CONTRACTING AN ELEMENT FROM A COCIRCUIT

RHIANNON HALL AND DILLON MAYHEW

Abstract

We consider the situation that M and N are 3 -connected matroids such that $|E(N)| \geq 4$ and C^{*} is a cocircuit of M with the property that M / x_{0} has an N-minor for some $x_{0} \in C^{*}$. We show that either there is an element $x \in C^{*}$ such that $\operatorname{si}(M / x)$ or $\operatorname{co}(\operatorname{si}(M / x))$ is 3 -connected with an N-minor, or there is a four-element fan of M that contains two elements of C^{*} and an element x such that $\operatorname{si}(M / x)$ is 3 -connected with an N -minor.

1. Introduction

There are a number of tools in matroid theory that tell us when we can remove an element or elements from a matroid, while maintaining both the presence of a minor and a certain type of connectivity. Some recent results are of this type, but have the additional restriction that the element(s) must have a certain relation to a given substructure in the matroid. For example, Oxley, Semple, and Whittle [9] fix a basis in a matroid and consider either contracting elements that are in the basis, or deleting elements that are not in the basis. Hall [3] has investigated when it is possible to contract an element from a given hyperplane in a 3 -connected matroid and remain 3 -connected (up to parallel pairs).

We make a contribution to this collection of tools by investigating the circumstances under which we can contract an element from a cocircuit while maintaining both the presence of a minor and 3 -connectivity (up to parallel pairs), and the structures which prevent us from doing so. Our result has been employed by Geelen, Gerards, and Whittle [2] in their characterization of when three elements in a matroid lie in a common circuit.

Theorem 1.1. Suppose that M and N are 3 -connected matroids such that $|E(N)| \geq 4$ and C^{*} is a cocircuit of M with the property that M / x_{0} has an N-minor for some $x_{0} \in C^{*}$. Then either:
(i) there is an element $x \in C^{*}$ such that $\operatorname{si}(M / x)$ is 3 -connected and has an N -minor;
(ii) there is an element $x \in C^{*}$ such that $\operatorname{co}(\operatorname{si}(M / x))$ is 3 -connected and has an N-minor; or,

[^0](iii) there is a sequence of elements $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ from $E(M)$ such that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a circuit, $\left\{x_{2}, x_{3}, x_{4}\right\}$ is a cocircuit, $x_{1}, x_{3} \in C^{*}$, and $\operatorname{si}\left(M / x_{2}\right)$ is 3-connected with an N-minor.

The next example shows that statement (ii) of Theorem 1.1 is necessary.

Figure 1. The graphic matroid $M\left(K_{5} \backslash e\right)$.
Consider the rank-4 matroid M whose geometric representation is shown in Figure 1. Note that $M \cong M\left(K_{5} \backslash e\right)$. The set $C=\{a, b, c, d\}$ is a circuit of M, and hence a cocircuit of M^{*}. Moreover M^{*} / x has a minor isomorphic to $M\left(K_{4}\right)$ for any element $x \in C$. However $\operatorname{co}(M \backslash x)$ is not 3-connected, as it contains a parallel pair, so $\operatorname{si}\left(M^{*} / x\right)$ is not 3 -connected. On the other hand $\operatorname{co}\left(\operatorname{si}\left(M^{*} / x\right)\right)$ is 3-connected, and has a minor isomorphic to $M\left(K_{4}\right)$.

More generally we suppose that r is an integer greater than two. Consider a basis $A=\left\{a_{1}, \ldots, a_{r}\right\}$ in the projective space $\operatorname{PG}(r-1, \mathbb{R})$. Let l be a line of $\mathrm{PG}(r-1, \mathbb{R})$ that is freely placed relative to A, and for all $i \in\{1, \ldots, r\}$ let b_{i} be the point that is in both l and the hyperplane of $\operatorname{PG}(r-1, \mathbb{R})$ spanned by $A-a_{i}$. Let $B=\left\{b_{1}, \ldots, b_{r}\right\}$. We will use Θ_{r} to denote the restriction of $\mathrm{PG}(r-1, \mathbb{R})$ to $A \cup B$.

Suppose that Θ_{r}^{\prime} is an isomorphic copy of Θ_{r} with $\left\{a_{1}^{\prime}, \ldots, a_{r}^{\prime}\right\} \cup B$ as its ground set. Assume also that the isomorphism from Θ_{r} to Θ_{r}^{\prime} acts as the identity on B and takes a_{i} to a_{i}^{\prime} for all $i \in\{1, \ldots, r\}$. Let M be the generalized parallel connection of Θ_{r} and Θ_{r}^{\prime}. That is, M is a matroid on the ground set $A \cup A^{\prime} \cup B$ and the flats of M are exactly the sets F such that $F \cap(A \cup B)$ is a flat of Θ_{r} and $F \cap\left(A^{\prime} \cup B\right)$ is a flat of Θ_{r}^{\prime}. Note that if $r=3$ then M is isomorphic to $M\left(K_{5} \backslash e\right)$, the matroid illustrated in Figure 1.

It is easy to see that Θ_{r} is self-dual and that $C=\left(A-a_{1}\right) \cup\left(A^{\prime}-a_{1}^{\prime}\right)$ is a circuit of M, and hence a cocircuit of M^{*}. Moreover M^{*} / x has an isomorphic copy of Θ_{r} as a minor for every element $x \in C$. We note that every three-element subset of A is a circuit of M^{*}. Thus $A-x$ is a parallel class of M^{*} / x for every $x \in C \cap A$. However the simplification of M^{*} / x contains a unique series pair, and is therefore not 3-connected. On the other hand $\operatorname{co}\left(\operatorname{si}\left(M^{*} / x\right)\right)$ is 3 -connected, and has a minor isomorphic to Θ_{r}.

The structure described in the last example has been discovered before. The matroid Θ_{r} is a fundamental object in the generalized $\Delta-Y$ operation of Oxley, Semple, and Vertigan [7]. Furthermore this construction is an example of a 'crocodile', as described by Hall, Oxley, and Semple [4].

To see that statement (iii) of Theorem 1.1 is necessary consider the graph G shown in Figure 2. Let C^{*} be the cocircuit of $M=M(G)$ comprising the edges incident with the vertex a. It is easy to see that if x is any edge between a and a vertex in $\{b, c, d, e, f\}$ then M / x has a minor isomorphic to $M\left(K_{6}\right)$, and that these are the only edges in C^{*} with this property. But in this case neither $\operatorname{si}(M / x)$ nor $\operatorname{co}(\operatorname{si}(M / x))$ is 3 -connected. On the other hand, if we let x_{1} be the edge $a d, x_{2}$ be $c d, x_{3}$ be $a c$, and x_{4} be $b c$, then $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a sequence of the type described in statement (iii) of Theorem 1.1.

Figure 2. The graph G.
Our main result shows that there are essentially only two structures that prevent us from finding an element $x \in C^{*}$ such that $\operatorname{si}(M / x)$ is 3 -connected with an N-minor. These structures are named 'segment-cosegment pairs' and 'four-element fans'. The dual of the matroid in Figure 1 contains a segment-cosegment pair, and the graph in Figure 2 contains a four-element fan. Before describing our result in detail we fix some terminology. Suppose that M is a matroid. Recall that a triangle of M is a three-element circuit, and a triad is a three-element cocircuit. A four-element fan of M is a sequence $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of distinct elements from $E(M)$ such that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triangle and $\left\{x_{2}, x_{3}, x_{4}\right\}$ is a triad. A segment of M is a set L such that $|L| \geq 3$ and every three-element subset of M is a triangle, and a cosegment of M is a segment of M^{*}. We say that $\left(L, L^{*}\right)$ is a segmentcosegment pair if $L=\left\{x_{1}, \ldots, x_{t}\right\}$ is a segment of M, and $L^{*}=\left\{y_{1}, \ldots, y_{t}\right\}$ is a set such that $L \cap L^{*}=\emptyset$ and for every $x_{i} \in L$ the set $\left(\operatorname{cl}(L)-x_{i}\right) \cup y_{i}$ is a cocircuit. Segment-cosegment pairs will be considered in detail in Section 3. A spore is a pair (P, s) such that P is a rank-one flat, and $P \cup s$ is a cocircuit. A matroid M is 3 -connected up to a unique spore if M contains a single spore (P, s), and whenever (X, Y) is a k-separation of M for some $k<3$ then either $X \subseteq P \cup s$ or $Y \subseteq P \cup s$. Theorem 1.1 follows from the next result. It gives a more detailed analysis of the structures we encounter.

Theorem 1.2. Suppose that M and N are 3-connected matroids such that $|E(N)| \geq 4$ and C^{*} is a cocircuit of M with the property that M / x_{0} has an N-minor for some $x_{0} \in C^{*}$. Then either:
(i) there is an element $x \in C^{*}$ such that $\mathrm{si}(M / x)$ is 3 -connected and has an N-minor;
(ii) there is a four-element fan $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of M such that $x_{1}, x_{3} \in C^{*}$, and $\operatorname{si}\left(M / x_{2}\right)$ is 3-connected with an N-minor;
(iii) there is a segment-cosegment pair $\left(L, L^{*}\right)$ such that $L \subseteq C^{*}$, and $\operatorname{cl}(L)-L$ contains a single element e. In this case e $\notin C^{*}$ and $\operatorname{si}(M / e)$ is 3-connected with an N-minor. Moreover $M / \operatorname{cl}(L)$ is 3-connected with an N-minor, and if $x_{i} \in L$ then M / x_{i} is 3-connected up to a unique spore $\left(\operatorname{cl}(L)-x_{i}, y_{i}\right)$; or,
(iv) there is a segment-cosegment pair $\left(L, L^{*}\right)$ such that L is a flat and $\left|L-C^{*}\right| \leq 1$. In this case M / L is 3 -connected with an N-minor, and if $x_{i} \in L$ then M / x_{i} is 3 -connected up to a unique spore $\left(L-x_{i}, y_{i}\right)$.

We note that if $\left(L, L^{*}\right)$ is a segment-cosegment pair of the matroid M, and $M / \operatorname{cl}(L)$ has an N-minor, then $|E(M)-\operatorname{cl}(L)| \geq 4$. Under these hypotheses Proposition 3.6 tells us that $M / \operatorname{cl}(L)$ is isomorphic to $\operatorname{co}\left(\operatorname{si}\left(M / x_{i}\right)\right)$ for any element $x_{i} \in L$. Therefore Theorem 1.1 does indeed follow from Theorem 1.2.

By dualizing we immediately obtain the following corollary of Theorem 1.1.

Theorem 1.3. Suppose that M and N are 3-connected matroids such that $|E(N)| \geq 4$ and C is a circuit of M with the property that $M \backslash x_{0}$ has an N-minor for some $x_{0} \in C$. Then either:
(i) there is an element $x \in C$ such that $\operatorname{co}(M \backslash x)$ is 3-connected and has an N-minor;
(ii) there is an element $x \in C$ such that $\operatorname{si}(\operatorname{co}(M \backslash x))$ is 3-connected and has an N-minor; or,
(iii) there is a four-element fan $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in M such that $x_{2}, x_{4} \in C$, and $\operatorname{co}\left(M \backslash x_{3}\right)$ is 3 -connected with an N-minor.

We note that Lemos [5] has considered the situation that a 3-connected matroid M contains a circuit C with the property that $M \backslash x$ is not 3-connected for any element $x \in C$. He shows that in this case C meets at least two triads of M.

In Section 2 we introduce essential notions of matroid connectivity. Section 3 contains a detailed discussion of one of the structures we uncover: segment-cosegment pairs. In Section 4 we collect some preliminary lemmas, and in Section 5 we complete the proof of Theorem 1.2. Notation and terminology generally follow that of Oxley [6], except that the simple (respectively cosimple) matroid associated with the matroid M is denoted $\operatorname{si}(M)$ (respectively $\operatorname{co}(M)$). We consistently write z instead of $\{z\}$ for the set containing the single element z.

2. Essentials

This section collects some elementary results on matroid connectivity. Let M be a matroid on the ground set E. The connectivity function of M,
denoted by λ_{M} (or λ when there is no ambiguity), takes subsets of E to $\mathbb{Z}^{+} \cup\{0\}$. It is defined so that

$$
\lambda_{M}(X)=\mathrm{r}_{M}(X)+\mathrm{r}_{M}(E-X)-\mathrm{r}(M)
$$

for any subset $X \subseteq E$. Note that $\lambda(X)=\lambda(E-X)$ and $\lambda_{M^{*}}(X)=\lambda_{M}(X)$ for any subset $X \subseteq E$. It is well known, and easy to verify, that the connectivity function of M is submodular. That is, for all $X, Y \subseteq E$, the inequality

$$
\lambda(X \cap Y)+\lambda(X \cup Y) \leq \lambda(X)+\lambda(Y)
$$

is satisfied.
We say that a subset $X \subseteq E$ is k-separating or a k-separator of M if $\lambda(X)<k$, and we say that a partition $(X, E-X)$ is a k-separation of M if X is k-separating and $|X|,|E-X| \geq k$. A k-separator X or a k-separation ($X, E-X$) is exact if $\lambda(X)=k-1$. A matroid M is n-connected if M has no k-separation for any $k<n$. We define a k-partition of M to be a partition $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of E such that X_{i} is k-separating for all $1 \leq i \leq n$. We say that the k-partition $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is exact if each k-separator X_{i} is exact.

