E. It is well known, and easy to verify, that the con-
nectivity function of M is submodular. That is, for all X, Y ⊆ E, the
inequality

λ(X ∩ Y ) + λ(X ∪ Y ) ≤ λ(X) + λ(Y )

is satisfied.
We say that a subset X ⊆ E is k-separating or a k-separator of M if

λ(X) < k, and we say that a partition (X, E−X) is a k-separation of M if
X is k-separating and |X|, |E −X| ≥ k. A k-separator X or a k-separation
(X, E −X) is exact if λ(X) = k− 1. A matroid M is n-connected if M has
no k-separation for any k < n. We define a k-partition of M to be a partition
(X1, X2, . . . , Xn) of E such that Xi is k-separating for all 1 ≤ i ≤ n. We
say that the k-partition (X1, X2, . . . , Xn) is exact if each k-separator Xi is
exact.

The next result is easy.

Proposition 2.1. Let N be a minor of the matroid M and let X be a subset
of E(M). Then λN (E(N) ∩X) ≤ λM (X).

Proposition 2.2. Suppose that M is a matroid and that (X, Y, z) is a
partition of E(M). If λ(X) = λ(Y ) then z is in cl(X)∩cl(Y ) or in cl∗(X)∩
cl∗(Y ), but not both.

Proof. Since

λ(X) = r(X) + r(Y ∪ z)− r(M) = r(X ∪ z) + r(Y )− r(M) = λ(Y )

it follows that r(Y ∪ z) − r(Y ) = r(X ∪ z) − r(X). Therefore, z ∈ cl(X) if
and only if z ∈ cl(Y ). In the case that z /∈ cl(X) and z /∈ cl(Y ) then

r∗(Y ∪ z)− r∗(Y ) = (|Y ∪ z|+ r(X)− r(M))

− (|Y |+ r(X ∪ z)− r(M)) = 1 + r(X)− r(X ∪ z) = 0.

Thus z ∈ cl∗(Y ). The same argument shows that z ∈ cl∗(X).
Finally we note that z ∈ cl∗(X) if and only if z /∈ cl(Y ). Thus cl(X)∩cl(Y )

and cl∗(X) ∩ cl∗(Y ) are disjoint. �

The next result is well known, and follows without difficulty from the dual
of [8, Lemma 2.5].

Proposition 2.3. Suppose that X is an exactly 3-separating set of the 3-con-
nected matroid M . Suppose also that A ⊆ E(M) − X. If |A| ≥ 3 and
A ⊆ cl∗(X) then A is a cosegment of M .
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Definition 2.4. Suppose that M is a matroid and that x ∈ E(M). Let
(X1, X2) be a partition of E(M)− x such that there is a positive integer k
with the property that:

(i) λ(X1) = λ(X2) = k − 1;
(ii) r(X1), r(X2) ≥ k; and,
(iii) x ∈ cl(X1) ∩ cl(X2).
In this case (X1, X2, x) is a vertical k-partition of M .

The next result is well known and easy to prove.

Proposition 2.5. Let M be a 3-connected matroid and suppose that si(M/x)
is not 3-connected for some x ∈ E(M). Then there exists a vertical 3-parti-
tion (X1, X2, x) of M .

Proposition 2.6. Suppose that (X1, X2, x) is vertical k-partition of the
k-connected matroid M . Let A be a subset of cl(X2 ∪ x). Then (X1 −
A, (X2 ∪A)− x, x) is also a vertical k-partition of M .

Proof. Suppose that z is some element in X1 ∩A. Then λ(X1 − z) is either
k − 2 or k − 1. If λ(X1 − z) = k − 2 then (X1 − z, X2 ∪ {x, z}) is a
(k − 1)-separation of M , a contradiction. Hence λ(X1 − z) = k − 1 which
implies that r(X1 − z) = r(X1). Thus cl(X1 − z) = cl(X1), and hence
x ∈ cl(X1 − z). It follows that (X1 − z, X2 ∪ z, x) is a vertical k-partition
of M . By continuing to transfer elements in X1 ∩ A from X1 into X2 we
eventually conclude that (X2 −A, (X2 ∪A)− x, x) is a vertical k-partition
of M , as desired. �

Suppose that M1 and M2 are matroids such that E(M1) ∩ E(M2) =
{p}. Then we can define the parallel connection of M1 and M2, denoted
by P (M1, M2). The ground set of P (M1, M2) is E(M1) ∪ E(M2). If p is a
loop in neither M1 nor M2 then the circuits of P (M1, M2) are exactly the
circuits of M1, the circuits of M2, and sets of the form (C1 − p) ∪ (C2 − p),
where Ci is a circuit of Mi such that p ∈ Ci for i = 1, 2. If p is a loop in M1

then P (M1, M2) is defined to be the direct sum of M1 and M2/p. Similarly,
if p is a loop in M2 then P (M1, M2) is defined to be the direct sum of M1/p
and M2. We say that p is the basepoint of the parallel connection. It is clear
that P (M1, M2) = P (M2, M1).

The next result follows from [6, Proposition 7.1.15 (v)].

Proposition 2.7. Suppose that M1 and M2 are matroids such that E(M1)∩
E(M2) = {p}. If e ∈ E(M1) − p then P (M1, M2)\e = P (M1\e, M2) and
P (M1, M2)/e = P (M1/e, M2).

Assume that M1 and M2 are matroids such that E(M1) ∩ E(M2) = {p}.
If p is not a loop or a coloop in either M1 or M2 then P (M1, M2)\p is the
2-sum of M1 and M2, denoted by M1⊕2 M2. We say that p is the basepoint
of the 2-sum.

The next result follows from [10, (2.6)].
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Proposition 2.8. If (X1, X2) is an exact 2-separation of a matroid M
then there exist matroids M1 and M2 on the ground sets X1 ∪ p and X2 ∪ p
respectively, where p is in neither X1 nor X2, such that M is equal to M1⊕2

M2.

Proposition 2.9. Suppose that N is a 3-connected matroid. Let M be a
matroid with a vertical 3-partition (X1, X2, x) such that N is a minor of
M/x. Then either |E(N) ∩X1| ≤ 1, or |E(N) ∩X2| ≤ 1.

Proof. Since (X1, X2) is a 2-separation of M/x the result follows immedi-
ately from Proposition 2.1. �

Lemma 2.10. Suppose that N is a 3-connected matroid such that |E(N)| ≥
2. Let M be a matroid with a vertical 3-partition (X1, X2, x) such that N
is a minor of M/x. If |E(N) ∩ X1| ≤ 1 then M/x/e has an N -minor for
every element e ∈ X1 − clM (X2).

Proof. Since (X1, X2) is an exact 2-separation of M/x, it follows from
Proposition 2.8 that M/x is the 2-sum of matroids M1 and M2 along
the basepoint p, where E(M1) = X1 ∪ p and E(M2) = X2 ∪ p. Thus
M/x = P (M1, M2)\p.

Suppose that E(N) ∩ X1 = ∅. Then there is a partition (A, B) of X1

such that N is a minor of M/x/A\B. Suppose that p is a loop in M1/A\B.
Proposition 2.7 implies that

M/x/A\B = P (M1/A\B, M2)\p.

Now the definition of parallel connection implies that M/x/A\B is isomor-
phic to M2/p. It is easily seen that if e ∈ X1 then there is a minor M ′ of
M1/e such that E(M ′) = {p} and p is a loop of M ′. Proposition 2.7 implies
that P (M ′, M2)\p is a minor of M/x/e. But P (M ′, M2)\p is isomorphic to
M2/p, so M/x/e has an N -minor.

Next we suppose that p is a coloop of M1/A\B. Then, by definition of
the parallel connection, M/x/A\B is isomorphic to M2\p. Suppose that e ∈
X1−cl(X2). Since p is not a coloop of M2 it follows easily that p ∈ clM (X2).
Thus e is not parallel to p in M1. Therefore there is a minor M ′ of M1/e
such that E(M ′) = {p} and p is a coloop of M ′. Again using Proposition 2.7
we see that P (M ′, M2)\p is a minor of M/x/e. But since P (M ′, M2)\p is
isomorphic to M2\p we deduce that M/x/e has an N -minor.

