CONTRACTING AN ELEMENT FROM A COCIRCUIT

RHIANNON HALL AND DILLON MAYHEW

ABSTRACT. We consider the situation that M and N are 3-connected
matroids such that |E(N)| > 4 and C* is a cocircuit of M with the
property that M/zo has an N-minor for some xo € C*. We show that
either there is an element z € C* such that si(M/x) or co(si(M/z))
is 3-connected with an N-minor, or there is a four-element fan of M
that contains two elements of C* and an element x such that si(M/x)
is 3-connected with an N-minor.

1. INTRODUCTION

There are a number of tools in matroid theory that tell us when we can
remove an element or elements from a matroid, while maintaining both the
presence of a minor and a certain type of connectivity. Some recent results
are of this type, but have the additional restriction that the element(s) must
have a certain relation to a given substructure in the matroid. For example,
Oxley, Semple, and Whittle [9] fix a basis in a matroid and consider either
contracting elements that are in the basis, or deleting elements that are
not in the basis. Hall [3] has investigated when it is possible to contract
an element from a given hyperplane in a 3-connected matroid and remain
3-connected (up to parallel pairs).

We make a contribution to this collection of tools by investigating the
circumstances under which we can contract an element from a cocircuit while
maintaining both the presence of a minor and 3-connectivity (up to parallel
pairs), and the structures which prevent us from doing so. Our result has
been employed by Geelen, Gerards, and Whittle [2] in their characterization
of when three elements in a matroid lie in a common circuit.

Theorem 1.1. Suppose that M and N are 3-connected matroids such that
|[E(N)| >4 and C* is a cocircuit of M with the property that M/xo has an
N-minor for some xg € C*. Then either:

(i) there is an element x € C* such that si(M/x) is 3-connected and has
an N-minor;

(ii) there is an element x € C* such that co(si(M/x)) is 3-connected and
has an N-minor; or,
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(iii) there is a sequence of elements (x1, T2, x3, x4) from E(M) such that
{z1, x2, x3} is a circuit, {x2, T3, x4} 1S a cocircuit, x1, r3 € C*, and
si(M/x2) is 3-connected with an N-minor.

The next example shows that statement (ii) of Theorem 1.1 is necessary.

a
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FIGURE 1. The graphic matroid M (Ks\e).

Consider the rank-4 matroid M whose geometric representation is shown
in Figure 1. Note that M = M (K5\e). The set C = {a, b, ¢, d} is a circuit
of M, and hence a cocircuit of M*. Moreover M*/z has a minor isomorphic
to M(K,) for any element z € C. However co(M\z) is not 3-connected,
as it contains a parallel pair, so si(M*/z) is not 3-connected. On the other
hand co(si(M*/x)) is 3-connected, and has a minor isomorphic to M (Ky).

More generally we suppose that r is an integer greater than two. Consider
a basis A = {ay,...,a,} in the projective space PG(r —1, R). Let [ be a line
of PG(r — 1, R) that is freely placed relative to A, and for all i € {1,...,r}
let b; be the point that is in both [ and the hyperplane of PG(r — 1, R)
spanned by A — a;. Let B = {b1,...,b,}. We will use O, to denote the
restriction of PG(r — 1, R) to AU B.

Suppose that ©/. is an isomorphic copy of ©, with {a},...,a.} U B as
its ground set. Assume also that the isomorphism from O, to O/ acts as
the identity on B and takes a; to a for all ¢ € {1,...,r}. Let M be the
generalized parallel connection of ©, and ©. That is, M is a matroid on
the ground set AU A’U B and the flats of M are exactly the sets F' such that
FN(AUB) is a flat of ©, and FN(A'UB) is a flat of ©/.. Note that if r = 3
then M is isomorphic to M (Kj5\e), the matroid illustrated in Figure 1.

It is easy to see that O, is self-dual and that C' = (A —a1) U (A" — d})
is a circuit of M, and hence a cocircuit of M*. Moreover M*/x has an
isomorphic copy of ©, as a minor for every element x € C. We note that
every three-element subset of A is a circuit of M*. Thus A — x is a parallel
class of M*/x for every x € C' N A. However the simplification of M*/x
contains a unique series pair, and is therefore not 3-connected. On the
other hand co(si(M*/z)) is 3-connected, and has a minor isomorphic to ©,.

The structure described in the last example has been discovered before.
The matroid ©, is a fundamental object in the generalized A-Y operation
of Oxley, Semple, and Vertigan [7]. Furthermore this construction is an
example of a ‘crocodile’, as described by Hall, Oxley, and Semple [4].
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To see that statement (iii) of Theorem 1.1 is necessary consider the graph
G shown in Figure 2. Let C* be the cocircuit of M = M(G) comprising
the edges incident with the vertex a. It is easy to see that if z is any edge
between a and a vertex in {b, ¢, d, e, f} then M/x has a minor isomorphic
to M(Kg), and that these are the only edges in C* with this property.
But in this case neither si(M/z) nor co(si(M/z)) is 3-connected. On the
other hand, if we let x1 be the edge ad, x2 be cd, x3 be ac, and x4 be bc,
then (x1, xa, 3, x4) is a sequence of the type described in statement (iii) of
Theorem 1.1.

¢ f
FIGURE 2. The graph G.

Our main result shows that there are essentially only two structures that
prevent us from finding an element = € C* such that si(M/x) is 3-connected
with an N-minor. These structures are named ‘segment-cosegment pairs’
and ‘four-element fans’. The dual of the matroid in Figure 1 contains a
segment-cosegment pair, and the graph in Figure 2 contains a four-element
fan. Before describing our result in detail we fix some terminology. Sup-
pose that M is a matroid. Recall that a triangle of M is a three-element
circuit, and a triad is a three-element cocircuit. A four-element fan of
M is a sequence (x1, z2, x3, x4) of distinct elements from E(M) such that
{z1, T2, x3} is a triangle and {xy, x3, x4} is a triad. A segment of M is a set
L such that |L| > 3 and every three-element subset of M is a triangle, and
a cosegment of M is a segment of M*. We say that (L, L*) is a segment-
cosegment pair if L = {x1,..., 2} is a segment of M, and L* = {y1,...,y}
is a set such that L N L* = () and for every x; € L the set (cl(L) — ;) U y;
is a cocircuit. Segment-cosegment pairs will be considered in detail in Sec-
tion 3. A spore is a pair (P, s) such that P is a rank-one flat, and P U s is
a cocircuit. A matroid M is 3-connected up to a unique spore if M contains
a single spore (P, s), and whenever (X, Y) is a k-separation of M for some
k < 3 then either X C PUsor Y C PUs. Theorem 1.1 follows from the
next result. It gives a more detailed analysis of the structures we encounter.