The next result is easy.
Proposition 2.1. Let N be a minor of the matroid M and let X be a subset of $E(M)$. Then $\lambda_{N}(E(N) \cap X) \leq \lambda_{M}(X)$.
Proposition 2.2. Suppose that M is a matroid and that (X, Y, z) is a partition of $E(M)$. If $\lambda(X)=\lambda(Y)$ then z is in $\operatorname{cl}(X) \cap \operatorname{cl}(Y)$ or in $\operatorname{cl}^{*}(X) \cap$ $\mathrm{cl}^{*}(Y)$, but not both.

Proof. Since

$$
\lambda(X)=\mathrm{r}(X)+\mathrm{r}(Y \cup z)-\mathrm{r}(M)=\mathrm{r}(X \cup z)+\mathrm{r}(Y)-\mathrm{r}(M)=\lambda(Y)
$$

it follows that $\mathrm{r}(Y \cup z)-\mathrm{r}(Y)=\mathrm{r}(X \cup z)-\mathrm{r}(X)$. Therefore, $z \in \operatorname{cl}(X)$ if and only if $z \in \operatorname{cl}(Y)$. In the case that $z \notin \operatorname{cl}(X)$ and $z \notin \operatorname{cl}(Y)$ then

$$
\begin{aligned}
\mathrm{r}^{*}(Y \cup z)-\mathrm{r}^{*}(Y) & =(|Y \cup z|+\mathrm{r}(X)-\mathrm{r}(M)) \\
& -(|Y|+\mathrm{r}(X \cup z)-\mathrm{r}(M))=1+\mathrm{r}(X)-\mathrm{r}(X \cup z)=0 .
\end{aligned}
$$

Thus $z \in \operatorname{cl}^{*}(Y)$. The same argument shows that $z \in \operatorname{cl}^{*}(X)$.
Finally we note that $z \in \operatorname{cl}^{*}(X)$ if and only if $z \notin \operatorname{cl}(Y)$. Thus $\operatorname{cl}(X) \cap \operatorname{cl}(Y)$ and $\mathrm{cl}^{*}(X) \cap \mathrm{cl}^{*}(Y)$ are disjoint.

The next result is well known, and follows without difficulty from the dual of [8, Lemma 2.5].

Proposition 2.3. Suppose that X is an exactly 3 -separating set of the 3 -connected matroid M. Suppose also that $A \subseteq E(M)-X$. If $|A| \geq 3$ and $A \subseteq \mathrm{cl}^{*}(X)$ then A is a cosegment of M.

Definition 2.4. Suppose that M is a matroid and that $x \in E(M)$. Let $\left(X_{1}, X_{2}\right)$ be a partition of $E(M)-x$ such that there is a positive integer k with the property that:
(i) $\lambda\left(X_{1}\right)=\lambda\left(X_{2}\right)=k-1$;
(ii) $\mathrm{r}\left(X_{1}\right), \mathrm{r}\left(X_{2}\right) \geq k$; and,
(iii) $x \in \operatorname{cl}\left(X_{1}\right) \cap \operatorname{cl}\left(X_{2}\right)$.

In this case ($\left.X_{1}, X_{2}, x\right)$ is a vertical k-partition of M.
The next result is well known and easy to prove.
Proposition 2.5. Let M be a 3 -connected matroid and suppose that $\mathrm{si}(M / x)$ is not 3 -connected for some $x \in E(M)$. Then there exists a vertical 3-partition ($\left.X_{1}, X_{2}, x\right)$ of M.

Proposition 2.6. Suppose that $\left(X_{1}, X_{2}, x\right)$ is vertical k-partition of the k-connected matroid M. Let A be a subset of $\operatorname{cl}\left(X_{2} \cup x\right)$. Then $\left(X_{1}-\right.$ $\left.A,\left(X_{2} \cup A\right)-x, x\right)$ is also a vertical k-partition of M.

Proof. Suppose that z is some element in $X_{1} \cap A$. Then $\lambda\left(X_{1}-z\right)$ is either $k-2$ or $k-1$. If $\lambda\left(X_{1}-z\right)=k-2$ then $\left(X_{1}-z, X_{2} \cup\{x, z\}\right)$ is a ($k-1$)-separation of M, a contradiction. Hence $\lambda\left(X_{1}-z\right)=k-1$ which implies that $\mathrm{r}\left(X_{1}-z\right)=\mathrm{r}\left(X_{1}\right)$. Thus $\operatorname{cl}\left(X_{1}-z\right)=\operatorname{cl}\left(X_{1}\right)$, and hence $x \in \operatorname{cl}\left(X_{1}-z\right)$. It follows that $\left(X_{1}-z, X_{2} \cup z, x\right)$ is a vertical k-partition of M. By continuing to transfer elements in $X_{1} \cap A$ from X_{1} into X_{2} we eventually conclude that $\left(X_{2}-A,\left(X_{2} \cup A\right)-x, x\right)$ is a vertical k-partition of M, as desired.

Suppose that M_{1} and M_{2} are matroids such that $E\left(M_{1}\right) \cap E\left(M_{2}\right)=$ $\{p\}$. Then we can define the parallel connection of M_{1} and M_{2}, denoted by $P\left(M_{1}, M_{2}\right)$. The ground set of $P\left(M_{1}, M_{2}\right)$ is $E\left(M_{1}\right) \cup E\left(M_{2}\right)$. If p is a loop in neither M_{1} nor M_{2} then the circuits of $P\left(M_{1}, M_{2}\right)$ are exactly the circuits of M_{1}, the circuits of M_{2}, and sets of the form $\left(C_{1}-p\right) \cup\left(C_{2}-p\right)$, where C_{i} is a circuit of M_{i} such that $p \in C_{i}$ for $i=1,2$. If p is a loop in M_{1} then $P\left(M_{1}, M_{2}\right)$ is defined to be the direct sum of M_{1} and M_{2} / p. Similarly, if p is a loop in M_{2} then $P\left(M_{1}, M_{2}\right)$ is defined to be the direct sum of M_{1} / p and M_{2}. We say that p is the basepoint of the parallel connection. It is clear that $P\left(M_{1}, M_{2}\right)=P\left(M_{2}, M_{1}\right)$.

The next result follows from [6, Proposition 7.1.15 (v)].
Proposition 2.7. Suppose that M_{1} and M_{2} are matroids such that $E\left(M_{1}\right) \cap$ $E\left(M_{2}\right)=\{p\}$. If $e \in E\left(M_{1}\right)-p$ then $P\left(M_{1}, M_{2}\right) \backslash e=P\left(M_{1} \backslash e, M_{2}\right)$ and $P\left(M_{1}, M_{2}\right) / e=P\left(M_{1} / e, M_{2}\right)$.

Assume that M_{1} and M_{2} are matroids such that $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\{p\}$. If p is not a loop or a coloop in either M_{1} or M_{2} then $P\left(M_{1}, M_{2}\right) \backslash p$ is the 2 -sum of M_{1} and M_{2}, denoted by $M_{1} \oplus_{2} M_{2}$. We say that p is the basepoint of the 2 -sum.

The next result follows from [10, (2.6)].

Proposition 2.8. If (X_{1}, X_{2}) is an exact 2-separation of a matroid M then there exist matroids M_{1} and M_{2} on the ground sets $X_{1} \cup p$ and $X_{2} \cup p$ respectively, where p is in neither X_{1} nor X_{2}, such that M is equal to $M_{1} \oplus_{2}$ M_{2}.
Proposition 2.9. Suppose that N is a 3-connected matroid. Let M be a matroid with a vertical 3-partition ($\left.X_{1}, X_{2}, x\right)$ such that N is a minor of M / x. Then either $\left|E(N) \cap X_{1}\right| \leq 1$, or $\left|E(N) \cap X_{2}\right| \leq 1$.

Proof. Since $\left(X_{1}, X_{2}\right)$ is a 2-separation of M / x the result follows immediately from Proposition 2.1.
Lemma 2.10. Suppose that N is a 3-connected matroid such that $|E(N)| \geq$ 2. Let M be a matroid with a vertical 3-partition $\left(X_{1}, X_{2}, x\right)$ such that N is a minor of M / x. If $\left|E(N) \cap X_{1}\right| \leq 1$ then $M / x / e$ has an N-minor for every element $e \in X_{1}-\operatorname{cl}_{M}\left(X_{2}\right)$.
Proof. Since (X_{1}, X_{2}) is an exact 2-separation of M / x, it follows from Proposition 2.8 that M / x is the 2 -sum of matroids M_{1} and M_{2} along the basepoint p, where $E\left(M_{1}\right)=X_{1} \cup p$ and $E\left(M_{2}\right)=X_{2} \cup p$. Thus $M / x=P\left(M_{1}, M_{2}\right) \backslash p$.

Suppose that $E(N) \cap X_{1}=\emptyset$. Then there is a partition (A, B) of X_{1} such that N is a minor of $M / x / A \backslash B$. Suppose that p is a loop in $M_{1} / A \backslash B$. Proposition 2.7 implies that

$$
M / x / A \backslash B=P\left(M_{1} / A \backslash B, M_{2}\right) \backslash p .
$$

Now the definition of parallel connection implies that $M / x / A \backslash B$ is isomorphic to M_{2} / p. It is easily seen that if $e \in X_{1}$ then there is a minor M^{\prime} of M_{1} / e such that $E\left(M^{\prime}\right)=\{p\}$ and p is a loop of M^{\prime}. Proposition 2.7 implies that $P\left(M^{\prime}, M_{2}\right) \backslash p$ is a minor of $M / x / e$. But $P\left(M^{\prime}, M_{2}\right) \backslash p$ is isomorphic to M_{2} / p, so $M / x / e$ has an N-minor.

Next we suppose that p is a coloop of $M_{1} / A \backslash B$. Then, by definition of the parallel connection, $M / x / A \backslash B$ is isomorphic to $M_{2} \backslash p$. Suppose that $e \in$ $X_{1}-\operatorname{cl}\left(X_{2}\right)$. Since p is not a coloop of M_{2} it follows easily that $p \in \operatorname{cl}_{M}\left(X_{2}\right)$. Thus e is not parallel to p in M_{1}. Therefore there is a minor M^{\prime} of M_{1} / e such that $E\left(M^{\prime}\right)=\{p\}$ and p is a coloop of M^{\prime}. Again using Proposition 2.7 we see that $P\left(M^{\prime}, M_{2}\right) \backslash p$ is a minor of $M / x / e$. But since $P\left(M^{\prime}, M_{2}\right) \backslash p$ is isomorphic to $M_{2} \backslash p$ we deduce that $M / x / e$ has an N-minor.

Now we assume that $\left|E(N) \cap X_{1}\right|=1$ and that z is the unique element in $E(N) \cap X_{1}$. There is a partition (A, B) of $X_{1}-z$ such that N is a minor of $M / x / A \backslash B$. It follows from Proposition 2.7 that $P\left(M_{1} / A \backslash B, M_{2}\right) \backslash p$ has an N-minor. Consider the matroid $M_{1} / A \backslash B$. If $\{z, p\}$ is not a parallel pair in this matroid then z must be a loop or coloop in $P\left(M_{1} / A \backslash B, M_{2}\right) \backslash p$. This implies that z is a loop or coloop in N, a contradiction as N is 3 -connected and $|E(N)| \geq 2$. Therefore z and p are parallel in $M_{1} / A \backslash B$, and therefore $P\left(M_{1} / A \backslash B, M_{2}\right) \backslash p$ is isomorphic to M_{2}. Thus M_{2} has an N-minor.

Since p is not a loop or coloop of M_{1} there is a circuit of size at least two in M_{1} that contains p. Suppose that $e \in X_{1}-\operatorname{cl}_{M}\left(X_{2}\right)$. Then e
cannot be parallel to p in M_{1}, so M_{1} / e has a circuit of size at least two that contains p. Hence there is a minor M^{\prime} of M_{1} / e such that $p \in E\left(M^{\prime}\right)$ and M^{\prime} consists of a parallel pair. Proposition 2.7 implies that $P\left(M^{\prime}, M_{2}\right) \backslash p$ is a minor of $M / x / e$. But $P\left(M^{\prime}, M_{2}\right) \backslash p$ is isomorphic to M_{2}, so $M / x / e$ has an N -minor.