Now we assume that |E(N)∩X1| = 1 and that z is the unique element in
E(N)∩X1. There is a partition (A, B) of X1− z such that N is a minor of
M/x/A\B. It follows from Proposition 2.7 that P (M1/A\B, M2)\p has an
N -minor. Consider the matroid M1/A\B. If {z, p} is not a parallel pair in
this matroid then z must be a loop or coloop in P (M1/A\B, M2)\p. This
implies that z is a loop or coloop in N , a contradiction as N is 3-connected
and |E(N)| ≥ 2. Therefore z and p are parallel in M1/A\B, and therefore
P (M1/A\B, M2)\p is isomorphic to M2. Thus M2 has an N -minor.

Since p is not a loop or coloop of M1 there is a circuit of size at least
two in M1 that contains p. Suppose that e ∈ X1 − clM (X2). Then e
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cannot be parallel to p in M1, so M1/e has a circuit of size at least two that
contains p. Hence there is a minor M ′ of M1/e such that p ∈ E(M ′) and
M ′ consists of a parallel pair. Proposition 2.7 implies that P (M ′, M2)\p is
a minor of M/x/e. But P (M ′, M2)\p is isomorphic to M2, so M/x/e has
an N -minor. �

Definition 2.11. Suppose that M is a matroid and that A and B are subsets
of E(M). The local connectivity between A and B, denoted by u(A, B), is
defined to be r(A) + r(B) − r(A ∪ B). Equivalently, u(A, B) is equal to
λM |(A∪B)(A).

Proposition 2.12. [8, Lemma 2.4(iv)] Let M be a matroid and let
(A, B, C) be a partition of E(M). Then u(A, B)+λ(C) = u(A, C)+λ(B).
Hence u(A, B) = u(A, C) if and only if λ(B) = λ(C).

Corollary 2.13. Let (X, Y, Z) be an exact 3-partition of the 3-connected
matroid M . Then u(X, Y ) = u(X, Z) = u(Y, Z).

Proposition 2.14. Suppose that M is a matroid and that X and Y are
disjoint subsets of E(M) such that u(X, Y ) = 1. If x, y ∈ X ∩ cl(Y ) then
r({x, y}) ≤ 1.

Proof. Assume that r({x, y}) = 2. Let X ′ = cl(X) and Y ′ = cl(Y ). It is
easy to see that r(X ′ ∪ Y ′) = r(X ∪ Y ). However

r(X ′ ∪ Y ′) ≤ r(X ′) + r(Y ′)− r(X ′ ∩ Y ′) ≤ r(X) + r(Y )− 2 = r(X ∪ Y )− 1.

This contradiction completes the proof. �

We conclude this section by stating a fundamental tool in the study of
3-connected matroids, due to Bixby [1].

Theorem 2.15 (Bixby’s Lemma). Let M be a 3-connected matroid and
suppose that x is an element of E(M). Then either si(M/x) or co(M\x) is
3-connected.

3. Segment-cosegment pairs

Suppose that M is a matroid. Recall that L is a segment of M if |L| ≥
3 and every three-element subset of L is a circuit of M , and that L∗ is
a cosegment of M if |L∗| ≥ 3 and every three-element subset of L∗ is a
cocircuit. We restate the definition of segment-cosegment pairs given in
Section 1.

Definition 3.1. Suppose that L = {x1, . . . , xt} is a segment of the matroid
M and there is a set L∗ = {y1, . . . , yt} with the property that L ∩ L∗ = ∅
and (cl(L)−xi)∪ yi is a cocircuit of M for all i ∈ {1, . . . , t}. In this case we
say that (L, L∗) is a segment-cosegment pair of M .

In a 3-connected matroid a segment-cosegment pair is an example of a
‘crocodile’, a structure that provides a collection of equivalent 3-separations.
‘Crocodiles’ were considered by Hall, Oxley, and Semple [4]. The next result
explains the name segment-cosegment pair.
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Proposition 3.2. Suppose that (L, L∗) is a segment-cosegment pair of the
3-connected matroid M . Then L∗ is a cosegment of M .

Proof. Suppose that yi ∈ L∗. The definition of a segment-cosegment pair
means that yi ∈ cl∗(cl(L)). Thus L∗ ⊆ cl∗(cl(L)). Moreover cl(L) is exactly
3-separating in M . The result follows by Proposition 2.3. �

Proposition 3.3. Suppose that (L, L∗) is a segment-cosegment pair of the
3-connected matroid M . Then M/ cl(L) is 3-connected.

Proof. Suppose that L = {x1, . . . , xt} and L∗ = {y1, . . . , yt}. Assume that
M/ cl(L) is not 3-connected, so that (X1, X2) is a k-separation of M/ cl(L)
for some k ≤ 2. Let L0 = cl(L). Note that for i ∈ {1, 2} we have

rM/L0
(Xi) = rM (Xi ∪ L0)− rM (L0) = rM (Xi)− uM (Xi, L0),

so rM (Xi) = rM/L0
(Xi) + uM (Xi, L0).

Suppose that uM (X1, L0) = 0. Then rM (X1) = rM/L0
(X1) and rM (X2 ∪

L0) = rM/L0
(X2) + 2, so

λM (X1) = rM/L0
(X1) + (rM/L0

(X2) + 2)− (r(M/L0) + 2)

= λM/L0
(X1) < k.

This is a contradiction as M is 3-connected. By using a symmetric argument
we can conclude that uM (Xi, L0) > 0 for all i ∈ {1, 2}.

Suppose that xi ∈ clM (X1) for some i ∈ {1, . . . , t}. Then there is a circuit
C1 ⊆ X1∪xi such that xi ∈ C1. For all k ∈ {1, . . . , t}−i the set (L0−xk)∪yk

is a cocircuit. It cannot be the case that C1 meets this cocircuit in a single
element, so yk ∈ X1 for all k ∈ {1, . . . , t} − i.

Now suppose that xj ∈ clM (X2) for some j ∈ {1, . . . , t}. By using the
same arguments as above we can conclude that L∗ − yj ⊆ X2. As L∗ − yi

and L∗−yj have a non-empty intersection this is a contradiction. Therefore
clM (X2)∩L = ∅. Note that u(X2, L0) ≤ 2 because r(L0) = 2. If u(X2, L0)
were two, it would follow that L0 ⊆ cl(X2). Hence u(X2, L0) = 1.

Let j be an element of {1, . . . , t} − i. Then L0 ⊆ clM (X2 ∪ xj), and
there must be a circuit C2 ⊆ X2 ∪ {xi, xj} such that {xi, xj} ⊆ C2. But
then C2 meets the cocircuit (L0 − xj) ∪ yj in a single element, xi. From
this contradiction we conclude that clM (X1) ∩ L = ∅, and by symmetry
clM (X2) ∩ L = ∅. This means that

uM (X1, L0) = uM (X2, L0) = 1.

It must be the case that x2 ∈ clM (X1 ∪ x1), and there is a circuit C3 ⊆
X1 ∪ {x1, x2} such that {x1, x2} ⊆ C3. Since (L0 − x1) ∪ y1 is a cocircuit
we conclude that y1 ∈ X1. But we can use an identical argument to show
that y1 ∈ X2. This contradiction completes the proof. �

We now restate the definition of a spore.
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Definition 3.4. Suppose that P is a rank-one flat of a matroid M and that
s is an element of E(M) such that P ∪ s is a cocircuit. Then we say that
(P, s) is a spore.

Recall from Section 1 that a matroid M is 3-connected up to a unique
spore if it contains a single spore (P, s), and whenever (X, Y ) is a k-sepa-
ration of M for some k < 3 then either X ⊆ P ∪ s or Y ⊆ P ∪ s.