Theorem 1.2. Suppose that M and N are 3-connected matroids such that
|E(N)| >4 and C* is a cocircuit of M with the property that M/xo has an
N-minor for some xg € C*. Then either:
(i) there is an element x € C* such that si(M/x) is 3-connected and has
an N-minor;
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(ii) there is a four-element fan (x1, T2, x3, x4) of M such that x1, 3 € C*,
and si(M/x2) is 3-connected with an N-minor;

(iii) there is a segment-cosegment pair (L, L*) such that L C C*, and
cl(L) — L contains a single element e. In this case e ¢ C* and si(M/e)
is 3-connected with an N-minor. Moreover M/ cl(L) is 3-connected
with an N-minor, and if ©; € L then M/x; is 3-connected up to a
unique spore (cl(L) — x;, y;); or,

(iv) there is a segment-cosegment pair (L, L*) such that L is a flat and
|L — C*| < 1. In this case M /L is 3-connected with an N-minor, and
if ©; € L then M/z; is 3-connected up to a unique spore (L — x;, ;).

We note that if (L, L*) is a segment-cosegment pair of the matroid M,
and M/ cl(L) has an N-minor, then |E(M) — cl(L)| > 4. Under these hy-
potheses Proposition 3.6 tells us that M/ cl(L) is isomorphic to co(si(M/x;))
for any element x; € L. Therefore Theorem 1.1 does indeed follow from The-
orem 1.2.

By dualizing we immediately obtain the following corollary of Theo-
rem 1.1.

Theorem 1.3. Suppose that M and N are 3-connected matroids such that
|[E(N)| > 4 and C is a circuit of M with the property that M\xo has an
N-minor for some xg € C. Then either:

(i) there is an element x € C such that co(M\x) is 3-connected and has
an N-minor;
(ii) there is an element x € C such that si(co(M\z)) is 3-connected and
has an N-minor; or,
(iii) there is a four-element fan (x1, x2, x3, T4) in M such that xo, x4 € C,
and co(M\x3) is 3-connected with an N-minor.

We note that Lemos [5] has considered the situation that a 3-connected
matroid M contains a circuit C' with the property that M\z is not 3-con-
nected for any element x € C'. He shows that in this case C' meets at least
two triads of M.

In Section 2 we introduce essential notions of matroid connectivity. Sec-
tion 3 contains a detailed discussion of one of the structures we uncover:
segment-cosegment pairs. In Section 4 we collect some preliminary lem-
mas, and in Section 5 we complete the proof of Theorem 1.2. Notation
and terminology generally follow that of Oxley [6], except that the simple
(respectively cosimple) matroid associated with the matroid M is denoted
si(M) (respectively co(M)). We consistently write z instead of {z} for the
set containing the single element z.

2. ESSENTIALS

This section collects some elementary results on matroid connectivity.
Let M be a matroid on the ground set E. The connectivity function of M,
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denoted by Ap; (or A when there is no ambiguity), takes subsets of E to
Z+ U {0}. Tt is defined so that

A (X) = 1ar(X) + 1 (E — X) — v(M)

for any subset X C E. Note that A(X) = AM(E — X) and A\p+(X) = Ay (X)
for any subset X C F. It is well known, and easy to verify, that the con-
nectivity function of M is submodular. That is, for all X, Y C FE, the
inequality

AMXNY)4+AMXUY) <AX)+AY)

is satisfied.

We say that a subset X C F is k-separating or a k-separator of M if
A(X) < k, and we say that a partition (X, £ — X) is a k-separation of M if
X is k-separating and | X|, |E — X| > k. A k-separator X or a k-separation
(X, E—X)is exact if \(X) =k —1. A matroid M is n-connected if M has
no k-separation for any k& < n. We define a k-partition of M to be a partition
(X1, Xo,...,X,,) of E such that X; is k-separating for all 1 < i < n. We
say that the k-partition (X1, Xo,..., X)) is ezact if each k-separator X; is
exact.

The next result is easy.

Proposition 2.1. Let N be a minor of the matroid M and let X be a subset
of E(M). Then A\y(E(N)NX) < A (X).

Proposition 2.2. Suppose that M is a matroid and that (X,Y, z) is a
partition of E(M). If N\(X) = XY then z is in cl(X)Ncl(Y) orin cl*(X)N
cl*(Y), but not both.

Proof. Since
AMX)=r(X)+r(YUz)—r(M)=r(XUz)+r(Y)—r(M)=X\Y)
it follows that r(Y Uz) —r(Y) = r(X U z) — r(X). Therefore, z € cl(X) if
and only if z € cl(Y). In the case that z ¢ cl(X) and z ¢ cl(Y') then
r'(YUz)—r"(Y)= (Y Uz|+1(X) —1r(M))
—(JY]+r(XUz)—r(M))=1+1(X)—-r(XUz)=0.

Thus z € cl*(Y). The same argument shows that z € cl*(X).
Finally we note that z € cl1*(X) if and only if z ¢ cl(Y). Thus cl(X)Ncl(Y)
and cl*(X) Ncl*(Y) are disjoint. O

The next result is well known, and follows without difficulty from the dual
of [8, Lemma 2.5].

Proposition 2.3. Suppose that X is an exactly 3-separating set of the 3-con-
nected matroid M. Suppose also that A C E(M) — X. If |A] > 3 and
A Ccl*(X) then A is a cosegment of M.
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Definition 2.4. Suppose that M is a matroid and that z € E(M). Let
(X1, X2) be a partition of E(M) — x such that there is a positive integer k
with the property that:

(i) AM(X1) = A(X2) =k —1;

(i) r(X1), r(X2) > k; and,

(iii) x € cl(X1) Ncl(Xa).
In this case (X1, Xo, x) is a vertical k-partition of M.

The next result is well known and easy to prove.

Proposition 2.5. Let M be a 3-connected matroid and suppose that si(M/x)
is not 3-connected for some x € E(M). Then there exists a vertical 3-parti-
tion (Xl, XQ, 1‘) OfM.

Proposition 2.6. Suppose that (X1, Xo, ) is vertical k-partition of the
k-connected matroid M. Let A be a subset of cl(Xo U x). Then (Xy —
A, (XoUA) —x, x) is also a vertical k-partition of M.

Proof. Suppose that z is some element in X; N A. Then \(X; — z2) is either
k—2or k—1 1If (X1 —2) = k—2 then (X; — 2, XoU{x, z}) is a
(k — 1)-separation of M, a contradiction. Hence A\(X; — z) = k — 1 which
implies that r(X; — 2z) = r(X1). Thus cl(X; — z) = cl(X;), and hence
x € cl(X1 — z). It follows that (X; — 2z, X2 U z, x) is a vertical k-partition
of M. By continuing to transfer elements in X7 N A from X into Xy we
eventually conclude that (X2 — A, (X2 U A) —x, x) is a vertical k-partition
of M, as desired. O

Suppose that M; and Ms are matroids such that E(M;) N E(My) =
{p}. Then we can define the parallel connection of M; and Ms, denoted
by P(M;i, Ms). The ground set of P(M;i, Ms) is E(M;) U E(Ms). If p is a
loop in neither M; nor My then the circuits of P(Mj, Ms) are exactly the
circuits of Mj, the circuits of Ma, and sets of the form (C; — p) U (Cy — p),
where C; is a circuit of M; such that p € C; for ¢ =1, 2. If p is a loop in M;
then P(M;, My) is defined to be the direct sum of M; and My /p. Similarly,
if p is a loop in My then P(M;, Ms) is defined to be the direct sum of M;/p
and My. We say that p is the basepoint of the parallel connection. It is clear
that P(Ml, Mg) = P(MQ, Ml).