Definition 2.11. Suppose that M is a matroid and that A and B are subsets of $E(M)$. The local connectivity between A and B, denoted by $\sqcap(A, B)$, is defined to be $\mathrm{r}(A)+\mathrm{r}(B)-\mathrm{r}(A \cup B)$. Equivalently, $\sqcap(A, B)$ is equal to $\lambda_{M \mid(A \cup B)}(A)$.
Proposition 2.12. [8, Lemma 2.4(iv)] Let M be a matroid and let (A, B, C) be a partition of $E(M)$. Then $\Pi(A, B)+\lambda(C)=\Pi(A, C)+\lambda(B)$. Hence $\square(A, B)=\Pi(A, C)$ if and only if $\lambda(B)=\lambda(C)$.
Corollary 2.13. Let (X, Y, Z) be an exact 3-partition of the 3-connected matroid M. Then $\sqcap(X, Y)=\sqcap(X, Z)=\sqcap(Y, Z)$.
Proposition 2.14. Suppose that M is a matroid and that X and Y are disjoint subsets of $E(M)$ such that $\sqcap(X, Y)=1$. If $x, y \in X \cap \operatorname{cl}(Y)$ then $\mathrm{r}(\{x, y\}) \leq 1$.
Proof. Assume that $\mathrm{r}(\{x, y\})=2$. Let $X^{\prime}=\operatorname{cl}(X)$ and $Y^{\prime}=\operatorname{cl}(Y)$. It is easy to see that $\mathrm{r}\left(X^{\prime} \cup Y^{\prime}\right)=\mathrm{r}(X \cup Y)$. However
$\mathrm{r}\left(X^{\prime} \cup Y^{\prime}\right) \leq \mathrm{r}\left(X^{\prime}\right)+\mathrm{r}\left(Y^{\prime}\right)-\mathrm{r}\left(X^{\prime} \cap Y^{\prime}\right) \leq \mathrm{r}(X)+\mathrm{r}(Y)-2=\mathrm{r}(X \cup Y)-1$.
This contradiction completes the proof.
We conclude this section by stating a fundamental tool in the study of 3 -connected matroids, due to Bixby [1].
Theorem 2.15 (Bixby's Lemma). Let M be a 3-connected matroid and suppose that x is an element of $E(M)$. Then either $\operatorname{si}(M / x)$ or $\operatorname{co}(M \backslash x)$ is 3 -connected.

3. Segment-cosegment pairs

Suppose that M is a matroid. Recall that L is a segment of M if $|L| \geq$ 3 and every three-element subset of L is a circuit of M, and that L^{*} is a cosegment of M if $\left|L^{*}\right| \geq 3$ and every three-element subset of L^{*} is a cocircuit. We restate the definition of segment-cosegment pairs given in Section 1.

Definition 3.1. Suppose that $L=\left\{x_{1}, \ldots, x_{t}\right\}$ is a segment of the matroid M and there is a set $L^{*}=\left\{y_{1}, \ldots, y_{t}\right\}$ with the property that $L \cap L^{*}=\emptyset$ and $\left(\operatorname{cl}(L)-x_{i}\right) \cup y_{i}$ is a cocircuit of M for all $i \in\{1, \ldots, t\}$. In this case we say that $\left(L, L^{*}\right)$ is a segment-cosegment pair of M.

In a 3 -connected matroid a segment-cosegment pair is an example of a 'crocodile', a structure that provides a collection of equivalent 3 -separations. 'Crocodiles' were considered by Hall, Oxley, and Semple [4]. The next result explains the name segment-cosegment pair.

Proposition 3.2. Suppose that $\left(L, L^{*}\right)$ is a segment-cosegment pair of the 3 -connected matroid M. Then L^{*} is a cosegment of M.

Proof. Suppose that $y_{i} \in L^{*}$. The definition of a segment-cosegment pair means that $y_{i} \in \operatorname{cl}^{*}(\operatorname{cl}(L))$. Thus $L^{*} \subseteq \operatorname{cl}^{*}(\operatorname{cl}(L))$. Moreover $\operatorname{cl}(L)$ is exactly 3 -separating in M. The result follows by Proposition 2.3.

Proposition 3.3. Suppose that $\left(L, L^{*}\right)$ is a segment-cosegment pair of the 3-connected matroid M. Then $M / \operatorname{cl}(L)$ is 3-connected.

Proof. Suppose that $L=\left\{x_{1}, \ldots, x_{t}\right\}$ and $L^{*}=\left\{y_{1}, \ldots, y_{t}\right\}$. Assume that $M / \operatorname{cl}(L)$ is not 3 -connected, so that $\left(X_{1}, X_{2}\right)$ is a k-separation of $M / \mathrm{cl}(L)$ for some $k \leq 2$. Let $L_{0}=\operatorname{cl}(L)$. Note that for $i \in\{1,2\}$ we have

$$
\mathrm{r}_{M / L_{0}}\left(X_{i}\right)=\mathrm{r}_{M}\left(X_{i} \cup L_{0}\right)-\mathrm{r}_{M}\left(L_{0}\right)=\mathrm{r}_{M}\left(X_{i}\right)-\sqcap_{M}\left(X_{i}, L_{0}\right),
$$

so $\mathrm{r}_{M}\left(X_{i}\right)=\mathrm{r}_{M / L_{0}}\left(X_{i}\right)+\sqcap_{M}\left(X_{i}, L_{0}\right)$.
Suppose that $\sqcap_{M}\left(X_{1}, L_{0}\right)=0$. Then $\mathrm{r}_{M}\left(X_{1}\right)=\mathrm{r}_{M / L_{0}}\left(X_{1}\right)$ and $\mathrm{r}_{M}\left(X_{2} \cup\right.$ $\left.L_{0}\right)=\mathrm{r}_{M / L_{0}}\left(X_{2}\right)+2$, so

$$
\begin{aligned}
\lambda_{M}\left(X_{1}\right)=\mathrm{r}_{M / L_{0}}\left(X_{1}\right)+\left(\mathrm{r}_{M / L_{0}}\left(X_{2}\right)+2\right)-\left(\mathrm{r}\left(M / L_{0}\right)\right. & +2) \\
& =\lambda_{M / L_{0}}\left(X_{1}\right)<k
\end{aligned}
$$

This is a contradiction as M is 3 -connected. By using a symmetric argument we can conclude that $\sqcap_{M}\left(X_{i}, L_{0}\right)>0$ for all $i \in\{1,2\}$.

Suppose that $x_{i} \in \operatorname{cl}_{M}\left(X_{1}\right)$ for some $i \in\{1, \ldots, t\}$. Then there is a circuit $C_{1} \subseteq X_{1} \cup x_{i}$ such that $x_{i} \in C_{1}$. For all $k \in\{1, \ldots, t\}-i$ the set $\left(L_{0}-x_{k}\right) \cup y_{k}$ is a cocircuit. It cannot be the case that C_{1} meets this cocircuit in a single element, so $y_{k} \in X_{1}$ for all $k \in\{1, \ldots, t\}-i$.

Now suppose that $x_{j} \in \operatorname{cl}_{M}\left(X_{2}\right)$ for some $j \in\{1, \ldots, t\}$. By using the same arguments as above we can conclude that $L^{*}-y_{j} \subseteq X_{2}$. As $L^{*}-y_{i}$ and $L^{*}-y_{j}$ have a non-empty intersection this is a contradiction. Therefore $\operatorname{cl}_{M}\left(X_{2}\right) \cap L=\emptyset$. Note that $\sqcap\left(X_{2}, L_{0}\right) \leq 2$ because $\mathrm{r}\left(L_{0}\right)=2$. If $\sqcap\left(X_{2}, L_{0}\right)$ were two, it would follow that $L_{0} \subseteq \operatorname{cl}\left(X_{2}\right)$. Hence $\sqcap\left(X_{2}, L_{0}\right)=1$.

Let j be an element of $\{1, \ldots, t\}-i$. Then $L_{0} \subseteq \operatorname{cl}_{M}\left(X_{2} \cup x_{j}\right)$, and there must be a circuit $C_{2} \subseteq X_{2} \cup\left\{x_{i}, x_{j}\right\}$ such that $\left\{x_{i}, x_{j}\right\} \subseteq C_{2}$. But then C_{2} meets the cocircuit $\left(L_{0}-x_{j}\right) \cup y_{j}$ in a single element, x_{i}. From this contradiction we conclude that $\operatorname{cl}_{M}\left(X_{1}\right) \cap L=\emptyset$, and by symmetry $\operatorname{cl}_{M}\left(X_{2}\right) \cap L=\emptyset$. This means that

$$
\sqcap_{M}\left(X_{1}, L_{0}\right)=\sqcap_{M}\left(X_{2}, L_{0}\right)=1
$$

It must be the case that $x_{2} \in \mathrm{cl}_{M}\left(X_{1} \cup x_{1}\right)$, and there is a circuit $C_{3} \subseteq$ $X_{1} \cup\left\{x_{1}, x_{2}\right\}$ such that $\left\{x_{1}, x_{2}\right\} \subseteq C_{3}$. Since $\left(L_{0}-x_{1}\right) \cup y_{1}$ is a cocircuit we conclude that $y_{1} \in X_{1}$. But we can use an identical argument to show that $y_{1} \in X_{2}$. This contradiction completes the proof.

We now restate the definition of a spore.

Definition 3.4. Suppose that P is a rank-one flat of a matroid M and that s is an element of $E(M)$ such that $P \cup s$ is a cocircuit. Then we say that (P, s) is a spore.

Recall from Section 1 that a matroid M is 3 -connected up to a unique spore if it contains a single spore (P, s), and whenever (X, Y) is a k-separation of M for some $k<3$ then either $X \subseteq P \cup s$ or $Y \subseteq P \cup s$.

Lemma 3.5. Suppose that $\left(L, L^{*}\right)$ is a segment-cosegment pair of the 3 -connected matroid M where $|E(M)-\operatorname{cl}(L)| \geq 4$. Let $L=\left\{x_{1}, \ldots, x_{t}\right\}$ and $L^{*}=\left\{y_{1}, \ldots, y_{t}\right\}$. Then M / x_{i} is 3 -connected up to a unique spore $\left(\operatorname{cl}(L)-x_{i}, y_{i}\right)$, for all $i \in\{1, \ldots, t\}$.

Proof. Let E be the ground set of M and let $L_{0}=\operatorname{cl}(L)$. We will show that M / x_{i} is 3 -connected up to the unique spore $\left(L_{0}-x_{i}, y_{i}\right)$. Certainly ($L_{0}-x_{i}, y_{i}$) is a spore of M / x_{i}. Suppose that (P, s) is a spore of M / x_{i} that is distinct from $\left(L_{0}-x_{i}, y_{i}\right)$.

We initially assume that $L_{0}-x_{i}=P$. Thus $s \neq y_{i}$. As $\left(L_{0}-x_{i}\right) \cup s$ and $\left(L_{0}-x_{i}\right) \cup y_{i}$ are both cocircuits of M / x_{i} it follows that $E-\left(L_{0} \cup\left\{s, y_{i}\right\}\right)$ is the intersection of two hyperplanes of M / x_{i}. Thus

$$
\mathrm{r}_{M / x_{i}}\left(E-\left(L_{0} \cup\left\{s, y_{i}\right\}\right)\right) \leq \mathrm{r}\left(M / x_{i}\right)-2 .
$$

and therefore

$$
\mathrm{r}_{M / L_{0}}\left(E-\left(L_{0} \cup\left\{s, y_{i}\right\}\right)\right) \leq \mathrm{r}\left(M / x_{i}\right)-2=\mathrm{r}\left(M / L_{0}\right)-1 .
$$

Hence $\left\{s, y_{i}\right\}$ contains a cocircuit in M / L_{0}. Therefore M / L_{0} contains a cocircuit of size at most two, a contradiction as M / L_{0} is 3-connected by Proposition 3.3, and $\left|E\left(M / L_{0}\right)\right| \geq 4$.

Now we must assume that $L_{0}-x_{i} \neq P$. Hence $P \cup x_{i}$ is a rank-two flat of M that meets L_{0} in exactly one element, x_{i}. Suppose that P contains a single element p. Then $\{p, s\}$ is a cocircuit of M, a contradiction. Therefore $P \cup x_{i}$ contains at least one triangle. Suppose that P does not contain y_{j}, where $j \neq i$. Then there is a triangle in $P \cup x_{i}$ that meets the cocircuit $\left(L_{0}-x_{j}\right) \cup y_{j}$ in exactly one element, x_{i}. This contradiction shows that $L^{*}-y_{i} \subseteq P$.

Assume that $t>3$. As L^{*} is a cosegment there is a triad of M contained in $L^{*}-y_{i}$. However this triad is also contained in the segment $P \cup x_{i}$, and is therefore a triangle. But $|E(M)|>4$ and a 3 -connected matroid with at least five elements cannot contain a triangle that is also a triad. This contradiction shows that $t=3$.

Suppose $j \in\{1,2,3\}$ and that $j \neq i$. If $|P|>2$ then there is a triangle contained in P that contains y_{j}. However this triangle would meet the cocircuit $\left(L_{0}-x_{j}\right) \cup y_{j}$ in exactly one element. Thus $|P|=2$, and $P=L^{*}-y_{i}$.

Suppose that $j, k \in\{1,2,3\}$ and neither j nor k is equal to i. Then $L_{0} \cup P$ contains the two cocircuits $\left(L_{0}-x_{j}\right) \cup y_{j}$ and $\left(L_{0}-x_{k}\right) \cup y_{k}$. Hence $\mathrm{r}_{M}\left(E-\left(L_{0} \cup P\right)\right) \leq \mathrm{r}(M)-2$. However it is easy to see that $\mathrm{r}_{M}\left(L_{0} \cup P\right)=3$.