Lemma 3.5. Suppose that (L, L∗) is a segment-cosegment pair of the
3-connected matroid M where |E(M) − cl(L)| ≥ 4. Let L = {x1, . . . , xt}
and L∗ = {y1, . . . , yt}. Then M/xi is 3-connected up to a unique spore
(cl(L)− xi, yi), for all i ∈ {1, . . . , t}.

Proof. Let E be the ground set of M and let L0 = cl(L). We will show
that M/xi is 3-connected up to the unique spore (L0 − xi, yi). Certainly
(L0−xi, yi) is a spore of M/xi. Suppose that (P, s) is a spore of M/xi that
is distinct from (L0 − xi, yi).

We initially assume that L0 − xi = P . Thus s 6= yi. As (L0 − xi) ∪ s and
(L0 − xi) ∪ yi are both cocircuits of M/xi it follows that E − (L0 ∪ {s, yi})
is the intersection of two hyperplanes of M/xi. Thus

rM/xi
(E − (L0 ∪ {s, yi})) ≤ r(M/xi)− 2.

and therefore

rM/L0
(E − (L0 ∪ {s, yi})) ≤ r(M/xi)− 2 = r(M/L0)− 1.

Hence {s, yi} contains a cocircuit in M/L0. Therefore M/L0 contains a
cocircuit of size at most two, a contradiction as M/L0 is 3-connected by
Proposition 3.3, and |E(M/L0)| ≥ 4.

Now we must assume that L0 − xi 6= P . Hence P ∪ xi is a rank-two flat
of M that meets L0 in exactly one element, xi. Suppose that P contains a
single element p. Then {p, s} is a cocircuit of M , a contradiction. Therefore
P ∪ xi contains at least one triangle. Suppose that P does not contain yj ,
where j 6= i. Then there is a triangle in P ∪ xi that meets the cocircuit
(L0 − xj) ∪ yj in exactly one element, xi. This contradiction shows that
L∗ − yi ⊆ P .

Assume that t > 3. As L∗ is a cosegment there is a triad of M contained
in L∗ − yi. However this triad is also contained in the segment P ∪ xi, and
is therefore a triangle. But |E(M)| > 4 and a 3-connected matroid with
at least five elements cannot contain a triangle that is also a triad. This
contradiction shows that t = 3.

Suppose j ∈ {1, 2, 3} and that j 6= i. If |P | > 2 then there is a triangle
contained in P that contains yj . However this triangle would meet the
cocircuit (L0−xj)∪yj in exactly one element. Thus |P | = 2, and P = L∗−yi.

Suppose that j, k ∈ {1, 2, 3} and neither j nor k is equal to i. Then
L0 ∪P contains the two cocircuits (L0 − xj)∪ yj and (L0 − xk)∪ yk. Hence
rM (E−(L0∪P )) ≤ r(M)−2. However it is easy to see that rM (L0∪P ) = 3.
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As |P | = 2 it follows that E− (L0∪P ) contains at least two elements. Thus
(L0 ∪ P, E − (L0 ∪ P )) is a 2-separation of M , a contradiction.

We have shown that (L0 − xi, yi) is the unique spore of M/xi. Next
we show that M/xi is 3-connected up to this spore. Suppose that (X, Y )
is a k-separation of M/xi for some k < 3. By relabeling if necessary we
will assume that yi ∈ X. Assume that the result is false, so that neither
X nor Y is contained in (L0 − xi) ∪ yi. Therefore X contains at least one
element from E − (L0 ∪ yi). As M/L0 is 3-connected by Proposition 3.3
we deduce from Proposition 2.1 that either X − L0 or Y − L0 contains at
most one element. We have already concluded that X − L0 contains at
least two elements (as yi ∈ X), so Y − L0 contains precisely one element.
As M is 3-connected it contains no parallel pairs, so M/xi contains no
loops. Therefore rM/xi

(Y ) = 2, and hence rM/xi
(X) ≤ r(M/xi)−1. Thus Y

contains a cocircuit of M/xi. As M/xi has no coloops, and any cocircuit that
meets a parallel class contains that parallel class it follows that L0−xi ⊆ Y .
Let s be the single element in Y − L0. It cannot be the case that Y is a
cocircuit in M/xi, for that would imply that (L0− xi, s) is a spore of M/xi

that differs from (L0 − xi, yi), contradicting our earlier conclusion. Now
we see that Y − s = L0 − xi must be a cocircuit of M/xi, but this is a
contradiction as L0−xi is properly contained in the cocircuit (L0−xi)∪ yi.
The completes the proof. �

The next result shows that Theorem 1.1 is a consequence of Theorem 1.2.

Proposition 3.6. Suppose that (L, L∗) is a segment-cosegment pair of a
matroid M , and that M/ cl(L) is 3-connected and |E(M)− cl(L)| ≥ 4. Let
L = {x1, . . . , xt} and L∗ = {y1, . . . , yt}. Then co(si(M/xi)) ∼= M/ cl(L) for
any element xi ∈ L.

Proof. Let L0 = cl(L) and let xj 6= xi be an element of L. Suppose that
P and S are disjoint subsets of E(M) − xi chosen so that co(si(M/xi)) ∼=
M/xi\P/S. As L0 − xi is a parallel class in M/xi we may assume that
L0−{xi, xj} ⊆ P and that xj /∈ P . We may assume that yi /∈ P , and hence
{xj , yi} is a union of cocircuits in M/xi\P . Therefore we may assume
xj ∈ S. Since the elements in L0 − {xi, xj} are loops in M/xi/xj it follows
that

M/xi\P/S = M/xi/xj/(L0 − {xi, xj})\(P − (L0 − {xi, xj}))/(S − xj).

This last matroid is equal to M/L0\(P − (L0 − {xi, xj}))/(S − xj). Since
M/L0 is 3-connected and the elements in P − (L0 − {xi, xj}) are either
loops or parallel elements in M/L0 it follows that P = L0 − {xi, xj}. Thus
M/xi\P/S = M/L0/(S−xj). But M/L0 is 3-connected, so S−xj must be
empty. Thus M/L0

∼= co(si(M/xi)), as desired. �
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4. Preliminary lemmas

Proposition 4.1. Suppose that C∗ is a cocircuit of the 3-connected matroid
M . Assume that (X1, X2, x) is a vertical 3-partition of M such that x ∈ C∗.
Then C∗ ∩ (X1 − cl(X2)) 6= ∅ and C∗ ∩ (X2 − cl(X1)) 6= ∅.

Proof. Note that r(X1), r(X2) ≥ 3 implies that |E(M)| ≥ 4, so every circuit
and cocircuit of M contains at least three elements. Let X be X1 − cl(X2).
The fact that r(X1) ≥ 3 implies that X contains a cocircuit, so |X| ≥ 3.
Suppose that x is not in cl(X). Then r(X) < r(X1). Since |X| ≥ 3 this
implies that (X, cl(X2)) is a 2-separation of M , a contradiction.

Now suppose that C∗ ⊆ cl(X2). Then as x ∈ cl(X) and x ∈ C∗ there is a
circuit in M that meets C∗ in exactly one element, x. This is a contradiction.
The same argument shows that C∗ ∩ (X2 − cl(X1)) 6= ∅, so the proposition
holds. �

Definition 4.2. Suppose that M is a 3-connected matroid and that A is
a subset of E(M). A minimal partition with respect to A is a vertical
3-partition (X1, X2, x) of M that satisfies the following properties:

(i) x ∈ A;
(ii) if (Y1, Y2, y) is a vertical 3-partition of M such that y ∈ A ∩ (X1 ∪ x)

and X2 ∩ Y1 = ∅, then (Y1, Y2, y) = (X1, X2, x); and,
(iii) if (Y1, Y2, y) is a vertical 3-partition of M such that y ∈ A ∩ (X1 ∪ x)

and X2 ∩ Y2 = ∅ then (Y2, Y1, y) = (X1, X2, x).