The next result follows from [6, Proposition 7.1.15 (v)].

Proposition 2.7. Suppose that My and My are matroids such that E(Mp)N
E(Ms) = {p}. If e € E(My) — p then P(My, Ms)\e = P(M\e, M2) and
P(Ml, MQ)/@ = P(Ml/e, MQ)

Assume that M; and My are matroids such that E(M;) N E(Msz) = {p}.
If p is not a loop or a coloop in either M; or My then P(M;y, M)\p is the
2-sum of My and M, denoted by M; G2 Ms. We say that p is the basepoint
of the 2-sum.

The next result follows from [10, (2.6)].
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Proposition 2.8. If (X1, X2) is an exact 2-separation of a matroid M
then there exist matroids My and Mo on the ground sets X1 Up and Xo Up
respectively, where p is in neither X1 nor Xo, such that M is equal to My ®2
M.

Proposition 2.9. Suppose that N is a 3-connected matroid. Let M be a
matroid with a vertical 3-partition (X1, Xo, x) such that N is a minor of
M/x. Then either |[E(N)NX1| <1, or |[E(N)N Xs3| < 1.

Proof. Since (X1, X2) is a 2-separation of M /x the result follows immedi-
ately from Proposition 2.1. O

Lemma 2.10. Suppose that N is a 3-connected matroid such that |E(N)| >
2. Let M be a matroid with a vertical 3-partition (X1, Xo, x) such that N
is a minor of M/x. If |[E(N)N X1| < 1 then M/xz/e has an N-minor for
every element e € X7 — clpr(X2).

Proof. Since (X7, X3) is an exact 2-separation of M/xz, it follows from
Proposition 2.8 that M/z is the 2-sum of matroids M; and M, along
the basepoint p, where E(M;) = X; Up and E(Ms3) = Xo Up. Thus
M/$ = P(Ml, MQ)\p.

Suppose that E(N) N X; = 0. Then there is a partition (A4, B) of X;
such that N is a minor of M/z/A\B. Suppose that p is a loop in M;/A\B.
Proposition 2.7 implies that

M/a/A\B = P(My/A\B, My)\p.

Now the definition of parallel connection implies that M/z/A\B is isomor-
phic to My /p. Tt is easily seen that if e € X; then there is a minor M’ of
M /e such that E(M') = {p} and p is a loop of M’. Proposition 2.7 implies
that P(M’, Ms)\p is a minor of M/xz/e. But P(M’, My)\p is isomorphic to
Ms/p, so M/x/e has an N-minor.

Next we suppose that p is a coloop of M;/A\B. Then, by definition of
the parallel connection, M /x/A\B is isomorphic to Ms\p. Suppose that e €
X1 —cl(X2). Since p is not a coloop of Ms it follows easily that p € cly(X2).
Thus e is not parallel to p in My. Therefore there is a minor M’ of M /e
such that E(M') = {p} and p is a coloop of M'. Again using Proposition 2.7
we see that P(M', My)\p is a minor of M/z/e. But since P(M’, Ms)\p is
isomorphic to My\p we deduce that M/x/e has an N-minor.

Now we assume that |E(N)NX;| = 1 and that z is the unique element in
E(N)NX;. There is a partition (A, B) of X; — z such that N is a minor of
M /z/A\B. It follows from Proposition 2.7 that P(M;/A\B, Ms)\p has an
N-minor. Consider the matroid M;/A\B. If {z, p} is not a parallel pair in
this matroid then z must be a loop or coloop in P(M;/A\B, M>)\p. This
implies that z is a loop or coloop in NV, a contradiction as IV is 3-connected
and |E(N)| > 2. Therefore z and p are parallel in M;/A\B, and therefore
P(M;/A\B, M>)\p is isomorphic to Ms. Thus My has an N-minor.

Since p is not a loop or coloop of M; there is a circuit of size at least
two in M; that contains p. Suppose that e € X; — clp(Xs2). Then e
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cannot be parallel to p in My, so M; /e has a circuit of size at least two that
contains p. Hence there is a minor M’ of Mj/e such that p € E(M’') and
M’ consists of a parallel pair. Proposition 2.7 implies that P(M’, M)\p is
a minor of M/xz/e. But P(M’', Ms)\p is isomorphic to My, so M/x/e has
an N-minor. U

Definition 2.11. Suppose that M is a matroid and that A and B are subsets
of E(M). The local connectivity between A and B, denoted by M(A, B), is
defined to be r(A) + r(B) — r(A U B). Equivalently, M(A, B) is equal to
Ar|aus)(A).

Proposition 2.12. [8, Lemma 2.4(iv)] Let M be a matroid and let
(A, B, C) be a partition of E(M). Then (A, B)+A(C) =MN(A, C)+A(B).
Hence N(A, B) =N(A, C) if and only if A\(B) = \(C).

Corollary 2.13. Let (X, Y, Z) be an exact 3-partition of the 3-connected
matroid M. Then N(X,Y) =N(X, Z2) =1(Y, 2).

Proposition 2.14. Suppose that M is a matroid and that X and Y are
disjoint subsets of E(M) such that (X, Y ) =1. If x,y € X Ncl(Y) then
r({z, y}) < 1.

Proof. Assume that r({z, y}) = 2. Let X’ = cl(X) and Y/ = cl(Y). It is
easy to see that r(X'UY’) =r(X UY). However

r(X'UY) <r(X)+r(Y) —r(X'nY) <r(X)+r(Y)—-2=r(XUY) - 1.
This contradiction completes the proof. O

We conclude this section by stating a fundamental tool in the study of
3-connected matroids, due to Bixby [1].

Theorem 2.15 (Bixby’s Lemma). Let M be a 3-connected matroid and
suppose that x is an element of E(M). Then either si(M/x) or co(M\x) is
3-connected.

3. SEGMENT-COSEGMENT PAIRS

Suppose that M is a matroid. Recall that L is a segment of M if |L| >
3 and every three-element subset of L is a circuit of M, and that L* is
a cosegment of M if |[L*| > 3 and every three-element subset of L* is a
cocircuit. We restate the definition of segment-cosegment pairs given in
Section 1.

Definition 3.1. Suppose that L = {z1,...,x;} is a segment of the matroid
M and there is a set L* = {y1,...,y:} with the property that L N L* = ()
and (cl(L) —x;) Uy; is a cocircuit of M for all ¢+ € {1,...,¢}. In this case we
say that (L, L*) is a segment-cosegment pair of M.