As $|P|=2$ it follows that $E-\left(L_{0} \cup P\right)$ contains at least two elements. Thus $\left(L_{0} \cup P, E-\left(L_{0} \cup P\right)\right)$ is a 2-separation of M, a contradiction.

We have shown that $\left(L_{0}-x_{i}, y_{i}\right)$ is the unique spore of M / x_{i}. Next we show that M / x_{i} is 3 -connected up to this spore. Suppose that (X, Y) is a k-separation of M / x_{i} for some $k<3$. By relabeling if necessary we will assume that $y_{i} \in X$. Assume that the result is false, so that neither X nor Y is contained in $\left(L_{0}-x_{i}\right) \cup y_{i}$. Therefore X contains at least one element from $E-\left(L_{0} \cup y_{i}\right)$. As M / L_{0} is 3 -connected by Proposition 3.3 we deduce from Proposition 2.1 that either $X-L_{0}$ or $Y-L_{0}$ contains at most one element. We have already concluded that $X-L_{0}$ contains at least two elements (as $y_{i} \in X$), so $Y-L_{0}$ contains precisely one element. As M is 3 -connected it contains no parallel pairs, so M / x_{i} contains no loops. Therefore $\mathrm{r}_{M / x_{i}}(Y)=2$, and hence $\mathrm{r}_{M / x_{i}}(X) \leq \mathrm{r}\left(M / x_{i}\right)-1$. Thus Y contains a cocircuit of M / x_{i}. As M / x_{i} has no coloops, and any cocircuit that meets a parallel class contains that parallel class it follows that $L_{0}-x_{i} \subseteq Y$. Let s be the single element in $Y-L_{0}$. It cannot be the case that Y is a cocircuit in M / x_{i}, for that would imply that $\left(L_{0}-x_{i}, s\right)$ is a spore of M / x_{i} that differs from $\left(L_{0}-x_{i}, y_{i}\right)$, contradicting our earlier conclusion. Now we see that $Y-s=L_{0}-x_{i}$ must be a cocircuit of M / x_{i}, but this is a contradiction as $L_{0}-x_{i}$ is properly contained in the cocircuit $\left(L_{0}-x_{i}\right) \cup y_{i}$. The completes the proof.

The next result shows that Theorem 1.1 is a consequence of Theorem 1.2.
Proposition 3.6. Suppose that $\left(L, L^{*}\right)$ is a segment-cosegment pair of a matroid M, and that $M / \mathrm{cl}(L)$ is 3 -connected and $|E(M)-\operatorname{cl}(L)| \geq 4$. Let $L=\left\{x_{1}, \ldots, x_{t}\right\}$ and $L^{*}=\left\{y_{1}, \ldots, y_{t}\right\}$. Then $\operatorname{co}\left(\operatorname{si}\left(M / x_{i}\right)\right) \cong M / \operatorname{cl}(L)$ for any element $x_{i} \in L$.

Proof. Let $L_{0}=\operatorname{cl}(L)$ and let $x_{j} \neq x_{i}$ be an element of L. Suppose that P and S are disjoint subsets of $E(M)-x_{i}$ chosen so that $\operatorname{co}\left(\operatorname{si}\left(M / x_{i}\right)\right) \cong$ $M / x_{i} \backslash P / S$. As $L_{0}-x_{i}$ is a parallel class in M / x_{i} we may assume that $L_{0}-\left\{x_{i}, x_{j}\right\} \subseteq P$ and that $x_{j} \notin P$. We may assume that $y_{i} \notin P$, and hence $\left\{x_{j}, y_{i}\right\}$ is a union of cocircuits in $M / x_{i} \backslash P$. Therefore we may assume $x_{j} \in S$. Since the elements in $L_{0}-\left\{x_{i}, x_{j}\right\}$ are loops in $M / x_{i} / x_{j}$ it follows that

$$
M / x_{i} \backslash P / S=M / x_{i} / x_{j} /\left(L_{0}-\left\{x_{i}, x_{j}\right\}\right) \backslash\left(P-\left(L_{0}-\left\{x_{i}, x_{j}\right\}\right)\right) /\left(S-x_{j}\right) .
$$

This last matroid is equal to $M / L_{0} \backslash\left(P-\left(L_{0}-\left\{x_{i}, x_{j}\right\}\right)\right) /\left(S-x_{j}\right)$. Since M / L_{0} is 3 -connected and the elements in $P-\left(L_{0}-\left\{x_{i}, x_{j}\right\}\right)$ are either loops or parallel elements in M / L_{0} it follows that $P=L_{0}-\left\{x_{i}, x_{j}\right\}$. Thus $M / x_{i} \backslash P / S=M / L_{0} /\left(S-x_{j}\right)$. But M / L_{0} is 3 -connected, so $S-x_{j}$ must be empty. Thus $M / L_{0} \cong \operatorname{co}\left(\operatorname{si}\left(M / x_{i}\right)\right)$, as desired.

4. Preliminary lemmas

Proposition 4.1. Suppose that C^{*} is a cocircuit of the 3 -connected matroid M. Assume that $\left(X_{1}, X_{2}, x\right)$ is a vertical 3 -partition of M such that $x \in C^{*}$. Then $C^{*} \cap\left(X_{1}-\operatorname{cl}\left(X_{2}\right)\right) \neq \emptyset$ and $C^{*} \cap\left(X_{2}-\operatorname{cl}\left(X_{1}\right)\right) \neq \emptyset$.

Proof. Note that $\mathrm{r}\left(X_{1}\right), \mathrm{r}\left(X_{2}\right) \geq 3$ implies that $|E(M)| \geq 4$, so every circuit and cocircuit of M contains at least three elements. Let X be $X_{1}-\operatorname{cl}\left(X_{2}\right)$. The fact that $\mathrm{r}\left(X_{1}\right) \geq 3$ implies that X contains a cocircuit, so $|X| \geq 3$. Suppose that x is not in $\operatorname{cl}(X)$. Then $\mathrm{r}(X)<\mathrm{r}\left(X_{1}\right)$. Since $|X| \geq 3$ this implies that $\left(X, \operatorname{cl}\left(X_{2}\right)\right)$ is a 2-separation of M, a contradiction.

Now suppose that $C^{*} \subseteq \operatorname{cl}\left(X_{2}\right)$. Then as $x \in \operatorname{cl}(X)$ and $x \in C^{*}$ there is a circuit in M that meets C^{*} in exactly one element, x. This is a contradiction. The same argument shows that $C^{*} \cap\left(X_{2}-\operatorname{cl}\left(X_{1}\right)\right) \neq \emptyset$, so the proposition holds.

Definition 4.2. Suppose that M is a 3 -connected matroid and that A is a subset of $E(M)$. A minimal partition with respect to A is a vertical 3-partition ($\left.X_{1}, X_{2}, x\right)$ of M that satisfies the following properties:
(i) $x \in A$;
(ii) if $\left(Y_{1}, Y_{2}, y\right)$ is a vertical 3 -partition of M such that $y \in A \cap\left(X_{1} \cup x\right)$ and $X_{2} \cap Y_{1}=\emptyset$, then $\left(Y_{1}, Y_{2}, y\right)=\left(X_{1}, X_{2}, x\right)$; and,
(iii) if $\left(Y_{1}, Y_{2}, y\right)$ is a vertical 3-partition of M such that $y \in A \cap\left(X_{1} \cup x\right)$ and $X_{2} \cap Y_{2}=\emptyset$ then $\left(Y_{2}, Y_{1}, y\right)=\left(X_{1}, X_{2}, x\right)$.

If there is no ambiguity we will refer to a minimal partition with respect to A as a minimal partition.

Lemma 4.3. Suppose that M is a 3 -connected matroid and that A is a subset of $E(M)$. Suppose that for some element $z \in A$ there is a vertical 3-partition $\left(Z_{1}, Z_{2}, z\right)$ of M. Let $Z=Z_{1}-\operatorname{cl}\left(Z_{2}\right)$. Then there is a minimal partition $\left(X_{1}, X_{2}, x\right)$ with respect to A such that $X_{1} \subseteq Z$ and $x \in A \cap(Z \cup z)$.

Proof. Let \mathcal{Z} be the family of vertical 3-partitions $\left(S_{1}, S_{2}, z\right)$ with the property that $S_{1} \subseteq Z_{1}$. Choose ($Z_{1}^{\prime}, Z_{2}^{\prime}, z$) from \mathcal{Z} so that if (S_{1}, S_{2}, z) is in \mathcal{Z}, then S_{1} is not properly contained in Z_{1}^{\prime}. Observe that Proposition 2.6 implies that $Z_{1}^{\prime} \subseteq Z$.

Let \mathcal{S} be the family of vertical 3-partitions $\left(S_{1}, S_{2}, s\right)$ with $s \in A \cap\left(Z_{1}^{\prime} \cup z\right)$. Let \mathcal{S}_{0} be the set of vertical 3-partitions $\left(S_{1}, S_{2}, s\right)$ in \mathcal{S} with the property that either $S_{1} \subseteq Z_{1}^{\prime}$ or $S_{2} \subseteq Z_{1}^{\prime}$. Without loss of generality we will assume that if (S_{1}, S_{2}, s) is in \mathcal{S}_{0} then $S_{1} \subseteq Z_{1}^{\prime}$. Suppose that $\left(S_{1}, S_{2}, z\right)$ is a member of \mathcal{S}_{0}. Then our choice of $\left(Z_{1}^{\prime}, Z_{2}^{\prime}, z\right)$ means that $S_{1}=Z_{1}^{\prime}$ and $S_{2}=Z_{2}^{\prime}$. If $\left(Z_{1}^{\prime}, Z_{2}^{\prime}, z\right)$ is the only member of \mathcal{S}_{0} then we can set $\left(X_{1}, X_{2}, x\right)$ to be ($Z_{1}^{\prime}, Z_{2}^{\prime}, z$), and we will be done. Therefore we will assume that there is at least one vertical 3-partition $\left(S_{1}, S_{2}, s\right)$ in \mathcal{S}_{0} such that $s \neq z$. Let \mathcal{S}_{1} be the collection of such partitions.

We now let $\left(X_{1}, X_{2}, x\right)$ be a vertical 3 -partition in \mathcal{S}_{1} chosen so that if $\left(S_{1}, S_{2}, s\right) \in \mathcal{S}_{1}$, then $S_{1} \cup s$ is not properly contained in $X_{1} \cup x$. We will prove that (X_{1}, X_{2}, x) is the desired vertical 3-partition.

It is certainly true that $X_{1} \subseteq Z$. If there is some element e in $X_{1} \cap$ $\operatorname{cl}\left(X_{2} \cup x\right)$ then $\left(X_{1}-e, X_{2} \cup e, x\right)$ is a vertical 3-partition by Proposition 2.6. However this contradicts our choice of $\left(X_{1}, X_{2}, x\right)$. Therefore $X_{2} \cup x$ is a flat. We assume that $\left(Y_{1}, Y_{2}, y\right)$ is a vertical 3-partition and that $y \in A \cap\left(X_{1} \cup x\right)$. As $X_{1} \subseteq Z_{1}^{\prime}$ it follows that $y \in A \cap Z_{1}^{\prime}$. Our assumption on ($\left.X_{1}, X_{2}, x\right)$ means that neither $Y_{1} \cup y$ nor $Y_{2} \cup y$ can be properly contained in $X_{1} \cup x$.

Suppose that $X_{2} \cap Y_{1}=\emptyset$. Then $Y_{1} \cup y$ must be equal to $X_{1} \cup x$. If $y \neq x$ then the fact that $y \in \operatorname{cl}\left(Y_{2}\right)$ and $Y_{2}=X_{2}$ means that $y \in \operatorname{cl}\left(X_{2}\right)$, which is a contradiction as $X_{2} \cup x$ is a flat. Therefore $y=x$, so $\left(Y_{1}, Y_{2}, y\right)$ is equal to $\left(X_{1}, X_{2}, x\right)$. The same argument shows that if $X_{2} \cap Y_{2}=\emptyset$ then $\left(Y_{1}, Y_{2}, y\right)=\left(X_{2}, X_{1}, x\right)$. Thus $\left(X_{1}, X_{2}, x\right)$ is the desired minimal partition.

Proposition 4.4. Suppose that M is a matroid and that $A \subseteq E(M)$. Suppose that $\left(X_{1}, X_{2}, x\right)$ is a minimal partition with respect to A. Then $X_{2} \cup x$ is a flat of M.

Proof. Suppose that there is some element $z \in X_{1} \cap \operatorname{cl}\left(X_{2} \cup x\right)$. Then ($\left.X_{1}-z, X_{2} \cup z, x\right)$ is a vertical 3-partition of M by Proposition 2.6. This contradicts the fact that $\left(X_{1}, X_{2}, x\right)$ is a minimal partition.