If there is no ambiguity we will refer to a minimal partition with respect
to A as a minimal partition.

Lemma 4.3. Suppose that M is a 3-connected matroid and that A is a
subset of E(M). Suppose that for some element z ∈ A there is a vertical
3-partition (Z1, Z2, z) of M . Let Z = Z1− cl(Z2). Then there is a minimal
partition (X1, X2, x) with respect to A such that X1 ⊆ Z and x ∈ A∩(Z∪z).

Proof. Let Z be the family of vertical 3-partitions (S1, S2, z) with the prop-
erty that S1 ⊆ Z1. Choose (Z ′

1, Z ′
2, z) from Z so that if (S1, S2, z) is in

Z, then S1 is not properly contained in Z ′
1. Observe that Proposition 2.6

implies that Z ′
1 ⊆ Z.

Let S be the family of vertical 3-partitions (S1, S2, s) with s ∈ A∩(Z ′
1∪z).

Let S0 be the set of vertical 3-partitions (S1, S2, s) in S with the property
that either S1 ⊆ Z ′

1 or S2 ⊆ Z ′
1. Without loss of generality we will assume

that if (S1, S2, s) is in S0 then S1 ⊆ Z ′
1. Suppose that (S1, S2, z) is a

member of S0. Then our choice of (Z ′
1, Z ′

2, z) means that S1 = Z ′
1 and

S2 = Z ′
2. If (Z ′

1, Z ′
2, z) is the only member of S0 then we can set (X1, X2, x)

to be (Z ′
1, Z ′

2, z), and we will be done. Therefore we will assume that there
is at least one vertical 3-partition (S1, S2, s) in S0 such that s 6= z. Let S1

be the collection of such partitions.
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We now let (X1, X2, x) be a vertical 3-partition in S1 chosen so that if
(S1, S2, s) ∈ S1, then S1 ∪ s is not properly contained in X1 ∪ x. We will
prove that (X1, X2, x) is the desired vertical 3-partition.

It is certainly true that X1 ⊆ Z. If there is some element e in X1 ∩
cl(X2∪x) then (X1−e, X2∪e, x) is a vertical 3-partition by Proposition 2.6.
However this contradicts our choice of (X1, X2, x). Therefore X2∪x is a flat.
We assume that (Y1, Y2, y) is a vertical 3-partition and that y ∈ A∩(X1∪x).
As X1 ⊆ Z ′

1 it follows that y ∈ A∩Z ′
1. Our assumption on (X1, X2, x) means

that neither Y1 ∪ y nor Y2 ∪ y can be properly contained in X1 ∪ x.
Suppose that X2 ∩ Y1 = ∅. Then Y1 ∪ y must be equal to X1 ∪ x. If

y 6= x then the fact that y ∈ cl(Y2) and Y2 = X2 means that y ∈ cl(X2),
which is a contradiction as X2 ∪ x is a flat. Therefore y = x, so (Y1, Y2, y)
is equal to (X1, X2, x). The same argument shows that if X2 ∩ Y2 = ∅
then (Y1, Y2, y) = (X2, X1, x). Thus (X1, X2, x) is the desired minimal
partition. �

Proposition 4.4. Suppose that M is a matroid and that A ⊆ E(M). Sup-
pose that (X1, X2, x) is a minimal partition with respect to A. Then X2∪x
is a flat of M .

Proof. Suppose that there is some element z ∈ X1 ∩ cl(X2 ∪ x). Then
(X1 − z, X2 ∪ z, x) is a vertical 3-partition of M by Proposition 2.6. This
contradicts the fact that (X1, X2, x) is a minimal partition. �

Lemma 4.5. Suppose that M is a 3-connected matroid and that A ⊆ E(M).
Suppose that (X1, X2, x) is a minimal partition with respect to A. Suppose
also that (Y1, Y2, y) is a vertical 3-partition of M such that y ∈ A∩X1 and
x ∈ Y1. Then the following statements hold:

(i) Xi ∩ Yj 6= ∅ for all i, j ∈ {1, 2};
(ii) Each of X1 ∩ Y2, (X1 ∩ Y2)∪ y, X2 ∩ Y1, (X2 ∩ Y1)∪ x, and X2 ∩ Y2 is

3-separating in M ;
(iii) (X1 ∩ Y1) ∪ {x, y} is 4-separating in M ;
(iv) Neither X1 ∩ Y1 nor X1 ∩ Y2 is contained in cl(X2), X1 ∩ Y1 * cl(Y2),

and X1 ∩ Y2 * cl(Y1);
(v) r((X1 ∩ Y2) ∪ y) = 2; and,
(vi) If (X1∩Y1)∪{x, y} is 3-separating in M , then r((X1∩Y1)∪{x, y}) = 2.

Proof. We start by proving (i). Since y 6= x the definition of a minimal
partition means that X2 ∩ Y1 6= ∅ and X2 ∩ Y2 6= ∅. Moreover X2 ∪ x is
a flat of M by Proposition 4.4, and y ∈ X1, so y /∈ cl(X2 ∪ x). However
y ∈ cl(Y1) ∩ cl(Y2). It follows that neither Y1 nor Y2 can be contained in
X2 ∪ x. Thus both Y1 and Y2 meet X1.

Next we prove (ii). Consider X1 ∩ Y2. Since λ(X1) = 2 and λ(Y2) = 2
the submodularity of the connectivity function implies that λ(X1 ∩ Y2) +
λ(X1∪Y2) ≤ 4. If X1∩Y2 is not 3-separating then λ(X1∪Y2) ≤ 1. However
|X1 ∪ Y2| ≥ 2 and the complement of X1 ∪ Y2 certainly contains at least
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two elements, since it contains x, and X2 ∩ Y1 is non-empty. Thus M has a
2-separation, a contradiction. This shows that X1 ∩ Y2 is 3-separating.

Since X1 and Y2 ∪ y are both 3-separating the same argument shows that
(X1∩Y2)∪y is 3-separating. Since the complement of X2∪Y1 contains both
y and at least one element in X1 ∩ Y2, we can also show that X2 ∩ Y1 and
(X2∩Y1)∪x are both 3-separating. The same argument shows that X2∩Y2

is 3-separating.
Consider (iii). The submodularity of the connectivity function shows that

λ((X1 ∩ Y1) ∪ {x, y}) + λ(X1 ∪ Y1) ≤ 4.

Thus if (X1 ∩Y1)∪{x, y} is not 4-separating then λ(X1 ∪Y1) = 0. But this
cannot occur as X1∪Y1 is non-empty, and its complement contains X2∩Y2,
which is non-empty.

Next we move to (iv). Since X2 ∪ x is a flat of M it follows that cl(X2)
does not meet X1. Therefore cl(X2) cannot contain X1 ∩ Y1 or X1 ∩ Y2.

Suppose that X1∩Y1 is contained in cl(Y2). Then Y1−cl(Y2) is contained
in X2 ∪ x. However Proposition 2.6 says that

(Y1 − cl(Y2), cl(Y2)− y, y)

is a vertical 3-partition of M . Thus y is in the closure of Y1 − cl(Y2), which
means that y ∈ cl(X2∪x). But this is a contradiction as y ∈ X1, and X2∪x
is a flat of M . The same argument shows that X1 ∩ Y2 is not contained in
cl(Y1).

To prove (v) we suppose that r((X1∩Y2)∪y) ≥ 3. Consider the partition
(X1 ∩ Y2, X2 ∪ Y1, y) of E(M). It follows from (ii) that

λ((X1 ∩ Y2) ∪ y) = λ(X1 ∩ Y2) = 2,

so λ(X2 ∪Y1) = 2. Furthermore y ∈ cl(Y1), so y is in the closure of X2 ∪Y1.
Proposition 2.2 shows that y ∈ cl(X1 ∩ Y2), so r(X1 ∩ Y2) ≥ 3. Now it is
easy to see that

(X1 ∩ Y2, X2 ∪ Y1, y)
is a vertical 3-partition of M . However y ∈ A ∩ X1 and X1 ∩ Y2 does not
meet X2, so we have a contradiction to the fact that (X1, X2, x) is a minimal
partition.