In a 3-connected matroid a segment-cosegment pair is an example of a
‘crocodile’, a structure that provides a collection of equivalent 3-separations.
‘Crocodiles’ were considered by Hall, Oxley, and Semple [4]. The next result
explains the name segment-cosegment pair.



CONTRACTING COCIRCUIT ELEMENTS 9

Proposition 3.2. Suppose that (L, L*) is a segment-cosegment pair of the
3-connected matroid M. Then L* is a cosegment of M.

Proof. Suppose that y; € L*. The definition of a segment-cosegment pair
means that y; € cl*(cl(L)). Thus L* C cl*(cl(L)). Moreover cl(L) is exactly
3-separating in M. The result follows by Proposition 2.3. U

Proposition 3.3. Suppose that (L, L*) is a segment-cosegment pair of the
3-connected matroid M. Then M/ cl(L) is 3-connected.

Proof. Suppose that L = {x1,...,2;} and L* = {y1,...,y:}. Assume that
M/ cl(L) is not 3-connected, so that (X;, Xo) is a k-separation of M/ cl(L)
for some k < 2. Let Ly = cl(L). Note that for i € {1, 2} we have

Tar/Lo(Xi) = tar (X U Lo) — v (Lo) = 1ar(Xi) — M (X, Lo),

so 1y (Xs) = 1ar/10(Xi) + Mar(Xi, Lo)-
Suppose that My (X1, Lo) = 0. Then rp(X1) = raz/r,(X1) and rp(Xo U
Lo) =1p1/14(X2) +2, s0

A (X1) = Ty (X1) + (taryze (X2) +2) = (1(M/Lo) + 2)
= )‘M/Lo(Xl) < k.

This is a contradiction as M is 3-connected. By using a symmetric argument
we can conclude that Mas(X;, Lo) > 0 for all ¢ € {1, 2}.

Suppose that x; € cly;(X7) for some i € {1,...,t}. Then there is a circuit
Cy C X Uz, such that z; € Cy. Forallk € {1,...,t}—i theset (Lo—x)) Uy
is a cocircuit. It cannot be the case that C| meets this cocircuit in a single
element, so y, € X1 for all k € {1,...,t} — .

Now suppose that z; € cly/(Xz) for some j € {1,...,t}. By using the
same arguments as above we can conclude that L* —y; € Xo. As L* —y;
and L* —y; have a non-empty intersection this is a contradiction. Therefore
clp(X2) N L = . Note that M(Xa, Lo) < 2 because r(Lg) = 2. If M(Xs, Lo)
were two, it would follow that Ly C cl(X2). Hence M(Xs, Lg) = 1.

Let j be an element of {1,...,t} — 4. Then Ly C clp(X2 U x;), and
there must be a circuit Co C Xy U {z;, ;} such that {z;, z;} C Cs. But
then Cy meets the cocircuit (Lo — ;) U y; in a single element, z;. From
this contradiction we conclude that cly/(X;) N L = ), and by symmetry
clpr(X2) N L = (). This means that

FIM(Xl, Lo) = |_|M(X2, Lo) =1.

It must be the case that zo € cly/ (X1 U xy), and there is a circuit C3 C
X1 U{xq1, zo} such that {1, 2} C Cs. Since (Lo — z1) U y; is a cocircuit
we conclude that y; € X;. But we can use an identical argument to show
that y; € Xo. This contradiction completes the proof. O

We now restate the definition of a spore.
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Definition 3.4. Suppose that P is a rank-one flat of a matroid M and that
s is an element of E(M) such that P U s is a cocircuit. Then we say that
(P, s) is a spore.

Recall from Section 1 that a matroid M is 3-connected up to a unique
spore if it contains a single spore (P, s), and whenever (X, Y) is a k-sepa-
ration of M for some k < 3 then either X C PUsor Y C PUs.

Lemma 3.5. Suppose that (L, L*) is a segment-cosegment pair of the
3-connected matroid M where |E(M) — cl(L)| > 4. Let L = {x1,..., 2}
and L* = {y1,...,yt}. Then M/x; is 3-connected up to a unique spore
(cl(L) — x4, y;), for alli e {1,...,t}.

Proof. Let E be the ground set of M and let Ly = cl(L). We will show
that M/x; is 3-connected up to the unique spore (Lg — x;, y;). Certainly
(Lo — x4, y;) is a spore of M /z;. Suppose that (P, s) is a spore of M /x; that
is distinct from (Lo — x;, ¥;).

We initially assume that Lo — z; = P. Thus s # y;. As (Lo — x;) Us and
(Lo — z;) Uy; are both cocircuits of M /z; it follows that E — (Lo U {s, y;})
is the intersection of two hyperplanes of M/x;. Thus

'ayz (B — (Lo U {s, 4i})) < x(M/x;) — 2.

and therefore
'/ (B — (LoU{s, 4i})) <t(M/x;) —2 =r(M/Log) — 1.

Hence {s, y;} contains a cocircuit in M/Lg. Therefore M/Ly contains a
cocircuit of size at most two, a contradiction as M/Lg is 3-connected by
Proposition 3.3, and |E(M/Lg)| > 4.

Now we must assume that Ly — x; # P. Hence P U z; is a rank-two flat
of M that meets Lg in exactly one element, x;. Suppose that P contains a
single element p. Then {p, s} is a cocircuit of M, a contradiction. Therefore
P U z; contains at least one triangle. Suppose that P does not contain y;,
where j # i. Then there is a triangle in P U x; that meets the cocircuit
(Lo — xj) Uy, in exactly one element, x;. This contradiction shows that
L* — Yi Q P.

Assume that ¢t > 3. As L* is a cosegment there is a triad of M contained
in L* — y;. However this triad is also contained in the segment P U x;, and
is therefore a triangle. But |E(M)| > 4 and a 3-connected matroid with
at least five elements cannot contain a triangle that is also a triad. This
contradiction shows that ¢ = 3.

Suppose j € {1, 2, 3} and that j # i. If |P| > 2 then there is a triangle
contained in P that contains y;. However this triangle would meet the
cocircuit (Lo—x;)Uy; in exactly one element. Thus |P| =2, and P = L*—y;.

Suppose that j, & € {1, 2, 3} and neither j nor k is equal to i. Then
Ly U P contains the two cocircuits (Lo — x;) Uy; and (Lo — ) U yi. Hence
ry(E—(LoUP)) < r(M)—2. However it is easy to see that ry;(LoUP) = 3.
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As |P| = 2 it follows that E — (LoU P) contains at least two elements. Thus
(Lo UP, E— (LypU P)) is a 2-separation of M, a contradiction.