Lemma 4.5. Suppose that M is a 3 -connected matroid and that $A \subseteq E(M)$. Suppose that $\left(X_{1}, X_{2}, x\right)$ is a minimal partition with respect to A. Suppose also that $\left(Y_{1}, Y_{2}, y\right)$ is a vertical 3 -partition of M such that $y \in A \cap X_{1}$ and $x \in Y_{1}$. Then the following statements hold:
(i) $X_{i} \cap Y_{j} \neq \emptyset$ for all $i, j \in\{1,2\}$;
(ii) Each of $X_{1} \cap Y_{2},\left(X_{1} \cap Y_{2}\right) \cup y, X_{2} \cap Y_{1},\left(X_{2} \cap Y_{1}\right) \cup x$, and $X_{2} \cap Y_{2}$ is 3-separating in M;
(iii) $\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}$ is 4-separating in M;
(iv) Neither $X_{1} \cap Y_{1}$ nor $X_{1} \cap Y_{2}$ is contained in $\operatorname{cl}\left(X_{2}\right), X_{1} \cap Y_{1} \nsubseteq \operatorname{cl}\left(Y_{2}\right)$, and $X_{1} \cap Y_{2} \nsubseteq \operatorname{cl}\left(Y_{1}\right)$;
(v) $\mathrm{r}\left(\left(X_{1} \cap Y_{2}\right) \cup y\right)=2$; and,
(vi) If $\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}$ is 3-separating in M, then $\mathrm{r}\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right)=2$.

Proof. We start by proving (i). Since $y \neq x$ the definition of a minimal partition means that $X_{2} \cap Y_{1} \neq \emptyset$ and $X_{2} \cap Y_{2} \neq \emptyset$. Moreover $X_{2} \cup x$ is a flat of M by Proposition 4.4, and $y \in X_{1}$, so $y \notin \operatorname{cl}\left(X_{2} \cup x\right)$. However $y \in \operatorname{cl}\left(Y_{1}\right) \cap \operatorname{cl}\left(Y_{2}\right)$. It follows that neither Y_{1} nor Y_{2} can be contained in $X_{2} \cup x$. Thus both Y_{1} and Y_{2} meet X_{1}.

Next we prove (ii). Consider $X_{1} \cap Y_{2}$. Since $\lambda\left(X_{1}\right)=2$ and $\lambda\left(Y_{2}\right)=2$ the submodularity of the connectivity function implies that $\lambda\left(X_{1} \cap Y_{2}\right)+$ $\lambda\left(X_{1} \cup Y_{2}\right) \leq 4$. If $X_{1} \cap Y_{2}$ is not 3 -separating then $\lambda\left(X_{1} \cup Y_{2}\right) \leq 1$. However $\left|X_{1} \cup Y_{2}\right| \geq 2$ and the complement of $X_{1} \cup Y_{2}$ certainly contains at least
two elements, since it contains x, and $X_{2} \cap Y_{1}$ is non-empty. Thus M has a 2-separation, a contradiction. This shows that $X_{1} \cap Y_{2}$ is 3-separating.

Since X_{1} and $Y_{2} \cup y$ are both 3-separating the same argument shows that $\left(X_{1} \cap Y_{2}\right) \cup y$ is 3 -separating. Since the complement of $X_{2} \cup Y_{1}$ contains both y and at least one element in $X_{1} \cap Y_{2}$, we can also show that $X_{2} \cap Y_{1}$ and $\left(X_{2} \cap Y_{1}\right) \cup x$ are both 3 -separating. The same argument shows that $X_{2} \cap Y_{2}$ is 3 -separating.

Consider (iii). The submodularity of the connectivity function shows that

$$
\lambda\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right)+\lambda\left(X_{1} \cup Y_{1}\right) \leq 4
$$

Thus if $\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}$ is not 4 -separating then $\lambda\left(X_{1} \cup Y_{1}\right)=0$. But this cannot occur as $X_{1} \cup Y_{1}$ is non-empty, and its complement contains $X_{2} \cap Y_{2}$, which is non-empty.

Next we move to (iv). Since $X_{2} \cup x$ is a flat of M it follows that $\operatorname{cl}\left(X_{2}\right)$ does not meet X_{1}. Therefore $\operatorname{cl}\left(X_{2}\right)$ cannot contain $X_{1} \cap Y_{1}$ or $X_{1} \cap Y_{2}$.

Suppose that $X_{1} \cap Y_{1}$ is contained in $\operatorname{cl}\left(Y_{2}\right)$. Then $Y_{1}-\operatorname{cl}\left(Y_{2}\right)$ is contained in $X_{2} \cup x$. However Proposition 2.6 says that

$$
\left(Y_{1}-\operatorname{cl}\left(Y_{2}\right), \operatorname{cl}\left(Y_{2}\right)-y, y\right)
$$

is a vertical 3-partition of M. Thus y is in the closure of $Y_{1}-\operatorname{cl}\left(Y_{2}\right)$, which means that $y \in \operatorname{cl}\left(X_{2} \cup x\right)$. But this is a contradiction as $y \in X_{1}$, and $X_{2} \cup x$ is a flat of M. The same argument shows that $X_{1} \cap Y_{2}$ is not contained in $\operatorname{cl}\left(Y_{1}\right)$.

To prove (v) we suppose that $\mathrm{r}\left(\left(X_{1} \cap Y_{2}\right) \cup y\right) \geq 3$. Consider the partition $\left(X_{1} \cap Y_{2}, X_{2} \cup Y_{1}, y\right)$ of $E(M)$. It follows from (ii) that

$$
\lambda\left(\left(X_{1} \cap Y_{2}\right) \cup y\right)=\lambda\left(X_{1} \cap Y_{2}\right)=2
$$

so $\lambda\left(X_{2} \cup Y_{1}\right)=2$. Furthermore $y \in \operatorname{cl}\left(Y_{1}\right)$, so y is in the closure of $X_{2} \cup Y_{1}$. Proposition 2.2 shows that $y \in \operatorname{cl}\left(X_{1} \cap Y_{2}\right)$, so $\mathrm{r}\left(X_{1} \cap Y_{2}\right) \geq 3$. Now it is easy to see that

$$
\left(X_{1} \cap Y_{2}, X_{2} \cup Y_{1}, y\right)
$$

is a vertical 3-partition of M. However $y \in A \cap X_{1}$ and $X_{1} \cap Y_{2}$ does not meet X_{2}, so we have a contradiction to the fact that $\left(X_{1}, X_{2}, x\right)$ is a minimal partition.

We conclude by proving (vi). Suppose that $\lambda\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right)=2$. This implies that $\lambda\left(X_{2} \cup Y_{2}\right)=2$. Since $y \in \operatorname{cl}\left(Y_{2}\right)$ it follows easily that $\lambda\left(\left(X_{1} \cap Y_{1}\right) \cup x\right)=2$. Consider the partition

$$
\left(\left(X_{1} \cap Y_{1}\right) \cup x, X_{2} \cup Y_{2}, y\right)
$$

of $E(M)$. Since $y \in \operatorname{cl}\left(Y_{2}\right)$ it follows from Proposition 2.2 that y is in the closure of $\left(X_{1} \cap Y_{1}\right) \cup x$. Thus if $\mathrm{r}\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right) \geq 3$ it follows that $\mathrm{r}\left(\left(X_{1} \cap Y_{1}\right) \cup x\right) \geq 3$. In this case

$$
\left(\left(X_{1} \cap Y_{1}\right) \cup x, X_{2} \cup Y_{2}, y\right)
$$

is vertical 3-partition of M that violates the fact that $\left(X_{1}, X_{2}, x\right)$ is a minimal partition. This completes the proof of the lemma.

Proposition 4.6. Suppose that $\left(X_{1}, X_{2}, x\right)$ is a minimal partition of the 3 -connected matroid M with respect to the set $A \subseteq E(M)$. Assume that $\left(Y_{1}, Y_{2}, y\right)$ is a vertical 3 -partition of M such that $y \in A \cap X_{1}$ and $x \in Y_{1}$. If $\left|X_{1} \cap Y_{2}\right| \geq 2$ then

$$
\sqcap\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}, X_{1} \cap Y_{2}\right)=\sqcap\left(\left(X_{1} \cap Y_{1}\right) \cup y, X_{1} \cap Y_{2}\right)=1 .
$$

Proof. The hypotheses imply that $|E(M)| \geq 4$, so every circuit or cocircuit of M contains at least three elements. Let $\pi=\sqcap\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}, X_{1} \cap Y_{2}\right)$. We know from Lemma $4.5(\mathrm{v})$ that $\mathrm{r}\left(X_{1} \cap Y_{2}\right) \leq 2$. Therefore $\pi \leq 2$. On the other hand, since $\left|X_{1} \cap Y_{2}\right| \geq 2$, the fact that $\mathrm{r}\left(\left(X_{1} \cap Y_{2}\right) \cup y\right) \leq 2$ implies that $y \in \operatorname{cl}\left(X_{1} \cap Y_{2}\right)$. This in turn implies that $\pi \geq 1$.

Assume that $\pi=2$. Then $X_{1} \cap Y_{2} \subseteq \operatorname{cl}\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right)$. Since $x, y \in \operatorname{cl}\left(Y_{1}\right)$ this means that $X_{1} \cap Y_{2} \subseteq \operatorname{cl}\left(Y_{1}\right)$. But this contradicts (iv) of Lemma 4.5. Exactly the same argument shows that $\sqcap\left(\left(X_{1} \cap Y_{1}\right) \cup y, X_{1} \cap\right.$ $\left.Y_{2}\right)=1$.

Lemma 4.7. Suppose that $\left(X_{1}, X_{2}, x\right)$ is a minimal partition of the 3-connected matroid M with respect to the set $A \subseteq E(M)$. Assume that $\left(Y_{1}, Y_{2}, y\right)$ is a vertical 3 -partition of M such that $y \in A \cap X_{1}$ and $x \in Y_{1}$. If $\left|X_{1} \cap Y_{2}\right| \geq 2$ then $y \in \operatorname{cl}\left(\left(X_{1} \cap Y_{1}\right) \cup x\right)$.

Proof. The hypotheses imply that every circuit of M contains at least three elements. Since $\left|X_{1} \cap Y_{2}\right| \geq 2$ it follows from Lemma 4.5(v) that $y \in \operatorname{cl}\left(X_{1} \cap\right.$ $\left.Y_{2}\right)$. We assume that $y \notin \operatorname{cl}\left(\left(X_{1} \cap Y_{1}\right) \cup x\right)$. Since $X_{1} \cap Y_{1}$ is non-empty by Lemma 4.5(i) it follows that $\left|\left(X_{1} \cap Y_{1}\right) \cup x\right| \geq 2$, so $\lambda\left(\left(X_{1} \cap Y_{1}\right) \cup x\right) \geq 2$. Furthermore $\lambda\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right) \leq 3$ by (iii) of Lemma 4.5. As $y \in \operatorname{cl}\left(Y_{2}\right)$ we deduce that

$$
2 \leq \lambda\left(\left(X_{1} \cap Y_{1}\right) \cup x\right)<\lambda\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right) \leq 3 .
$$

Thus $\lambda\left(\left(X_{1} \cap Y_{1}\right) \cup x\right)=2$. Moreover it follows from (ii) in Lemma 4.5 that $\lambda\left(\left(X_{1} \cap Y_{2}\right) \cup y\right)=2$. Therefore

$$
\left(\left(X_{1} \cap Y_{1}\right) \cup x,\left(X_{1} \cap Y_{2}\right) \cup y, X_{2}\right)
$$

is an exact 3-partition.
As $x \in \operatorname{cl}\left(X_{2}\right)$ it follows that $\sqcap\left(\left(X_{1} \cap Y_{1}\right) \cup x, X_{2}\right) \geq 1$. Now Corollary 2.13 implies that $\sqcap\left(\left(X_{1} \cap Y_{2}\right) \cup y, X_{2}\right) \geq 1$. But (iv) and (v) of Lemma 4.5 imply that $X_{1} \cap Y_{2} \nsubseteq \mathrm{cl}\left(X_{2}\right)$ and that $\mathrm{r}\left(\left(X_{1} \cap Y_{2}\right) \cup y\right)=2$. We deduce that $\sqcap\left(\left(X_{1} \cap Y_{2}\right) \cup y, X_{2}\right)=1$. Again using Corollary 2.13 we see that

$$
\sqcap\left(\left(X_{1} \cap Y_{1}\right) \cup x,\left(X_{1} \cap Y_{2}\right) \cup y\right)=1 .
$$

Proposition 4.6 tells us that

$$
\sqcap\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}, X_{1} \cap Y_{2}\right)=1 .
$$

Since $y \in \operatorname{cl}\left(X_{1} \cap Y_{2}\right)$ we can easily deduce that $y \in \operatorname{cl}\left(\left(X_{1} \cap Y_{1}\right) \cup x\right)$, contrary to our initial assumption.

Lemma 4.8. Suppose that C^{*} is a cocircuit of the 3 -connected matroid M. Suppose that $\left(X_{1}, X_{2}, x\right)$ is a minimal partition of M with respect to C^{*}. Assume that $\operatorname{si}\left(M / x_{0}\right)$ is not 3 -connected for any element $x_{0} \in C^{*} \cap X_{1}$. Let $\left(Y_{1}, Y_{2}, y\right)$ be a vertical 3-partition of M such that $y \in C^{*} \cap X_{1}$, and assume that $x \in Y_{1}$. Then $\left|X_{1} \cap Y_{2}\right|=1$.