We conclude by proving (vi). Suppose that λ((X1 ∩ Y1) ∪ {x, y}) = 2.
This implies that λ(X2 ∪ Y2) = 2. Since y ∈ cl(Y2) it follows easily that
λ((X1 ∩ Y1) ∪ x) = 2. Consider the partition

((X1 ∩ Y1) ∪ x, X2 ∪ Y2, y)

of E(M). Since y ∈ cl(Y2) it follows from Proposition 2.2 that y is in the
closure of (X1 ∩ Y1) ∪ x. Thus if r((X1 ∩ Y1) ∪ {x, y}) ≥ 3 it follows that
r((X1 ∩ Y1) ∪ x) ≥ 3. In this case

((X1 ∩ Y1) ∪ x, X2 ∪ Y2, y)

is vertical 3-partition of M that violates the fact that (X1, X2, x) is a min-
imal partition. This completes the proof of the lemma. �
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Proposition 4.6. Suppose that (X1, X2, x) is a minimal partition of the
3-connected matroid M with respect to the set A ⊆ E(M). Assume that
(Y1, Y2, y) is a vertical 3-partition of M such that y ∈ A ∩X1 and x ∈ Y1.
If |X1 ∩ Y2| ≥ 2 then

u((X1 ∩ Y1) ∪ {x, y}, X1 ∩ Y2) = u((X1 ∩ Y1) ∪ y, X1 ∩ Y2) = 1.

Proof. The hypotheses imply that |E(M)| ≥ 4, so every circuit or cocircuit
of M contains at least three elements. Let π = u((X1∩Y1)∪{x, y}, X1∩Y2).
We know from Lemma 4.5(v) that r(X1 ∩Y2) ≤ 2. Therefore π ≤ 2. On the
other hand, since |X1 ∩ Y2| ≥ 2, the fact that r((X1 ∩ Y2) ∪ y) ≤ 2 implies
that y ∈ cl(X1 ∩ Y2). This in turn implies that π ≥ 1.

Assume that π = 2. Then X1 ∩ Y2 ⊆ cl((X1 ∩ Y1) ∪ {x, y}). Since
x, y ∈ cl(Y1) this means that X1 ∩ Y2 ⊆ cl(Y1). But this contradicts (iv) of
Lemma 4.5. Exactly the same argument shows that u((X1 ∩ Y1) ∪ y, X1 ∩
Y2) = 1. �

Lemma 4.7. Suppose that (X1, X2, x) is a minimal partition of the 3-con-
nected matroid M with respect to the set A ⊆ E(M). Assume that (Y1, Y2, y)
is a vertical 3-partition of M such that y ∈ A∩X1 and x ∈ Y1. If |X1∩Y2| ≥ 2
then y ∈ cl((X1 ∩ Y1) ∪ x).

Proof. The hypotheses imply that every circuit of M contains at least three
elements. Since |X1∩Y2| ≥ 2 it follows from Lemma 4.5(v) that y ∈ cl(X1∩
Y2). We assume that y /∈ cl((X1 ∩ Y1) ∪ x). Since X1 ∩ Y1 is non-empty by
Lemma 4.5(i) it follows that |(X1 ∩ Y1) ∪ x| ≥ 2, so λ((X1 ∩ Y1) ∪ x) ≥ 2.
Furthermore λ((X1 ∩ Y1)∪ {x, y}) ≤ 3 by (iii) of Lemma 4.5. As y ∈ cl(Y2)
we deduce that

2 ≤ λ((X1 ∩ Y1) ∪ x) < λ((X1 ∩ Y1) ∪ {x, y}) ≤ 3.

Thus λ((X1 ∩ Y1)∪ x) = 2. Moreover it follows from (ii) in Lemma 4.5 that
λ((X1 ∩ Y2) ∪ y) = 2. Therefore

((X1 ∩ Y1) ∪ x, (X1 ∩ Y2) ∪ y, X2)

is an exact 3-partition.
As x ∈ cl(X2) it follows that u((X1∩Y1)∪x, X2) ≥ 1. Now Corollary 2.13

implies that u((X1∩Y2)∪ y, X2) ≥ 1. But (iv) and (v) of Lemma 4.5 imply
that X1 ∩ Y2 * cl(X2) and that r((X1 ∩ Y2) ∪ y) = 2. We deduce that
u((X1 ∩ Y2) ∪ y, X2) = 1. Again using Corollary 2.13 we see that

u((X1 ∩ Y1) ∪ x, (X1 ∩ Y2) ∪ y) = 1.

Proposition 4.6 tells us that

u((X1 ∩ Y1) ∪ {x, y}, X1 ∩ Y2) = 1.

Since y ∈ cl(X1∩Y2) we can easily deduce that y ∈ cl((X1∩Y1)∪x), contrary
to our initial assumption. �
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Lemma 4.8. Suppose that C∗ is a cocircuit of the 3-connected matroid M .
Suppose that (X1, X2, x) is a minimal partition of M with respect to C∗.
Assume that si(M/x0) is not 3-connected for any element x0 ∈ C∗∩X1. Let
(Y1, Y2, y) be a vertical 3-partition of M such that y ∈ C∗∩X1, and assume
that x ∈ Y1. Then |X1 ∩ Y2| = 1.

Proof. The hypotheses of the lemma imply that every circuit and cocircuit
of M contains at least three elements. Let us assume that the lemma fails,
so that |X1 ∩ Y2| ≥ 2. Now (v) of Lemma 4.5 implies that (X1 ∩ Y2) ∪ y
contains a triangle of M that contains y. Since C∗ meets this triangle in y,
there must be an element z ∈ X1 ∩ Y2 such that z ∈ C∗.

By assumption si(M/z) is not 3-connected so Proposition 2.5 implies that
there is vertical 3-partition (Z ′

1, Z ′
2, z). Let us assume that x ∈ Z ′

1.
Suppose that y ∈ Z ′

i, where {i, j} = {1, 2}. Since r((X1∩Y2)∪y) = 2 and
z ∈ cl(Z ′

i) it follows that (X1 ∩ Y2) ∪ y ⊆ cl(Z ′
i), as y 6= z and z ∈ X1 ∩ Y2.

Let Zi = Z ′
i ∪ (X1 ∩ Y2) ∪ y and let Zj = Z ′

j − Zi. Then Proposition 2.6
implies that (Z1, Z2, z) is a vertical 3-partition. Note that x ∈ Z1, whether
i is equal to 1 or 2.

Suppose that i = 2. Then (X1 ∩ Y2) ∪ y ⊆ Z2 ∪ z. This means that
(X1∩Z1)∪x ⊆ (X1∩Y1)∪{x, y}. Lemma 4.7 says that z ∈ cl((X1∩Z1)∪x).
Therefore z ∈ cl((X1 ∩ Y1) ∪ {x, y}). But since {y, z} spans (X1 ∩ Y2) ∪ y
this implies that (X1 ∩ Y1) ∪ {x, y} spans X1 ∩ Y2. As x, y ∈ cl(Y1) it now
follows that Y1 spans X1∩Y2, in contradiction to Lemma 4.5(iv). Therefore
i = 1, so (X1 ∩ Y2) ∪ y ⊆ Z1 ∪ z.

We conclude that X1∩Z2 ⊆ (X1∩Y1)∪{x, y}. Suppose that |X1∩Z2| ≥ 2.
It follows from (v) of Lemma 4.5 that r((X1 ∩ Z2) ∪ z) = 2. Therefore z is
in cl(X1 ∩ Z2), and hence in cl((X1 ∩ Y1) ∪ {x, y}). Exactly as before, we
conclude that Y1 spans X1 ∩ Y2, a contradiction. Therefore |X1 ∩ Z2| ≤ 1.