We have shown that (Lo — x;, y;) is the unique spore of M/x;. Next
we show that M/z; is 3-connected up to this spore. Suppose that (X, Y)
is a k-separation of M/x; for some k < 3. By relabeling if necessary we
will assume that y; € X. Assume that the result is false, so that neither
X nor Y is contained in (Lo — x;) Uy;. Therefore X contains at least one
element from E — (Lo U y;). As M/Lg is 3-connected by Proposition 3.3
we deduce from Proposition 2.1 that either X — Ly or Y — Ly contains at
most one element. We have already concluded that X — Lg contains at
least two elements (as y; € X), so Y — Ly contains precisely one element.
As M is 3-connected it contains no parallel pairs, so M/z; contains no
loops. Therefore ry;/,,(Y) = 2, and hence rp;/,, (X) < 1(M/x;) —1. Thus Y/
contains a cocircuit of M /x;. As M /x; has no coloops, and any cocircuit that
meets a parallel class contains that parallel class it follows that Ly —xz; C Y.
Let s be the single element in Y — Ly. It cannot be the case that Y is a
cocircuit in M /x;, for that would imply that (Lo — x;, s) is a spore of M /x;
that differs from (Lo — x;, y;), contradicting our earlier conclusion. Now
we see that Y — s = Ly — x; must be a cocircuit of M/x;, but this is a
contradiction as Lo — z; is properly contained in the cocircuit (Lo — z;) Uy;.
The completes the proof. O

The next result shows that Theorem 1.1 is a consequence of Theorem 1.2.

Proposition 3.6. Suppose that (L, L*) is a segment-cosegment pair of a
matroid M, and that M/ cl(L) is 3-connected and |E(M) — cl(L)| > 4. Let
L={x,...,2¢} and L* = {y1,...,y:}. Then co(si(M/xz;)) = M/cl(L) for
any element x; € L.

Proof. Let Ly = cl(L) and let z; # x; be an element of L. Suppose that
P and S are disjoint subsets of F(M) — x; chosen so that co(si(M/xz;)) =
M/xz\P/S. As Ly — z; is a parallel class in M/z; we may assume that
Lo —{xi, ;} C P and that z; ¢ P. We may assume that y; ¢ P, and hence
{zj, yi} is a union of cocircuits in M/z;\P. Therefore we may assume
xj € S. Since the elements in Ly — {z;, z;} are loops in M/z;/x; it follows
that

M/z\P/S = M/x;/x;/(Lo — {xi, z; )\(P — (Lo — {zi, x;}))/(S — x;).

This last matroid is equal to M/Lo\(P — (Lo — {zi, z;}))/(S — ;). Since
M/Lg is 3-connected and the elements in P — (Ly — {x;, z;}) are either
loops or parallel elements in M /Ly it follows that P = Lo — {z;, «;}. Thus
M/xz\P/S = M/Ly/(S —xj). But M/Lg is 3-connected, so S — z; must be
empty. Thus M /Ly = co(si(M/xz;)), as desired. O
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4. PRELIMINARY LEMMAS

Proposition 4.1. Suppose that C* is a cocircuit of the 3-connected matroid
M. Assume that (X1, X, x) is a vertical 3-partition of M such that x € C*.
Then C* N (X1 — cl(X3)) # 0 and C* N (X2 — cl(X7)) # 0.

Proof. Note that r(X1), r(X2) > 3 implies that |E(M)| > 4, so every circuit
and cocircuit of M contains at least three elements. Let X be X; — cl(X2).
The fact that r(X;) > 3 implies that X contains a cocircuit, so |X| > 3.
Suppose that x is not in cl(X). Then r(X) < r(X;). Since |X| > 3 this
implies that (X, cl(X3)) is a 2-separation of M, a contradiction.

Now suppose that C* C cl(X2). Then as z € cl(X) and = € C* there is a
circuit in M that meets C* in exactly one element, z. This is a contradiction.
The same argument shows that C* N (Xg — cl(X7)) # 0, so the proposition
holds. g

Definition 4.2. Suppose that M is a 3-connected matroid and that A is
a subset of E(M). A minimal partition with respect to A is a vertical
3-partition (X7, Xy, x) of M that satisfies the following properties:

(i) = € A4;
(i) if (Y7, Y2, y) is a vertical 3-partition of M such that y € AN (X7 Ux)
and Xo NY; = 0, then (Y7, Y, y) = (X1, X, x); and,
(iii) if (Y7, Y2, y) is a vertical 3-partition of M such that y € AN (X3 Ux)
and Xo NY, =0 then (Y3, Y1, y) = (X1, Xo, ).

If there is no ambiguity we will refer to a minimal partition with respect
to A as a minimal partition.

Lemma 4.3. Suppose that M is a 3-connected matroid and that A is a
subset of E(M). Suppose that for some element z € A there is a vertical
3-partition (Z1, Za, z) of M. Let Z = Zy —cl(Z2). Then there is a minimal
partition (X1, Xo, x) with respect to A such that X1 C Z and x € AN(ZUz).

Proof. Let Z be the family of vertical 3-partitions (S, S2, z) with the prop-
erty that S1 C Z;. Choose (Z], Z}, z) from Z so that if (S1, Se2, z) is in
Z, then S; is not properly contained in Z]. Observe that Proposition 2.6
implies that Z] C Z.

Let S be the family of vertical 3-partitions (S, Sa, s) with s € AN(Z{Uz).
Let Sy be the set of vertical 3-partitions (51, Se, ) in S with the property
that either S1 C Z] or Sy C Z]. Without loss of generality we will assume
that if (S1, Se, s) is in Sp then S; C Zj. Suppose that (Si, So, z) is a
member of Sy. Then our choice of (Z], Z5, z) means that S; = Z] and
Sy = Z,. It (Z1, Z}, z) is the only member of Sy then we can set (X1, Xa, x)
to be (Z, Z}, z), and we will be done. Therefore we will assume that there
is at least one vertical 3-partition (S7, S2, s) in Sy such that s # z. Let §;
be the collection of such partitions.
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We now let (X7, Xo, ) be a vertical 3-partition in &1 chosen so that if
(S1, S2, s) € 81, then S; U s is not properly contained in X7 Ux. We will
prove that (X7, Xo, x) is the desired vertical 3-partition.

It is certainly true that Xy C Z. If there is some element e in X7 N
cl(X2Ux) then (X7 —e, XaUe, x) is a vertical 3-partition by Proposition 2.6.
However this contradicts our choice of (X7, X, ). Therefore XoUz is a flat.
We assume that (Y1, Y2, y) is a vertical 3-partition and that y € AN(XUz).
As X C Z] it follows that y € ANZ]. Our assumption on (X1, Xo, ) means
that neither Y7 Uy nor Y5 Uy can be properly contained in X; U x.

Suppose that Xo NY; = (). Then Y; Uy must be equal to X7 U z. If
y # x then the fact that y € cl(Y2) and Y2 = X3 means that y € cl(X2),
which is a contradiction as Xs Uz is a flat. Therefore y = z, so (Y1, Y2, y)
is equal to (X7, X, ). The same argument shows that if Xo NY; = ()
then (Y1, Y2, y) = (X2, X1, ). Thus (X1, Xo, ) is the desired minimal
partition. [l

Proposition 4.4. Suppose that M is a matroid and that A C E(M). Sup-
pose that (X1, Xo, x) is a minimal partition with respect to A. Then Xo Uz
is a flat of M.