Proof. The hypotheses of the lemma imply that every circuit and cocircuit of M contains at least three elements. Let us assume that the lemma fails, so that $\left|X_{1} \cap Y_{2}\right| \geq 2$. Now (v) of Lemma 4.5 implies that $\left(X_{1} \cap Y_{2}\right) \cup y$ contains a triangle of M that contains y. Since C^{*} meets this triangle in y, there must be an element $z \in X_{1} \cap Y_{2}$ such that $z \in C^{*}$.

By assumption $\operatorname{si}(M / z)$ is not 3-connected so Proposition 2.5 implies that there is vertical 3-partition $\left(Z_{1}^{\prime}, Z_{2}^{\prime}, z\right)$. Let us assume that $x \in Z_{1}^{\prime}$.

Suppose that $y \in Z_{i}^{\prime}$, where $\{i, j\}=\{1,2\}$. Since $\mathrm{r}\left(\left(X_{1} \cap Y_{2}\right) \cup y\right)=2$ and $z \in \operatorname{cl}\left(Z_{i}^{\prime}\right)$ it follows that $\left(X_{1} \cap Y_{2}\right) \cup y \subseteq \operatorname{cl}\left(Z_{i}^{\prime}\right)$, as $y \neq z$ and $z \in X_{1} \cap Y_{2}$. Let $Z_{i}=Z_{i}^{\prime} \cup\left(X_{1} \cap Y_{2}\right) \cup y$ and let $Z_{j}=Z_{j}^{\prime}-Z_{i}$. Then Proposition 2.6 implies that $\left(Z_{1}, Z_{2}, z\right)$ is a vertical 3-partition. Note that $x \in Z_{1}$, whether i is equal to 1 or 2 .

Suppose that $i=2$. Then $\left(X_{1} \cap Y_{2}\right) \cup y \subseteq Z_{2} \cup z$. This means that $\left(X_{1} \cap Z_{1}\right) \cup x \subseteq\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}$. Lemma 4.7 says that $z \in \operatorname{cl}\left(\left(X_{1} \cap Z_{1}\right) \cup x\right)$. Therefore $z \in \operatorname{cl}\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right)$. But since $\{y, z\}$ spans $\left(X_{1} \cap Y_{2}\right) \cup y$ this implies that $\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}$ spans $X_{1} \cap Y_{2}$. As $x, y \in \operatorname{cl}\left(Y_{1}\right)$ it now follows that Y_{1} spans $X_{1} \cap Y_{2}$, in contradiction to Lemma 4.5(iv). Therefore $i=1$, so $\left(X_{1} \cap Y_{2}\right) \cup y \subseteq Z_{1} \cup z$.

We conclude that $X_{1} \cap Z_{2} \subseteq\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}$. Suppose that $\left|X_{1} \cap Z_{2}\right| \geq 2$. It follows from (v) of Lemma 4.5 that $\mathrm{r}\left(\left(X_{1} \cap Z_{2}\right) \cup z\right)=2$. Therefore z is in $\operatorname{cl}\left(X_{1} \cap Z_{2}\right)$, and hence in $\operatorname{cl}\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right)$. Exactly as before, we conclude that Y_{1} spans $X_{1} \cap Y_{2}$, a contradiction. Therefore $\left|X_{1} \cap Z_{2}\right| \leq 1$.

As $r\left(Z_{2}\right) \geq 3$ we deduce that $\left|X_{2} \cap Z_{2}\right| \geq 2$. But $\lambda\left(X_{2} \cap Z_{2}\right) \leq 2$ by (ii) of Lemma 4.5, so it follows that $\lambda\left(X_{2} \cap Z_{2}\right)=2$, and hence $\lambda\left(X_{1} \cup Z_{1}\right)=2$. Now $\lambda\left(X_{1} \cup x\right)+\lambda\left(Z_{1} \cup z\right)=4$, so the submodularity of the connectivity function implies that

$$
\lambda\left(\left(X_{1} \cap Z_{1}\right) \cup\{x, z\}\right)+\lambda\left(X_{1} \cup Z_{1}\right) \leq 4 .
$$

We now conclude that $\lambda\left(\left(X_{1} \cap Z_{1}\right) \cup\{x, z\}\right) \leq 2$. It follows from (vi) of Lemma 4.5 that $\mathrm{r}\left(\left(X_{1} \cap Z_{1}\right) \cup\{x, z\}\right)=2$.

We have already deduced that $\left(X_{1} \cap Y_{2}\right) \cup y \subseteq Z_{1} \cup z$, so $X_{1} \cap Y_{2} \subseteq$ $\left(X_{1} \cap Z_{1}\right) \cup z$. But $\left|X_{1} \cap Y_{2}\right| \geq 2$, and $\mathrm{r}\left(\left(X_{1} \cap Z_{1}\right) \cup\{x, z\}\right)=2$. Therefore $x \in \operatorname{cl}\left(X_{1} \cap Y_{2}\right)$. We also know that $y \in \operatorname{cl}\left(X_{1} \cap Y_{2}\right)$. Proposition 4.6 asserts that

$$
\sqcap\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}, X_{1} \cap Y_{2}\right)=1
$$

Since $x, y \in \operatorname{cl}\left(X_{1} \cap Y_{2}\right)$ it follows from Proposition 2.14 that $\mathrm{r}(\{x, y\}) \leq$ 1 , a contradiction as M is 3 -connected. This completes the proof of the lemma.

5. Proof of the main result

We restate Theorem 1.2 here.
Theorem 5.1. Suppose that M and N are 3 -connected matroids such that $|E(N)| \geq 4$ and C^{*} is a cocircuit of M with the property that M / x_{0} has an N-minor for some $x_{0} \in C^{*}$. Then either:
(i) there is an element $x \in C^{*}$ such that $\operatorname{si}(M / x)$ is 3 -connected and has an N-minor;
(ii) there is a four-element fan $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of M such that $x_{1}, x_{3} \in C^{*}$, and $\operatorname{si}\left(M / x_{2}\right)$ is 3 -connected with an N-minor;
(iii) there is a segment-cosegment pair $\left(L, L^{*}\right)$ such that $L \subseteq C^{*}$, and $\operatorname{cl}(L)-L$ contains a single element e. In this case $e \notin C^{*}$ and $\operatorname{si}(M / e)$ is 3-connected with an N-minor. Moreover $M / \operatorname{cl}(L)$ is 3-connected with an N-minor, and if $x_{i} \in L$ then M / x_{i} is 3-connected up to a unique spore $\left(\mathrm{cl}(L)-x_{i}, y_{i}\right)$; or,
(iv) there is a segment-cosegment pair $\left(L, L^{*}\right)$ such that L is a flat and $\left|L-C^{*}\right| \leq 1$. In this case M / L is 3 -connected with an N-minor, and if $x_{i} \in L$ then M / x_{i} is 3-connected up to a unique spore $\left(L-x_{i}, y_{i}\right)$.

Proof. Assume that M is a counterexample to the theorem. Let x_{0} be an element of C^{*} such that N is a minor of M / x_{0}. By hypothesis $\operatorname{si}\left(M / x_{0}\right)$ is not 3 -connected, so Proposition 2.5 implies there is a vertical 3-partition $\left(Z_{1}, Z_{2}, x_{0}\right)$. It follows easily that $|E(M)| \geq 7$. By Proposition 2.9 we will assume, relabeling as necessary, that $\left|E(N) \cap Z_{1}\right| \leq 1$. Let $Z=Z_{1}-\operatorname{cl}\left(Z_{2}\right)$. Lemma 2.10 implies that M / e has an N-minor for every element $e \in Z$, and Lemma 4.3 implies that there is a minimal partition $\left(X_{1}, X_{2}, x\right)$ with respect to C^{*} such that $x \in C^{*} \cap\left(Z \cup x_{0}\right)$, and $X_{1} \subseteq Z$.

Proposition 4.1 implies that C^{*} has a non-empty intersection with $X_{1}-$ $\operatorname{cl}\left(X_{2}\right)$. If $s \in C^{*} \cap\left(X_{1}-\operatorname{cl}\left(X_{2}\right)\right)$ then $\operatorname{si}(M / s)$ is not 3-connected by hypothesis. Therefore there is a vertical 3-partition $\left(S_{1}, S_{2}, s\right)$.
5.1.1. Suppose that $s \in C^{*}$ is contained in $X_{1}-\operatorname{cl}\left(X_{2}\right)$ and that $\left(S_{1}, S_{2}, s\right)$ is a vertical 3-partition such that $x \in S_{1}$. Then $\left|X_{1} \cap S_{1}\right| \geq 2$ and $\left(X_{1} \cap\right.$ $\left.S_{1}\right) \cup\{s, x\}$ is a segment of M.

Proof. Lemma 4.8 tells us that $\left|X_{1} \cap S_{2}\right|=1$. By Lemma 4.5(i) we know that $\left|X_{1} \cap S_{1}\right| \geq 1$. Assume that $\left|X_{1} \cap S_{1}\right|=1$. Then X_{1} contains exactly three elements: the unique element in $X_{1} \cap S_{2}$, the unique element in $X_{1} \cap S_{1}$, and s. By the definition of a vertical 3-partition it follows that $\mathrm{r}\left(X_{1}\right)=3$ and that X_{1} is a triad of M. As $x \in \operatorname{cl}\left(X_{1}\right)$ it follows that there is a circuit $C \subseteq X_{1} \cup x$ that contains x. It cannot be the case that the single element in $X_{1} \cap S_{2}$ is in C, for that would imply that $X_{1} \cap S_{2} \subseteq \operatorname{cl}\left(S_{1}\right)$, contradicting Lemma 4.5(iv). As C does not meet the triad X_{1} in a single element it follows that $\left(X_{1} \cap S_{1}\right) \cup\{x, s\}$ is a triangle.

If we let x_{2} be the unique element in $X_{1} \cap S_{1}$, let x_{4} be the unique element in $X_{1} \cap S_{2}$, and let $x_{1}=x$ and $x_{3}=s$, then $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a
four-element fan of M. If $\operatorname{si}\left(M / x_{2}\right)$ is 3-connected then statement (ii) of Theorem 5.1 holds, which is a contradiction as M is a counterexample to the theorem. Therefore we will assume that $\operatorname{si}\left(M / x_{2}\right)$ is not 3 -connected.

Since $\operatorname{si}\left(M / x_{3}\right)$ is not 3 -connected Theorem 2.15 asserts that $\operatorname{co}\left(M \backslash x_{3}\right)$ is 3 -connected. Assume that every triad of M that contains x_{3} also contains x_{2}. Then $\operatorname{co}\left(M \backslash x_{3}\right) \cong M \backslash x_{3} / x_{2}$. However x_{3} is contained in a parallel pair in M / x_{2}, so $\operatorname{si}\left(M / x_{2}\right)$ is obtained from $M \backslash x_{3} / x_{2}$ by possibly deleting parallel elements. As $M \backslash x_{3} / x_{2}$ is 3 -connected it follows that $\operatorname{si}\left(M / x_{2}\right)$ is 3 -connected, contrary to hypothesis.

Therefore there is a triad T^{*} of M that contains x_{3} but not x_{2}. Now T^{*} cannot meet the triangle $\left\{x_{1}, x_{2}, x_{3}\right\}$ in exactly one element, and therefore $x_{1} \in T^{*}$. Let y_{2} be the unique element in $T^{*}-\left\{x_{1}, x_{3}\right\}$. Since every triad that contains x_{3} must contain either x_{1} or x_{2}, and since both $\left\{x_{1}, x_{3}\right\}$ and $\left\{x_{2}, x_{3}\right\}$ are contained in triads of M it follows that $\operatorname{co}\left(M \backslash x_{3}\right) \cong M \backslash x_{3} / x_{1} / x_{2}$. Note that x_{3} is a loop of $M / x_{1} / x_{2}$, so $M \backslash x_{3} / x_{1} / x_{2}=M / x_{3} / x_{1} / x_{2}$.

As $\operatorname{si}\left(M / x_{3}\right)$ is not 3-connected there is a vertical 3-partition $\left(Z_{1}, Z_{2}, x_{3}\right)$ of M. By relabeling as necessary we may assume that $x_{1} \in Z_{2}$. Hence $x_{2} \in \operatorname{cl}\left(Z_{2} \cup x_{3}\right)$, so by Proposition 2.6 we may assume that $x_{2} \in Z_{2}$. Now $\left(Z_{1}, Z_{2}\right)$ is an exact 2-separation of M / x_{3}, but $M / x_{3} / x_{1} / x_{2}$ is 3 -connected. By Proposition 2.1 we see that $Z_{2}-\left\{x_{1}, x_{2}\right\}$ must contain at most one element. If $Z_{2}=\left\{x_{1}, x_{2}\right\}$ then $\mathrm{r}\left(Z_{2}\right) \leq 2$, a contradiction. Therefore $Z_{2}-\left\{x_{1}, x_{2}\right\}$ contains exactly one element. Let this element be y_{3}. It is easy to see that Z_{2} must be a triad of M.