As r(Z2) ≥ 3 we deduce that |X2 ∩ Z2| ≥ 2. But λ(X2 ∩ Z2) ≤ 2 by (ii)
of Lemma 4.5, so it follows that λ(X2 ∩Z2) = 2, and hence λ(X1 ∪Z1) = 2.
Now λ(X1 ∪ x) + λ(Z1 ∪ z) = 4, so the submodularity of the connectivity
function implies that

λ((X1 ∩ Z1) ∪ {x, z}) + λ(X1 ∪ Z1) ≤ 4.

We now conclude that λ((X1 ∩ Z1) ∪ {x, z}) ≤ 2. It follows from (vi) of
Lemma 4.5 that r((X1 ∩ Z1) ∪ {x, z}) = 2.

We have already deduced that (X1 ∩ Y2) ∪ y ⊆ Z1 ∪ z, so X1 ∩ Y2 ⊆
(X1 ∩ Z1) ∪ z. But |X1 ∩ Y2| ≥ 2, and r((X1 ∩ Z1) ∪ {x, z}) = 2. Therefore
x ∈ cl(X1 ∩ Y2). We also know that y ∈ cl(X1 ∩ Y2). Proposition 4.6 asserts
that

u((X1 ∩ Y1) ∪ {x, y}, X1 ∩ Y2) = 1.

Since x, y ∈ cl(X1 ∩ Y2) it follows from Proposition 2.14 that r({x, y}) ≤
1, a contradiction as M is 3-connected. This completes the proof of the
lemma. �
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5. Proof of the main result

We restate Theorem 1.2 here.

Theorem 5.1. Suppose that M and N are 3-connected matroids such that
|E(N)| ≥ 4 and C∗ is a cocircuit of M with the property that M/x0 has an
N -minor for some x0 ∈ C∗. Then either:

(i) there is an element x ∈ C∗ such that si(M/x) is 3-connected and has
an N -minor;

(ii) there is a four-element fan (x1, x2, x3, x4) of M such that x1, x3 ∈ C∗,
and si(M/x2) is 3-connected with an N -minor;

(iii) there is a segment-cosegment pair (L, L∗) such that L ⊆ C∗, and
cl(L)−L contains a single element e. In this case e /∈ C∗ and si(M/e)
is 3-connected with an N -minor. Moreover M/ cl(L) is 3-connected
with an N -minor, and if xi ∈ L then M/xi is 3-connected up to a
unique spore (cl(L)− xi, yi); or,

(iv) there is a segment-cosegment pair (L, L∗) such that L is a flat and
|L− C∗| ≤ 1. In this case M/L is 3-connected with an N -minor, and
if xi ∈ L then M/xi is 3-connected up to a unique spore (L− xi, yi).

Proof. Assume that M is a counterexample to the theorem. Let x0 be an
element of C∗ such that N is a minor of M/x0. By hypothesis si(M/x0)
is not 3-connected, so Proposition 2.5 implies there is a vertical 3-partition
(Z1, Z2, x0). It follows easily that |E(M)| ≥ 7. By Proposition 2.9 we will
assume, relabeling as necessary, that |E(N)∩Z1| ≤ 1. Let Z = Z1− cl(Z2).
Lemma 2.10 implies that M/e has an N -minor for every element e ∈ Z,
and Lemma 4.3 implies that there is a minimal partition (X1, X2, x) with
respect to C∗ such that x ∈ C∗ ∩ (Z ∪ x0), and X1 ⊆ Z.

Proposition 4.1 implies that C∗ has a non-empty intersection with X1 −
cl(X2). If s ∈ C∗ ∩ (X1 − cl(X2)) then si(M/s) is not 3-connected by
hypothesis. Therefore there is a vertical 3-partition (S1, S2, s).

5.1.1. Suppose that s ∈ C∗ is contained in X1− cl(X2) and that (S1, S2, s)
is a vertical 3-partition such that x ∈ S1. Then |X1 ∩ S1| ≥ 2 and (X1 ∩
S1) ∪ {s, x} is a segment of M .

Proof. Lemma 4.8 tells us that |X1 ∩ S2| = 1. By Lemma 4.5(i) we know
that |X1 ∩ S1| ≥ 1. Assume that |X1 ∩ S1| = 1. Then X1 contains exactly
three elements: the unique element in X1∩S2, the unique element in X1∩S1,
and s. By the definition of a vertical 3-partition it follows that r(X1) = 3
and that X1 is a triad of M . As x ∈ cl(X1) it follows that there is a circuit
C ⊆ X1∪x that contains x. It cannot be the case that the single element in
X1 ∩ S2 is in C, for that would imply that X1 ∩ S2 ⊆ cl(S1), contradicting
Lemma 4.5(iv). As C does not meet the triad X1 in a single element it
follows that (X1 ∩ S1) ∪ {x, s} is a triangle.

If we let x2 be the unique element in X1 ∩ S1, let x4 be the unique
element in X1 ∩ S2, and let x1 = x and x3 = s, then (x1, x2, x3, x4) is a
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four-element fan of M . If si(M/x2) is 3-connected then statement (ii) of
Theorem 5.1 holds, which is a contradiction as M is a counterexample to
the theorem. Therefore we will assume that si(M/x2) is not 3-connected.

Since si(M/x3) is not 3-connected Theorem 2.15 asserts that co(M\x3) is
3-connected. Assume that every triad of M that contains x3 also contains
x2. Then co(M\x3) ∼= M\x3/x2. However x3 is contained in a parallel
pair in M/x2, so si(M/x2) is obtained from M\x3/x2 by possibly deleting
parallel elements. As M\x3/x2 is 3-connected it follows that si(M/x2) is
3-connected, contrary to hypothesis.

Therefore there is a triad T ∗ of M that contains x3 but not x2. Now
T ∗ cannot meet the triangle {x1, x2, x3} in exactly one element, and
therefore x1 ∈ T ∗. Let y2 be the unique element in T ∗ − {x1, x3}.
Since every triad that contains x3 must contain either x1 or x2, and
since both {x1, x3} and {x2, x3} are contained in triads of M it follows
that co(M\x3) ∼= M\x3/x1/x2. Note that x3 is a loop of M/x1/x2, so
M\x3/x1/x2 = M/x3/x1/x2.

As si(M/x3) is not 3-connected there is a vertical 3-partition (Z1, Z2, x3)
of M . By relabeling as necessary we may assume that x1 ∈ Z2. Hence
x2 ∈ cl(Z2 ∪ x3), so by Proposition 2.6 we may assume that x2 ∈ Z2. Now
(Z1, Z2) is an exact 2-separation of M/x3, but M/x3/x1/x2 is 3-connected.
By Proposition 2.1 we see that Z2 − {x1, x2} must contain at most one
element. If Z2 = {x1, x2} then r(Z2) ≤ 2, a contradiction. Therefore
Z2 − {x1, x2} contains exactly one element. Let this element be y3. It is
easy to see that Z2 must be a triad of M .

We relabel x4 with y1. Let L = {x1, x2, x3} and let L∗ = {y1, y2, y3}.
Now L is a segment of M . Proposition 4.4 implies X2 ∪ x1 is a hyperplane,
and as {x1, x2, x3} is a triangle it is easy to see that u(X2∪x1, {x2, x3}) = 1.
If there were some element e in cl(L)−L then Proposition 2.14 would imply
that r({e, x1}) ≤ 1, a contradiction. Therefore L is a flat of M . Moreover
(L−xi)∪ yi is a cocircuit of M for all i ∈ {1, 2, 3}, so (L, L∗) is a segment-
cosegment pair of M .