Proof. Suppose that there is some element z € X; N cl(X2 U z). Then
(X1 — 2z, Xo Uz, x) is a vertical 3-partition of M by Proposition 2.6. This
contradicts the fact that (X, Xy, x) is a minimal partition. O

Lemma 4.5. Suppose that M is a 3-connected matroid and that A C E(M).
Suppose that (X1, Xo, ) is a minimal partition with respect to A. Suppose
also that (Y1, Yo, y) is a vertical 3-partition of M such that y € AN X, and
x € Yy. Then the following statements hold:

(i) XinY; # 0 for alli,j € {1, 2};
(i) Each of X1NYa, (X1NY2)Uy, XoNYy, (XoNY1)Ux, and XoNYs is
3-separating in M ;
(117) (X1 NY1)U{x, y} is 4-separating in M ;
(iv) Neither X1 NYy nor X1 NYs is contained in cl(X3), X1 NY; € cl(Ya),
and X1 N Y2 SZ Cl(Yl);
(v) t((X1NY2) Uy) = 2; and,
(vi) If (X1NY1)U{x, y} is 3-separating in M, thenr((X1NY1)U{z, y}) = 2.

Proof. We start by proving (i). Since y # x the definition of a minimal
partition means that Xo NY; # () and Xo N Yy # (). Moreover Xo U z is
a flat of M by Proposition 4.4, and y € X1, so y ¢ cl(X2 U z). However
y € cl(Y1) Nnecl(Yz). It follows that neither Y7 nor Y2 can be contained in
Xs Ux. Thus both Y7 and Y5 meet X;.

Next we prove (ii). Consider X; N Y. Since A(X1) = 2 and A\(Y2) = 2
the submodularity of the connectivity function implies that A(X; NY3) +
A(X1UY,) < 4. If X1NY3 is not 3-separating then A(X;UY3) < 1. However
| X1 UYs| > 2 and the complement of X; U Ys certainly contains at least
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two elements, since it contains z, and X5 N Y7 is non-empty. Thus M has a
2-separation, a contradiction. This shows that X; N Y5 is 3-separating.

Since X7 and Y5 Uy are both 3-separating the same argument shows that
(X1NY2)Uy is 3-separating. Since the complement of X5 UY] contains both
y and at least one element in X7 N Ys, we can also show that Xo NY; and
(X2NY7)Ux are both 3-separating. The same argument shows that XoNY;
is 3-separating.

Consider (iii). The submodularity of the connectivity function shows that

)\((Xl N Yl) U {l‘, y}) + )\(Xl U Yl) < /4.

Thus if (X1 NY7)U{z, y} is not 4-separating then \(X; UY7) = 0. But this
cannot occur as X; UY] is non-empty, and its complement contains Xo N Yo,
which is non-empty.
Next we move to (iv). Since Xy Uz is a flat of M it follows that cl(X32)
does not meet X;. Therefore cl(X3) cannot contain X7 NY; or X7 NYa.
Suppose that X; NY7 is contained in cl(Y2). Then Y; —cl(Y2) is contained
in Xy Ux. However Proposition 2.6 says that

(Y1 —cl(Y2), cl(Ya) —y, y)

is a vertical 3-partition of M. Thus y is in the closure of Y7 — cl(Y2), which
means that y € cl(XoUz). But this is a contradiction as y € X, and XoUx
is a flat of M. The same argument shows that X; N Y5 is not contained in
cl(Yr).

To prove (v) we suppose that r((X;NY2)Uy) > 3. Consider the partition
(X1 NYs, XoUY, y) of E(M). Tt follows from (ii) that

A(X1NYy)Uy) =AX1NYs) =2,

so AM(X2UY7) = 2. Furthermore y € cl(Y}), so y is in the closure of X, UYj.
Proposition 2.2 shows that y € cl(X; NY3), so r(X; NYs) > 3. Now it is
easy to see that
(X1 NYsy, XoUY, y)

is a vertical 3-partition of M. However y € AN X; and X; N Yy does not
meet X5, so we have a contradiction to the fact that (X, Xo, ) is a minimal
partition.

We conclude by proving (vi). Suppose that A((X; N Y1) U {z, y}) = 2.
This implies that A(X2 U Y2) = 2. Since y € cl(Y2) it follows easily that
AM(X1NYy)Ux) =2. Consider the partition

(XinY) Uz, XoUYs, y)

of E(M). Since y € cl(Y2) it follows from Proposition 2.2 that y is in the
closure of (X1 NY7) Ux. Thus if r((X1 NY1) U{x, y}) > 3 it follows that
r((X; NY7)Ux) > 3. In this case

(XinY1)Uz, XoUYs, )

is vertical 3-partition of M that violates the fact that (X, Xs, ) is a min-
imal partition. This completes the proof of the lemma. O
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Proposition 4.6. Suppose that (X1, Xo, ) is a minimal partition of the
3-connected matroid M with respect to the set A C E(M). Assume that
(Y1, Ya, y) is a vertical 3-partition of M such that y € AN X and x € Y7.
If |1 X1 NYs| > 2 then

ﬂ((Xl N Yl) U {IL’, y}, XN YQ) = ﬂ((Xl N Yl) Uy, X1 N }/2) =1.

Proof. The hypotheses imply that |E(M)| > 4, so every circuit or cocircuit
of M contains at least three elements. Let m = N((X1NY7)U{z, y}, X1NY3).
We know from Lemma 4.5(v) that r(X; NY3) < 2. Therefore 7 < 2. On the
other hand, since |X; N Ya| > 2, the fact that r((X; NY2) Uy) < 2 implies
that y € cl(X; NY2). This in turn implies that 7 > 1.

Assume that 7 = 2. Then X; NYy C cl((X1 NY1) U {x, y}). Since
x, y € cl(Y7) this means that X3 NYs C cl(Y7). But this contradicts (iv) of
Lemma 4.5. Exactly the same argument shows that M((X; NY;) Uy, X1 N
Ya) = 1. O

Lemma 4.7. Suppose that (X1, Xo, x) is a minimal partition of the 3-con-
nected matroid M with respect to the set A C E(M). Assume that (Y1, Yo, y)
is a vertical 3-partition of M such thaty € ANX; andx € V1. If| X1NYa| > 2
then y € cl((X1NY1)Ux).

Proof. The hypotheses imply that every circuit of M contains at least three
elements. Since | X7 NY3| > 2 it follows from Lemma 4.5(v) that y € cl(X1 N
Ys). We assume that y ¢ cl((X1 NY7)Uz). Since X; NY] is non-empty by
Lemma 4.5(i) it follows that [(X; NY)Ux| > 2, so A(X1NYy)Uz) > 2.
Furthermore A\((X1 NY1) U{z, y}) < 3 by (iii) of Lemma 4.5. As y € cl(Y2)
we deduce that

2 <AM(X1NY1)Uz) < A(X1NYi) U {z, y}) < 3.