We relabel x_{4} with y_{1}. Let $L=\left\{x_{1}, x_{2}, x_{3}\right\}$ and let $L^{*}=\left\{y_{1}, y_{2}, y_{3}\right\}$. Now L is a segment of M. Proposition 4.4 implies $X_{2} \cup x_{1}$ is a hyperplane, and as $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triangle it is easy to see that $\Pi\left(X_{2} \cup x_{1},\left\{x_{2}, x_{3}\right\}\right)=1$. If there were some element e in $\operatorname{cl}(L)-L$ then Proposition 2.14 would imply that $\mathrm{r}\left(\left\{e, x_{1}\right\}\right) \leq 1$, a contradiction. Therefore L is a flat of M. Moreover $\left(L-x_{i}\right) \cup y_{i}$ is a cocircuit of M for all $i \in\{1,2,3\}$, so $\left(L, L^{*}\right)$ is a segmentcosegment pair of M.

By applying Proposition 3.3 and Lemma 3.5 we see that M / L is 3 -connected, and that M / x_{i} is 3 -connected up to a unique spore ($L-x_{i}, y_{i}$) for all $i \in\{1,2,3\}$. We know that M / x_{3} has an N-minor. However $\left\{x_{1}, x_{2}\right\}$ is a parallel pair in M / x_{3}, so $M / x_{3} \backslash x_{1}$ has an N-minor. Furthermore $\left\{x_{2}, y_{3}\right\}$ is a series pair of $M / x_{3} \backslash x_{1}$, so $M / x_{3} \backslash x_{1} / x_{2}$, and hence M / L, has an N-minor. Thus statement (iv) of Theorem 5.1 holds, a contradiction. We conclude that $\left|X_{1} \cap S_{1}\right| \geq 2$.

Since $\lambda\left(X_{1} \cup x\right)=\lambda\left(S_{1} \cup s\right)=2$ it follows that

$$
\lambda\left(\left(X_{1} \cap S_{1}\right) \cup\{s, x\}\right)+\lambda\left(X_{1} \cup S_{1}\right) \leq 4
$$

Suppose that $\lambda\left(\left(X_{1} \cap S_{1}\right) \cup\{s, x\}\right) \geq 3$. Then $\lambda\left(X_{1} \cup S_{1}\right) \leq 1$, so $\lambda\left(X_{2} \cap S_{2}\right) \leq$ 1. However, as $\left|X_{1} \cap S_{2}\right|=1$ it follows that $\left|X_{2} \cap S_{2}\right| \geq 2$, so M contains a 2-separation, a contradiction. Thus $\lambda\left(\left(X_{1} \cap S_{1}\right) \cup\{s, x\}\right) \leq 2$ and it follows from Lemma 4.5(vi) that $\left(X_{1} \cap S_{1}\right) \cup\{s, x\}$ is a segment.
5.1.2. The rank of $X_{1} \cup x$ is three. Moreover, X_{1} is a cocircuit of M.

Proof. Let $s \in C^{*}$ be an element in $X_{1}-\operatorname{cl}\left(X_{2}\right)$ and suppose that $\left(S_{1}, S_{2}, s\right)$ is a vertical 3-partition such that $x \in S_{1}$. Then $\mathrm{r}\left(\left(X_{1} \cap S_{1}\right) \cup\{s, x\}\right)=2$ by 5.1.1, and as $\left|X_{1} \cap S_{2}\right|=1$, Lemma 4.5(iv) implies that $\mathrm{r}\left(X_{1} \cup x\right)=3$.

Proposition 4.4 asserts that $X_{2} \cup x$ is a flat of M, so X_{1} is a cocircuit.
5.1.3. Suppose that y and z are elements in $C^{*} \cap X_{1}$, and $\left(Y_{1}, Y_{2}, y\right)$ and $\left(Z_{1}, Z_{2}, z\right)$ are vertical 3 -partitions such that $x \in Y_{1} \cap Z_{1}$. Then

$$
\left|X_{1} \cap Y_{2}\right|=\left|X_{1} \cap Z_{2}\right|=1 \quad \text { and } \quad X_{1} \cap Y_{2}=X_{1} \cap Z_{2} .
$$

Moreover

$$
\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}=\left(X_{1} \cap Z_{1}\right) \cup\{x, z\} .
$$

Proof. Let x^{\prime} be the unique element in $X_{1} \cap Y_{2}$. From 5.1.1 we see that ($X_{1} \cap$ $\left.Y_{1}\right) \cup\{x, y\}$ is a segment. The only element of X_{1} not in $\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}$ is x^{\prime}. It cannot be the case that $x^{\prime} \in \operatorname{cl}\left(\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}\right)$ by Lemma 4.5(vi). The same arguments shows that $\left(X_{1} \cap Z_{1}\right) \cup\{x, z\}$ is a segment, and the only element of X_{1} not in this segment is x^{\prime}. Now the result follows easily.
5.1.4. Let $y \in C^{*}$ be an element in X_{1} and suppose that $\left(Y_{1}, Y_{2}, y\right)$ is a vertical 3-partition such that $x \in Y_{1}$. Then $\left|X_{2} \cap Y_{1}\right|=1$.

Proof. We know by 5.1.1 that $\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}$ is a segment. Let $L^{\prime}=$ $\left(X_{1} \cap Y_{1}\right) \cup\{x, y\}$ and let x^{\prime} be the unique element in $X_{1} \cap Y_{2}$. Since the complement of C^{*} is a flat of M which does not contain the segment L^{\prime} it follows that at most one element of L^{\prime} is not contained in C^{*}. As $\left|X_{1} \cap Y_{1}\right| \geq 2$ we can find an element $z \in\left(X_{1} \cap Y_{1}\right) \cap C^{*}$. There must be a vertical 3-partition $\left(Z_{1}, Z_{2}, z\right)$ such that $x \in Z_{1}$. From 5.1.3 we see that the unique element in $X_{1} \cap Z_{2}$ is x^{\prime}, and that $\left(X_{1} \cap Z_{1}\right) \cup\{x, z\}=L^{\prime}$.

Let Y_{i}^{\prime} and Z_{i}^{\prime} denote $X_{2} \cap Y_{i}$ and $X_{2} \cap Z_{i}$ respectively for $i=1,2$. As (X_{1}, X_{2}, x) is a minimal partition it follows that Y_{i}^{\prime} and Z_{i}^{\prime} are non-empty for all $i \in\{1,2\}$. Henceforth we will assume that $\left|Y_{1}^{\prime}\right|>1$ in order to obtain a contradiction.
5.1.5. $x \in \operatorname{cl}\left(Y_{1}^{\prime}\right)$.

Proof. We know that $\lambda\left(Y_{1}^{\prime} \cup x\right) \leq 2$ by Lemma 4.5(ii). Since $\left|Y_{1}^{\prime}\right| \geq 2$ it follows that $\lambda\left(Y_{1}^{\prime} \cup x\right)=2$ and hence $\lambda\left(X_{1} \cup Y_{2}\right)=2$. Since $x \in \operatorname{cl}\left(X_{1} \cup Y_{2}\right)$ it follows that $\lambda\left(Y_{1}^{\prime}\right)=2$, so Lemma 2.2 implies that $x \in \operatorname{cl}\left(Y_{1}^{\prime}\right)$.
5.1.6. Neither $Y_{1}^{\prime} \cap Z_{1}^{\prime}$ nor $Y_{2}^{\prime} \cap Z_{2}^{\prime}$ is empty.

Proof. We know from 5.1.5 that $x \in \operatorname{cl}\left(Y_{1}^{\prime}\right)$. Since $z \in \operatorname{cl}\left(Z_{2}\right)$ but $\left(X_{1} \cap Z_{1}\right) \nsubseteq$ $\operatorname{cl}\left(Z_{2}\right)$, we deduce that $x \notin \mathrm{cl}\left(Z_{2}\right)$ as L^{\prime} is a segment containing both x and z. Thus $x \notin \operatorname{cl}\left(Z_{2}^{\prime} \cup x^{\prime}\right)$. Hence $Y_{1}^{\prime}-Z_{2}^{\prime} \neq \emptyset$ so $Y_{1}^{\prime} \cap Z_{1}^{\prime} \neq \emptyset$.

Note that z is in the closure of $Z_{2}=Z_{2}^{\prime} \cup x^{\prime}$, but $z \notin \operatorname{cl}\left(Z_{2}^{\prime}\right)$ as X_{1} is a cocircuit by 5.1.2. This observation means that $x^{\prime} \in \operatorname{cl}\left(Z_{2}^{\prime} \cup z\right)$. However $z \in Y_{1}$, and $x^{\prime} \notin \operatorname{cl}\left(Y_{1}\right)$ by Lemma 4.5(iv). Thus $x^{\prime} \notin \operatorname{cl}\left(Y_{1}^{\prime} \cup z\right)$. It follows that $Z_{2}^{\prime}-Y_{1}^{\prime} \neq \emptyset$, so $Z_{2}^{\prime} \cap Y_{2}^{\prime} \neq \emptyset$.
5.1.7. $\left(L^{\prime} \cup\left(Y_{1}^{\prime} \cap Z_{1}^{\prime}\right), Y_{2} \cup Z_{2}\right)$ is a 3-separation of M.

Proof. Note that $\lambda\left(Y_{2}\right)=\lambda\left(Z_{2}\right)=2$, so $\lambda\left(Y_{2} \cap Z_{2}\right)+\lambda\left(Y_{2} \cup Z_{2}\right) \leq 4$. From 5.1.6 we see that $Y_{2}^{\prime} \cap Z_{2}^{\prime} \neq \emptyset$. Moreover $x^{\prime} \in\left(Y_{2} \cap Z_{2}\right)-\left(Y_{2}^{\prime} \cap Z_{2}^{\prime}\right)$, which implies that $\left|Y_{2} \cap Z_{2}\right| \geq 2$. Thus $\lambda\left(Y_{2} \cap Z_{2}\right) \geq 2$, so $\lambda\left(Y_{2} \cup Z_{2}\right) \leq 2$. As both $L^{\prime} \cup\left(Y_{1}^{\prime} \cap Z_{1}^{\prime}\right)$ and $Y_{2} \cup Z_{2}$ have cardinality at least three the claim follows.

Note that $y, z \in \operatorname{cl}\left(Y_{2} \cup Z_{2}\right)$. As y and z are contained in the segment L^{\prime} it follows that $L^{\prime} \subseteq \operatorname{cl}\left(Y_{2} \cup Z_{2}\right)$. If $\left|Y_{1}^{\prime} \cap Z_{1}^{\prime}\right| \geq 2$ then it must be the case that $L^{\prime} \subseteq \operatorname{cl}\left(Y_{1}^{\prime} \cap Z_{1}^{\prime}\right)$, for otherwise $\left(Y_{1}^{\prime} \cap Z_{1}^{\prime},\left(Y_{2} \cup Z_{2}\right) \cup L^{\prime}\right)$ is a 2-separation of M. But $L^{\prime} \subseteq \operatorname{cl}\left(Y_{1}^{\prime} \cap Z_{1}^{\prime}\right)$ implies that $X_{1} \cap Y_{1} \subseteq \operatorname{cl}\left(X_{2}\right)$, a contradiction.

Therefore $\left|Y_{1}^{\prime} \cap Z_{1}^{\prime}\right| \leq 1$. We know from 5.1.6 that $Y_{1}^{\prime} \cap Z_{1}^{\prime}$ is not empty. Let e be the unique element in $Y_{1}^{\prime} \cap Z_{1}^{\prime}$. Suppose that $e \in \operatorname{cl}\left(L^{\prime}\right)$. As $X_{2} \cup x$ is a hyperplane and L^{\prime} is a segment we see that $\Pi\left(X_{2} \cup x, L^{\prime}-x\right)=1$. As $e, x \in \operatorname{cl}\left(L^{\prime}-x\right)$ it follows from Proposition 2.14 that $\mathrm{r}(\{e, x\}) \leq 1$. We deduce from this contradiction that $e \notin \operatorname{cl}\left(L^{\prime}\right)$.

Hence $\mathrm{r}\left(L^{\prime} \cup e\right)=3$, so $\mathrm{r}\left(Y_{2} \cup Z_{2}\right)=\mathrm{r}(M)-1$ by 5.1.7. Thus the complement of $\operatorname{cl}\left(Y_{2} \cup Z_{2}\right)$ is a cocircuit. However $L^{\prime} \subseteq \operatorname{cl}\left(Y_{2} \cup Z_{2}\right)$, so e is a coloop of M, a contradiction.

Our assumption that $\left|X_{2} \cap Y_{1}\right| \geq 2$ has lead to an impossibility. Since $X_{2} \cap Y_{1}$ is non-empty by Lemma 4.5(i) we conclude that 5.1.4 is true.

Now we are in a position to complete the proof of Theorem 5.1. Let $x_{1}=x$, and let x_{2} be some element in $C^{*} \cap X_{1}$. There is a vertical 3-partition $\left(Y_{1}^{2}, Y_{2}^{2}, x_{2}\right)$ such that $x_{1} \in Y_{1}^{2}$. Lemma 4.8 tells us that $\left|X_{1} \cap Y_{2}^{2}\right|=1$. Let y_{1} be the unique element in $X_{1} \cap Y_{2}^{2}$.