By applying Proposition 3.3 and Lemma 3.5 we see that M/L is 3-con-
nected, and that M/xi is 3-connected up to a unique spore (L−xi, yi) for all
i ∈ {1, 2, 3}. We know that M/x3 has an N -minor. However {x1, x2} is a
parallel pair in M/x3, so M/x3\x1 has an N -minor. Furthermore {x2, y3} is
a series pair of M/x3\x1, so M/x3\x1/x2, and hence M/L, has an N -minor.
Thus statement (iv) of Theorem 5.1 holds, a contradiction. We conclude that
|X1 ∩ S1| ≥ 2.

Since λ(X1 ∪ x) = λ(S1 ∪ s) = 2 it follows that

λ((X1 ∩ S1) ∪ {s, x}) + λ(X1 ∪ S1) ≤ 4.

Suppose that λ((X1∩S1)∪{s, x}) ≥ 3. Then λ(X1∪S1) ≤ 1, so λ(X2∩S2) ≤
1. However, as |X1 ∩ S2| = 1 it follows that |X2 ∩ S2| ≥ 2, so M contains a
2-separation, a contradiction. Thus λ((X1 ∩S1)∪ {s, x}) ≤ 2 and it follows
from Lemma 4.5(vi) that (X1 ∩ S1) ∪ {s, x} is a segment. �
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5.1.2. The rank of X1 ∪ x is three. Moreover, X1 is a cocircuit of M .

Proof. Let s ∈ C∗ be an element in X1−cl(X2) and suppose that (S1, S2, s)
is a vertical 3-partition such that x ∈ S1. Then r((X1 ∩ S1) ∪ {s, x}) = 2
by 5.1.1, and as |X1 ∩ S2| = 1, Lemma 4.5(iv) implies that r(X1 ∪ x) = 3.

Proposition 4.4 asserts that X2∪x is a flat of M , so X1 is a cocircuit. �

5.1.3. Suppose that y and z are elements in C∗ ∩ X1, and (Y1, Y2, y) and
(Z1, Z2, z) are vertical 3-partitions such that x ∈ Y1 ∩ Z1. Then

|X1 ∩ Y2| = |X1 ∩ Z2| = 1 and X1 ∩ Y2 = X1 ∩ Z2.

Moreover
(X1 ∩ Y1) ∪ {x, y} = (X1 ∩ Z1) ∪ {x, z}.

Proof. Let x′ be the unique element in X1∩Y2. From 5.1.1 we see that (X1∩
Y1)∪{x, y} is a segment. The only element of X1 not in (X1∩Y1)∪{x, y} is
x′. It cannot be the case that x′ ∈ cl((X1 ∩ Y1)∪ {x, y}) by Lemma 4.5(vi).
The same arguments shows that (X1∩Z1)∪{x, z} is a segment, and the only
element of X1 not in this segment is x′. Now the result follows easily. �

5.1.4. Let y ∈ C∗ be an element in X1 and suppose that (Y1, Y2, y) is a
vertical 3-partition such that x ∈ Y1. Then |X2 ∩ Y1| = 1.

Proof. We know by 5.1.1 that (X1 ∩ Y1) ∪ {x, y} is a segment. Let L′ =
(X1 ∩ Y1) ∪ {x, y} and let x′ be the unique element in X1 ∩ Y2. Since
the complement of C∗ is a flat of M which does not contain the segment
L′ it follows that at most one element of L′ is not contained in C∗. As
|X1 ∩ Y1| ≥ 2 we can find an element z ∈ (X1 ∩ Y1) ∩ C∗. There must be
a vertical 3-partition (Z1, Z2, z) such that x ∈ Z1. From 5.1.3 we see that
the unique element in X1 ∩ Z2 is x′, and that (X1 ∩ Z1) ∪ {x, z} = L′.

Let Y ′
i and Z ′

i denote X2 ∩ Yi and X2 ∩ Zi respectively for i = 1, 2. As
(X1, X2, x) is a minimal partition it follows that Y ′

i and Z ′
i are non-empty

for all i ∈ {1, 2}. Henceforth we will assume that |Y ′
1 | > 1 in order to obtain

a contradiction.

5.1.5. x ∈ cl(Y ′
1).

Proof. We know that λ(Y ′
1 ∪ x) ≤ 2 by Lemma 4.5(ii). Since |Y ′

1 | ≥ 2 it
follows that λ(Y ′

1 ∪ x) = 2 and hence λ(X1 ∪ Y2) = 2. Since x ∈ cl(X1 ∪ Y2)
it follows that λ(Y ′

1) = 2, so Lemma 2.2 implies that x ∈ cl(Y ′
1). �

5.1.6. Neither Y ′
1 ∩ Z ′

1 nor Y ′
2 ∩ Z ′

2 is empty.

Proof. We know from 5.1.5 that x ∈ cl(Y ′
1). Since z ∈ cl(Z2) but (X1∩Z1) *

cl(Z2), we deduce that x /∈ cl(Z2) as L′ is a segment containing both x and
z. Thus x /∈ cl(Z ′

2 ∪ x′). Hence Y ′
1 − Z ′

2 6= ∅ so Y ′
1 ∩ Z ′

1 6= ∅.
Note that z is in the closure of Z2 = Z ′

2 ∪ x′, but z /∈ cl(Z ′
2) as X1 is a

cocircuit by 5.1.2. This observation means that x′ ∈ cl(Z ′
2 ∪ z). However

z ∈ Y1, and x′ /∈ cl(Y1) by Lemma 4.5(iv). Thus x′ /∈ cl(Y ′
1 ∪ z). It follows

that Z ′
2 − Y ′

1 6= ∅, so Z ′
2 ∩ Y ′

2 6= ∅. �
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5.1.7. (L′ ∪ (Y ′
1 ∩ Z ′

1), Y2 ∪ Z2) is a 3-separation of M .

Proof. Note that λ(Y2) = λ(Z2) = 2, so λ(Y2 ∩ Z2) + λ(Y2 ∪ Z2) ≤ 4.
From 5.1.6 we see that Y ′

2 ∩ Z ′
2 6= ∅. Moreover x′ ∈ (Y2 ∩ Z2) − (Y ′

2 ∩ Z ′
2),

which implies that |Y2 ∩ Z2| ≥ 2. Thus λ(Y2 ∩ Z2) ≥ 2, so λ(Y2 ∪ Z2) ≤ 2.
As both L′ ∪ (Y ′

1 ∩Z ′
1) and Y2 ∪Z2 have cardinality at least three the claim

follows. �

Note that y, z ∈ cl(Y2 ∪Z2). As y and z are contained in the segment L′

it follows that L′ ⊆ cl(Y2 ∪ Z2). If |Y ′
1 ∩ Z ′

1| ≥ 2 then it must be the case
that L′ ⊆ cl(Y ′

1 ∩Z ′
1), for otherwise (Y ′

1 ∩Z ′
1, (Y2∪Z2)∪L′) is a 2-separation

of M . But L′ ⊆ cl(Y ′
1 ∩ Z ′

1) implies that X1 ∩ Y1 ⊆ cl(X2), a contradiction.
Therefore |Y ′

1 ∩ Z ′
1| ≤ 1. We know from 5.1.6 that Y ′

1 ∩ Z ′
1 is not empty.

Let e be the unique element in Y ′
1 ∩Z ′

1. Suppose that e ∈ cl(L′). As X2 ∪ x
is a hyperplane and L′ is a segment we see that u(X2 ∪ x, L′ − x) = 1. As
e, x ∈ cl(L′ − x) it follows from Proposition 2.14 that r({e, x}) ≤ 1. We
deduce from this contradiction that e /∈ cl(L′).

Hence r(L′ ∪ e) = 3, so r(Y2 ∪ Z2) = r(M) − 1 by 5.1.7. Thus the
complement of cl(Y2 ∪ Z2) is a cocircuit. However L′ ⊆ cl(Y2 ∪ Z2), so e is
a coloop of M , a contradiction.