Thus A((X1NY1)Ux) = 2. Moreover it follows from (ii) in Lemma 4.5 that
A(X1NY2) Uy) = 2. Therefore

(XinY)uz, (X1NYe)Uy, Xo)

is an exact 3-partition.

As x € cl(X2) it follows that M((X1NY7)Uz, X2) > 1. Now Corollary 2.13
implies that M((X1NY3) Uy, X2) > 1. But (iv) and (v) of Lemma 4.5 imply
that X3 NYs ¢ cl(X2) and that r((X; NY2) Uy) = 2. We deduce that
M((X1NY2) Uy, X2) = 1. Again using Corollary 2.13 we see that

N(XiNY) Uz, (X1NYs)Uy) =1
Proposition 4.6 tells us that
(X1 NY)U{z, y}, X1NY) = 1.

Since y € cl(X1NY3) we can easily deduce that y € cl((X;NY7)Ux), contrary
to our initial assumption. U
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Lemma 4.8. Suppose that C* is a cocircuit of the 3-connected matroid M.
Suppose that (X1, Xo, x) is a minimal partition of M with respect to C*.
Assume that si(M/xq) is not 3-connected for any element xo € C*NX;. Let
(Y1, Ya, y) be a vertical 3-partition of M such that y € C*N Xy, and assume
that © € Y1. Then | X1 NYs| = 1.

Proof. The hypotheses of the lemma imply that every circuit and cocircuit
of M contains at least three elements. Let us assume that the lemma fails,
so that | X7 NY3| > 2. Now (v) of Lemma 4.5 implies that (X; NY2) Uy
contains a triangle of M that contains y. Since C* meets this triangle in y,
there must be an element z € X1 NY5 such that z € C*.

By assumption si(M/z) is not 3-connected so Proposition 2.5 implies that
there is vertical 3-partition (Z], ZJ, z). Let us assume that = € Z;.

Suppose that y € Z/, where {1, j} = {1, 2}. Since r((X1NY2)Uy) = 2 and
z € cl(Z]) it follows that (X; NY2) Uy C cl(Z)), as y # z and z € X; NYa.
Let Z; = Z/ U(X1NYz) Uy and let Z; = Zj’< — Z;. Then Proposition 2.6
implies that (Z1, Zs, z) is a vertical 3-partition. Note that x € Z;, whether
i is equal to 1 or 2.

Suppose that ¢ = 2. Then (X; NY2) Uy C Zy U z. This means that
(X1NZy)Uz C (X1NY7)U{z, y}. Lemma 4.7 says that z € cl((X1NZ;)Ux).
Therefore z € cl((X1 NY1) U{z, y}). But since {y, z} spans (X1 NY2)Uy
this implies that (X1 NY1) U {z, y} spans X; NYs. As z, y € cl(Y1) it now
follows that Y7 spans X7 NY3, in contradiction to Lemma 4.5(iv). Therefore
i=1,80(X1NY)Uy C Z3 Uz

We conclude that X1NZy C (X1NY7)U{z, y}. Suppose that | X;NZs| > 2.
It follows from (v) of Lemma 4.5 that r((X; N Z2) U z) = 2. Therefore z is
in cl(X; N Zs), and hence in cl((X; NY1) U {z, y}). Exactly as before, we
conclude that Y; spans X; NY3, a contradiction. Therefore | X7 N Z5| < 1.

As r(Z3) > 3 we deduce that | Xy N Zo| > 2. But A(X2 N Zy) < 2 by (ii)
of Lemma 4.5, so it follows that A(X2 N Z2) = 2, and hence A\(X; U Z;) = 2.
Now A(X; Ux) 4+ A(Z1 U z) = 4, so the submodularity of the connectivity
function implies that

M(X1 N Z1) Uz, 2}) £ MX U Zy) < 4.

We now conclude that A((X1 N Z1) U{z, z}) < 2. It follows from (vi) of
Lemma 4.5 that r((X1 N Z1) U{z, z}) = 2.

We have already deduced that (X1 NYs)Uy C Z3 Uz, so X1 NY, C
(X1NZ1)Uz But | X1NYs| > 2, and r((X1 N Z1) U{x, z}) = 2. Therefore
x € cl(X1NY2). We also know that y € cl(X; NY2). Proposition 4.6 asserts
that

ﬂ((Xl N YI) U {l’, y}: XN YQ) =L
Since z, y € cl(X1 NY3) it follows from Proposition 2.14 that r({z, y}) <

1, a contradiction as M is 3-connected. This completes the proof of the
lemma. (|
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5. PROOF OF THE MAIN RESULT

We restate Theorem 1.2 here.

Theorem 5.1. Suppose that M and N are 3-connected matroids such that
|[E(N)| >4 and C* is a cocircuit of M with the property that M/xzo has an
N-minor for some xg € C*. Then either:

(i) there is an element x € C* such that si(M/x) is 3-connected and has
an N-minor;

(ii) there is a four-element fan (x1, T2, x3, x4) of M such that x1, 3 € C*,
and si(M/x2) is 3-connected with an N-minor;

(iii) there is a segment-cosegment pair (L, L*) such that L C C*, and
cl(L) — L contains a single element e. In this case e ¢ C* and si(M/e)
is 3-connected with an N-minor. Moreover M/ cl(L) is 3-connected
with an N-minor, and if z; € L then M/x; is 3-connected up to a
unique spore (cl(L) — x;, y;); or,

(iv) there is a segment-cosegment pair (L, L*) such that L is a flat and
|L — C*| < 1. In this case M /L is 3-connected with an N-minor, and
if ©; € L then M/z; is 3-connected up to a unique spore (L — x;, ;).

Proof. Assume that M is a counterexample to the theorem. Let zg be an
element of C* such that N is a minor of M/zy. By hypothesis si(M/xg)
is not 3-connected, so Proposition 2.5 implies there is a vertical 3-partition
(Z1, Za, x0). 1t follows easily that |E(M)| > 7. By Proposition 2.9 we will
assume, relabeling as necessary, that |[E(N)NZ;| < 1. Let Z = Z; — cl(Z2).
Lemma 2.10 implies that M /e has an N-minor for every element e € Z,
and Lemma 4.3 implies that there is a minimal partition (X, X, ) with
respect to C* such that x € C* N (Z U xg), and X; C Z.

Proposition 4.1 implies that C* has a non-empty intersection with X; —
cl(Xq). If s € C* N (X1 — cl(X2)) then si(M/s) is not 3-connected by
hypothesis. Therefore there is a vertical 3-partition (S7, Sa, s).

5.1.1. Suppose that s € C* is contained in X; — cl(X2) and that (S1, S2, s)
is a vertical 3-partition such that © € Sy1. Then | X1 N Si| > 2 and (X1 N
S1)U{s, z} is a segment of M.