We know that $\left|X_{1} \cap Y_{1}^{2}\right| \geq 2$ and $\left(X_{1} \cap Y_{1}^{2}\right) \cup\left\{x_{1}, x_{2}\right\}$ is a segment by 5.1.1. It follows from Proposition 2.14, and the fact that $\left(X_{1} \cap Y_{1}^{2}\right) \cup x_{2}$ is a segment while $X_{2} \cup x_{1}$ is a hyperplane, that $\left(X_{1} \cap Y_{1}^{2}\right) \cup\left\{x_{1}, x_{2}\right\}$ is a flat. The complement of C^{*} can contain at most one element of $\left(X_{1} \cap Y_{1}^{2}\right) \cup\left\{x_{1}, x_{2}\right\}$. Let $L=C^{*} \cap\left(\left(X_{1} \cap Y_{1}^{2}\right) \cup\left\{x_{1}, x_{2}\right\}\right)$. Then $\operatorname{cl}(L)=\left(X_{1} \cap Y_{1}^{2}\right) \cup\left\{x_{1}, x_{2}\right\}$, and $\operatorname{cl}(L)-L$ contains at most one element.

Suppose that $L=\left\{x_{1}, \ldots, x_{t}\right\}$. We know that $t \geq 3$. Let i be a member of $\{2, \ldots, t\}$. As $x_{i} \in C^{*}$ the fact that M is a counterexample to the theorem means that $\operatorname{si}\left(M / x_{i}\right)$ is not 3 -connected, so there is a vertical 3 -partition $\left(Y_{1}^{i}, Y_{2}^{i}, x_{i}\right)$ such that $x_{1} \in Y_{1}^{i}$. Then

$$
\left(X_{1} \cap Y_{1}^{i}\right) \cup\left\{x_{1}, x_{i}\right\}=\left(X_{1} \cap Y_{1}^{2}\right) \cup\left\{x_{1}, x_{2}\right\}
$$

by 5.1.3, and 5.1.4 implies that there is a unique element in $X_{2} \cap Y_{1}^{i}$. Let y_{i} be this element.

Define L^{*} to be $\left\{y_{1}, \ldots, y_{t}\right\}$. Note that $L \cap L^{*}=\emptyset$. We already know that $\left(\operatorname{cl}(L)-x_{1}\right) \cup y_{1}=X_{1}$ is a cocircuit. Suppose that $i \in\{2, \ldots, t\}$. Then $\left(\operatorname{cl}(L)-x_{i}\right) \cup y_{i}$ is Y_{1}^{i}. As Y_{1}^{i} contains only one element that is not in the segment $\operatorname{cl}(L)$ it follows that $\mathrm{r}\left(Y_{1}^{i}\right)=3$. Thus $\mathrm{r}\left(Y_{2}^{i} \cup x_{i}\right)=r(M)-1$. Furthermore $Y_{2}^{i} \cup x_{i}$ is a flat, for otherwise the complement of $\operatorname{cl}\left(Y_{2}^{i} \cup x_{i}\right)$ is
a cocircuit of rank at most two, which cannot occur since M is 3 -connected. Hence $\left(\operatorname{cl}(L)-x_{i}\right) \cup y_{i}$ is a cocircuit.

We have shown that $\left(L, L^{*}\right)$ is a segment-cosegment pair. Proposition 3.3 says that $M / \mathrm{cl}(L)$ is 3 -connected. It is easy to see that the hypotheses of Lemma 3.5 are satisfied, so M / x_{i} is 3 -connected up to the unique spore $\left(\operatorname{cl}(L)-x_{i}, y_{i}\right)$, for all $i \in\{1, \ldots, t\}$. We know that M / x_{2} has an N-minor, but as $\operatorname{cl}(L)-x_{2}$ is a parallel class of M / x_{2} it follows that $M / x_{2} \backslash(\operatorname{cl}(L)-$ $\left.\left\{x_{1}, x_{2}\right\}\right)$ has an N-minor. Since $\left\{x_{1}, y_{2}\right\}$ is a series pair of $M / x_{2} \backslash(\operatorname{cl}(L)-$ $\left.\left\{x_{1}, x_{2}\right\}\right)$ it follows that $M / x_{2} \backslash\left(\operatorname{cl}(L)-\left\{x_{1}, x_{2}\right\}\right) / x_{1}$, and hence $M / \operatorname{cl}(L)$, has an N-minor.

Suppose that $\left|\operatorname{cl}(L)-C^{*}\right|=0$. Then $L=\operatorname{cl}(L)$, and statement (iv) of Theorem 5.1 holds. Therefore we must assume that there is a single element e in $\operatorname{cl}(L)-L$. Lemma 2.10 tells us that M / e has an N-minor. If $\operatorname{si}(M / e)$ is 3 -connected, then statement (iii) holds. Therefore we must assume si(M / e) is not 3 -connected.

Let $x_{t+1}=e$. There must be a vertical 3-partition $\left(Y_{1}^{t+1}, Y_{2}^{t+1}, x_{t+1}\right)$. We assume that $x_{1} \in Y_{1}^{t+1}$. Since $\operatorname{cl}\left(Y_{1}^{t+1}\right)$ contains x_{1} and x_{t+1} it follows that $\operatorname{cl}(L) \subseteq \operatorname{cl}\left(Y_{1}^{t+1}\right)$. By Proposition 2.6 we may assume that Y_{1}^{t+1} contains $\operatorname{cl}(L)-x_{t+1}=L$.

As $X_{2} \cup x_{1}$ is a flat it follows that $x_{t+1} \notin \operatorname{cl}\left(X_{2}\right)$. However $x_{t+1} \in \operatorname{cl}\left(Y_{2}^{t+1}\right)$, so $X_{1} \cap Y_{2}^{t+1} \neq \emptyset$. We know that $X_{1}=\left(L \cup\left\{x_{t+1}, y_{1}\right\}\right)-x_{1}$, and as $L \subseteq Y_{1}^{t+1}$ it follows that $X_{1} \cap Y_{2}^{t+1}=\left\{y_{1}\right\}$.

Since $x_{t+1} \in \operatorname{cl}\left(Y_{2}^{t+1}\right)$, there is a circuit $C_{1} \subseteq Y_{2}^{t+1} \cup x_{t+1}$ such that $x_{t+1} \in C_{1}$. But $Y_{1}^{2}=\left(L \cup\left\{x_{t+1}, y_{2}\right\}\right)-x_{2}$ is a cocircuit of M and C_{1} must meet this cocircuit in more than one element. The only element of $Y_{1}^{2}-x_{t+1}$ that can be in C_{1} is y_{2}. Thus $y_{2} \in Y_{2}^{t+1}$.

Since (X_{1}, X_{2}, x) is a minimal partition it follows that $X_{2} \cap Y_{1}^{t+1}$ is nonempty. Assume that $\left|X_{2} \cap Y_{1}^{t+1}\right| \geq 2$. As $\lambda\left(X_{1}\right)+\lambda\left(Y_{2}^{t+1} \cup x_{t+1}\right)=4$, it follows that

$$
\lambda\left(\left(X_{1} \cap Y_{2}^{t+1}\right) \cup x_{t+1}\right)+\lambda\left(X_{1} \cup Y_{2}^{t+1}\right) \leq 4
$$

Furthermore $\lambda\left(X_{1} \cup x_{1}\right)+\lambda\left(Y_{2}^{t+1} \cup x_{t+1}\right)=4$, so

$$
\lambda\left(\left(X_{1} \cap Y_{2}^{t+1}\right) \cup x_{t+1}\right)+\lambda\left(X_{1} \cup Y_{2}^{t+1} \cup x_{1}\right) \leq 4
$$

As $\left(X_{1} \cap Y_{2}^{t+1}\right) \cup x_{t+1}=\left\{x_{t+1}, y_{1}\right\}$ we deduce that $\lambda\left(\left(X_{1} \cap Y_{2}^{t+1}\right) \cup x_{t+1}\right)=2$. Thus

$$
\begin{equation*}
\lambda\left(X_{1} \cup Y_{2}^{t+1}\right), \lambda\left(X_{1} \cup Y_{2}^{t+1} \cup x_{1}\right) \leq 2 . \tag{1}
\end{equation*}
$$

Both of the sets in Equation (1) contain at least two elements, and by assumption $\left|X_{2} \cap Y_{1}^{t+1}\right| \geq 2$. Therefore $X_{2} \cap Y_{1}^{t+1}$ and $\left(X_{2} \cap Y_{1}^{t+1}\right) \cup x_{1}$ are exactly 3 -separating. Since $x_{1} \in \operatorname{cl}\left(X_{1}\right)$ we see from Lemma 2.2 that $x_{1} \in \operatorname{cl}\left(X_{2} \cap Y_{1}^{t+1}\right)$. Thus there is a circuit $C_{2} \subseteq\left(X_{2} \cap Y_{1}^{t+1}\right) \cup x_{1}$ such that $x_{1} \subseteq C_{2}$. We have already noted that Y_{1}^{2} is a cocircuit, and as $x_{1} \in Y_{1}^{2}$ it follows that $\left|C_{2} \cap Y_{1}^{2}\right| \geq 2$. As $C_{2}-x_{1} \subseteq X_{2}$ the only element other than
x_{1} that can be in $C_{2} \cap Y_{1}^{2}$ is y_{2}. Hence $y_{2} \in C_{2} \subseteq Y_{1}^{t+1}$, a contradiction as we have already deduced that $y_{2} \in Y_{2}^{t+1}$.

We are forced to conclude that $X_{2} \cap Y_{1}^{t+1}$ contains a unique element. Let this element be y_{t+1}. Therefore $Y_{1}^{t+1}=L \cup y_{t+1}$. Thus $\mathrm{r}\left(Y_{1}^{t+1}\right)=3$, so $\mathrm{r}\left(Y_{2}^{t+1}\right)=\mathrm{r}(M)-1$. If $Y_{2}^{t+1} \cup x_{t+1}$ is not a hyperplane, then the complement of $\operatorname{cl}\left(Y_{2}^{t+1} \cup x_{t+1}\right)$ is a cocircuit of rank at most two, a contradiction. Therefore $\left(\operatorname{cl}(L)-x_{t+1}\right) \cup y_{t+1}=Y_{1}^{t+1}$ is a cocircuit.

Let $L_{0}=\left\{x_{1}, \ldots, x_{t+1}\right\}$ and let $L_{0}^{*}=\left\{y_{1}, \ldots, y_{t+1}\right\}$. Note that $L_{0}=\operatorname{cl}(L)$, so L_{0} is a flat. We have shown that $\left(L_{0}, L_{0}^{*}\right)$ is a segmentcosegment pair. Moreover, M / x_{t+1} is 3 -connected up to a unique spore $\left(L_{0}-x_{t+1}, y_{t+1}\right)$, by Lemma 3.5. By relabeling L_{0} and L_{0}^{*} as L and L^{*} respectively we see that statement (iv) of Theorem 5.1 holds. Hence M is not a counterexample, and this contradiction completes the proof of Theorem 5.1.

6. Acknowledgements

We thank Geoff Whittle for suggesting the problem, and for valuable discussions.

References

[1] Bixby, R. E., A simple theorem on 3-connectivity, Linear Algebra Appl. 45 (1982), 123-126.
[2] Geelen, J., Gerards, A., and Whittle, G., Triples in matroid circuits, in preparation.
[3] Hall, R., On contracting hyperplane elements from a 3-connected matroid, submitted to Advances in Appl. Math.
[4] Hall, R., Oxley, J., and Semple, C., The structure of equivalent 3-separations in a 3-connected matroid, Advances in Appl. Math. 35 (2005), 123-181.
[5] Lemos, M., On 3-connected matroids, Discrete Math., 73 (1989), 273-283.
[6] Oxley, J. G., Matroid Theory Oxford University Press, New York, 1992.
[7] Oxley, J., Semple, C., and Vertigan, D., Generalized $\Delta-Y$ exchange and k-regular matroids, J. Combin. Theory Ser. B, 79 (2000), 1-65.
[8] Oxley, J., Semple, C., and Whittle, G., The structure of the 3 -separations of 3-connected matroids, J. Combin. Theory Ser. B 92 (2004), 257-293.
[9] Oxley, J., Semple, C., and Whittle, G., Maintaining 3-connectivity relative to a fixed basis, Advances in Appl. Math., to appear.
[10] Seymour, P. D., Decomposition of regular matroids, J. Combin. Theory Ser. B, 28 (1980), 305-359.

School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge UB8 3PH, United Kingdom

E-mail address: rhiannon.hall@brunel.ac.uk
School of Mathematics, Statistics and Computer Science, Victoria University of Wellington, P.O. BOX 600, Wellington, New Zealand

E-mail address: dillon.mayhew@mcs.vuw.ac.nz

[^0]: The research of the first author was supported by a Nuffield Foundation Award for Newly Appointed Lecturers in Science, Engineering and Mathematics.

 The research of the second author was supported by a NZ Science \& Technology Postdoctoral Fellowship.