Our assumption that |X2 ∩ Y1| ≥ 2 has lead to an impossibility. Since
X2 ∩ Y1 is non-empty by Lemma 4.5(i) we conclude that 5.1.4 is true. �

Now we are in a position to complete the proof of Theorem 5.1. Let
x1 = x, and let x2 be some element in C∗∩X1. There is a vertical 3-partition
(Y 2

1 , Y 2
2 , x2) such that x1 ∈ Y 2

1 . Lemma 4.8 tells us that |X1∩Y 2
2 | = 1. Let

y1 be the unique element in X1 ∩ Y 2
2 .

We know that |X1∩Y 2
1 | ≥ 2 and (X1∩Y 2

1 )∪{x1, x2} is a segment by 5.1.1.
It follows from Proposition 2.14, and the fact that (X1∩Y 2

1 )∪x2 is a segment
while X2 ∪ x1 is a hyperplane, that (X1 ∩ Y 2

1 ) ∪ {x1, x2} is a flat. The
complement of C∗ can contain at most one element of (X1 ∩Y 2

1 )∪{x1, x2}.
Let L = C∗ ∩ ((X1 ∩ Y 2

1 ) ∪ {x1, x2}). Then cl(L) = (X1 ∩ Y 2
1 ) ∪ {x1, x2},

and cl(L)− L contains at most one element.
Suppose that L = {x1, . . . , xt}. We know that t ≥ 3. Let i be a member of

{2, . . . , t}. As xi ∈ C∗ the fact that M is a counterexample to the theorem
means that si(M/xi) is not 3-connected, so there is a vertical 3-partition
(Y i

1 , Y i
2 , xi) such that x1 ∈ Y i

1 . Then

(X1 ∩ Y i
1 ) ∪ {x1, xi} = (X1 ∩ Y 2

1 ) ∪ {x1, x2}

by 5.1.3, and 5.1.4 implies that there is a unique element in X2 ∩ Y i
1 . Let yi

be this element.
Define L∗ to be {y1, . . . , yt}. Note that L ∩ L∗ = ∅. We already know

that (cl(L) − x1) ∪ y1 = X1 is a cocircuit. Suppose that i ∈ {2, . . . , t}.
Then (cl(L)− xi)∪ yi is Y i

1 . As Y i
1 contains only one element that is not in

the segment cl(L) it follows that r(Y i
1 ) = 3. Thus r(Y i

2 ∪ xi) = r(M) − 1.
Furthermore Y i

2 ∪ xi is a flat, for otherwise the complement of cl(Y i
2 ∪ xi) is
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a cocircuit of rank at most two, which cannot occur since M is 3-connected.
Hence (cl(L)− xi) ∪ yi is a cocircuit.

We have shown that (L, L∗) is a segment-cosegment pair. Proposition 3.3
says that M/ cl(L) is 3-connected. It is easy to see that the hypotheses of
Lemma 3.5 are satisfied, so M/xi is 3-connected up to the unique spore
(cl(L)− xi, yi), for all i ∈ {1, . . . , t}. We know that M/x2 has an N -minor,
but as cl(L) − x2 is a parallel class of M/x2 it follows that M/x2\(cl(L) −
{x1, x2}) has an N -minor. Since {x1, y2} is a series pair of M/x2\(cl(L)−
{x1, x2}) it follows that M/x2\(cl(L) − {x1, x2})/x1, and hence M/ cl(L),
has an N -minor.

Suppose that | cl(L) − C∗| = 0. Then L = cl(L), and statement (iv) of
Theorem 5.1 holds. Therefore we must assume that there is a single element
e in cl(L)−L. Lemma 2.10 tells us that M/e has an N -minor. If si(M/e) is
3-connected, then statement (iii) holds. Therefore we must assume si(M/e)
is not 3-connected.

Let xt+1 = e. There must be a vertical 3-partition (Y t+1
1 , Y t+1

2 , xt+1). We
assume that x1 ∈ Y t+1

1 . Since cl(Y t+1
1 ) contains x1 and xt+1 it follows that

cl(L) ⊆ cl(Y t+1
1 ). By Proposition 2.6 we may assume that Y t+1

1 contains
cl(L)− xt+1 = L.

As X2∪x1 is a flat it follows that xt+1 /∈ cl(X2). However xt+1 ∈ cl(Y t+1
2 ),

so X1∩Y t+1
2 6= ∅. We know that X1 = (L∪{xt+1, y1})−x1, and as L ⊆ Y t+1

1

it follows that X1 ∩ Y t+1
2 = {y1}.

Since xt+1 ∈ cl(Y t+1
2 ), there is a circuit C1 ⊆ Y t+1

2 ∪ xt+1 such that
xt+1 ∈ C1. But Y 2

1 = (L∪ {xt+1, y2})− x2 is a cocircuit of M and C1 must
meet this cocircuit in more than one element. The only element of Y 2

1 −xt+1

that can be in C1 is y2. Thus y2 ∈ Y t+1
2 .

Since (X1, X2, x) is a minimal partition it follows that X2 ∩Y t+1
1 is non-

empty. Assume that |X2 ∩ Y t+1
1 | ≥ 2. As λ(X1) + λ(Y t+1

2 ∪ xt+1) = 4, it
follows that

λ((X1 ∩ Y t+1
2 ) ∪ xt+1) + λ(X1 ∪ Y t+1

2 ) ≤ 4.

Furthermore λ(X1 ∪ x1) + λ(Y t+1
2 ∪ xt+1) = 4, so

λ((X1 ∩ Y t+1
2 ) ∪ xt+1) + λ(X1 ∪ Y t+1

2 ∪ x1) ≤ 4.

As (X1∩Y t+1
2 )∪xt+1 = {xt+1, y1} we deduce that λ((X1∩Y t+1

2 )∪xt+1) = 2.
Thus

(1) λ(X1 ∪ Y t+1
2 ), λ(X1 ∪ Y t+1

2 ∪ x1) ≤ 2.

Both of the sets in Equation (1) contain at least two elements, and by
assumption |X2 ∩ Y t+1

1 | ≥ 2. Therefore X2 ∩ Y t+1
1 and (X2 ∩ Y t+1

1 ) ∪ x1

are exactly 3-separating. Since x1 ∈ cl(X1) we see from Lemma 2.2 that
x1 ∈ cl(X2 ∩ Y t+1

1 ). Thus there is a circuit C2 ⊆ (X2 ∩ Y t+1
1 )∪ x1 such that

x1 ⊆ C2. We have already noted that Y 2
1 is a cocircuit, and as x1 ∈ Y 2

1 it
follows that |C2 ∩ Y 2

1 | ≥ 2. As C2 − x1 ⊆ X2 the only element other than
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x1 that can be in C2 ∩ Y 2
1 is y2. Hence y2 ∈ C2 ⊆ Y t+1

1 , a contradiction as
we have already deduced that y2 ∈ Y t+1

2 .
We are forced to conclude that X2 ∩Y t+1

1 contains a unique element. Let
this element be yt+1. Therefore Y t+1

1 = L ∪ yt+1. Thus r(Y t+1
1 ) = 3, so

r(Y t+1
2 ) = r(M) − 1. If Y t+1

2 ∪ xt+1 is not a hyperplane, then the comple-
ment of cl(Y t+1

2 ∪ xt+1) is a cocircuit of rank at most two, a contradiction.
Therefore (cl(L)− xt+1) ∪ yt+1 = Y t+1

1 is a cocircuit.
Let L0 = {x1, . . . , xt+1} and let L∗

0 = {y1, . . . , yt+1}. Note that
L0 = cl(L), so L0 is a flat. We have shown that (L0, L∗

0) is a segment-
cosegment pair. Moreover, M/xt+1 is 3-connected up to a unique spore
(L0 − xt+1, yt+1), by Lemma 3.5. By relabeling L0 and L∗

0 as L and L∗

respectively we see that statement (iv) of Theorem 5.1 holds. Hence M is
not a counterexample, and this contradiction completes the proof of Theo-
rem 5.1. �
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