Proof. Lemma 4.8 tells us that |X; N S3| = 1. By Lemma 4.5(1) we know
that | X7 N S1| > 1. Assume that | X7 N Si| = 1. Then X; contains exactly
three elements: the unique element in X1 MN.Ss, the unique element in X7 NS5,
and s. By the definition of a vertical 3-partition it follows that r(X;) = 3
and that X7 is a triad of M. As x € cl(X1) it follows that there is a circuit
C C X1 Uz that contains x. It cannot be the case that the single element in
X1 NSy isin C, for that would imply that X; NSe C cl(S1), contradicting
Lemma 4.5(iv). As C does not meet the triad X; in a single element it
follows that (X1 N S1) U{z, s} is a triangle.

If we let xo be the unique element in X; N Sy, let x4 be the unique
element in X7 NSy, and let 1 = x and z3 = s, then (21, z2, 3, x4) is a
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four-element fan of M. If si(M/x3) is 3-connected then statement (ii) of
Theorem 5.1 holds, which is a contradiction as M is a counterexample to
the theorem. Therefore we will assume that si(M/z2) is not 3-connected.

Since si(M/x3) is not 3-connected Theorem 2.15 asserts that co(M\x3) is
3-connected. Assume that every triad of M that contains x3 also contains
xg. Then co(M\x3) = M\x3/zo. However xs is contained in a parallel
pair in M /xz9, so si(M/x2) is obtained from M\x3/xzo by possibly deleting
parallel elements. As M\x3/z2 is 3-connected it follows that si(M/x2) is
3-connected, contrary to hypothesis.

Therefore there is a triad T of M that contains x3 but not x9. Now
T* cannot meet the triangle {zi, x9, z3} in exactly one element, and
therefore x; € T*. Let yy be the unique element in 7% — {z1, x3}.
Since every triad that contains x3 must contain either x; or zs, and
since both {x1, 3} and {x9, 3} are contained in triads of M it follows
that co(M\z3) = M\zs/x1/x2. Note that zg is a loop of M/xi/xa, so
M\$3/x1/x2 = M/azg/xl/xg.

As si(M/x3) is not 3-connected there is a vertical 3-partition (Z;, Za, x3)
of M. By relabeling as necessary we may assume that r; € Zs. Hence
x9 € cl(Zy Uxs), so by Proposition 2.6 we may assume that xo € Z. Now
(Z1, Z9) is an exact 2-separation of M /x3, but M/xs/x1/x9 is 3-connected.
By Proposition 2.1 we see that Zy — {z1, 2} must contain at most one
element. If Zy = {x1, 2} then r(Z3) < 2, a contradiction. Therefore
Zy — {x1, x2} contains exactly one element. Let this element be ys. It is
easy to see that Zo must be a triad of M.

We relabel x4 with y;. Let L = {x1, x9, 3} and let L* = {y1, y2, y3}.
Now L is a segment of M. Proposition 4.4 implies X5 U x1 is a hyperplane,
and as {z1, 2, x3} is a triangle it is easy to see that M(XoUz1, {x2, z3}) = 1.
If there were some element e in cl(L) — L then Proposition 2.14 would imply
that r({e, x1}) < 1, a contradiction. Therefore L is a flat of M. Moreover
(L —z;) Uy; is a cocircuit of M for all i € {1, 2, 3}, so (L, L*) is a segment-
cosegment pair of M.

By applying Proposition 3.3 and Lemma 3.5 we see that M /L is 3-con-
nected, and that M /z; is 3-connected up to a unique spore (L —x;, y;) for all
i € {1, 2,3}. We know that M /z3 has an N-minor. However {z1, x2} is a
parallel pair in M /z3, so M /x3\x1 has an N-minor. Furthermore {z2, y3} is
a series pair of M /x3\x1, so M/x3\x1/x2, and hence M /L, has an N-minor.
Thus statement (iv) of Theorem 5.1 holds, a contradiction. We conclude that
|X 1M Sl| > 2.

Since A(X1 Ux) = A(S1 Us) =2 it follows that

)\((Xl N Sl) U {8, .Z‘}) + )\(Xl U Sl) <4.

Suppose that A\((X1NS1)U{s, x}) > 3. Then A(X;US7) < 1, s0 A(X2NS2) <
1. However, as | X7 N Sy| = 1 it follows that | X2 N Sa| > 2, so M contains a
2-separation, a contradiction. Thus A((X;NS1)U{s, x}) < 2 and it follows
from Lemma 4.5(vi) that (X1 N S1) U {s, z} is a segment. O
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5.1.2. The rank of X1 Uz is three. Moreover, Xy is a cocircuit of M.

Proof. Let s € C* be an element in X; —cl(X2) and suppose that (S, Sa, s)

is a vertical 3-partition such that = € S;. Then r((X; N S1) U {s, z}) =2

by 5.1.1, and as |X; N Sa| = 1, Lemma 4.5(iv) implies that r(X; Ux) = 3.
Proposition 4.4 asserts that Xs Uz is a flat of M, so X is a cocircuit. [

5.1.3. Suppose that y and z are elements in C* N X1, and (Y1, Yo, y) and
(Z1, Za, z) are vertical 3-partitions such that x € Y1 N Zy. Then

‘X10Y2|:‘X1QZQ‘:1 and X1NYy=X1NZs.

Moreover
(XinY)U{z, y} =(X1NnZ)U{x, z}.

Proof. Let 2’ be the unique element in X7 NY5. From 5.1.1 we see that (X1 N
Y1)U{z, y} is a segment. The only element of X; not in (X;NY7)U{x, y} is
#’. Tt cannot be the case that 2’ € cl((X1NY1)U{z, y}) by Lemma 4.5(vi).
The same arguments shows that (X1NZ;)U{x, z} is a segment, and the only
element of X7 not in this segment is 2’. Now the result follows easily. [

5.1.4. Let y € C* be an element in X1 and suppose that (Y1, Yo, y) is a
vertical 3-partition such that x € Y1. Then | XoNYi| = 1.

Proof. We know by 5.1.1 that (X7 NY7) U {xz, y} is a segment. Let L' =
(X1 NY1) U{z, y} and let 2’ be the unique element in X; N Y2. Since
the complement of C* is a flat of M which does not contain the segment
L’ it follows that at most one element of L’ is not contained in C*. As
|X1 NY1| > 2 we can find an element z € (X; NY;) N C*. There must be
a vertical 3-partition (Z;, Z3, z) such that x € Z;. From 5.1.3 we see that
the unique element in X; N Zs is 2/, and that (X1 N Z1) U {z, z} = L.

Let Y/ and Z! denote X5 NY; and Xy N Z; respectively for i = 1, 2. As
(X1, X2, z) is a minimal partition it follows that Y and Z] are non-empty
for all i € {1, 2}. Henceforth we will assume that |Y{| > 1 in order to obtain
a contradiction.

5.1.5. z € cl(Y]).

Proof. We know that A\(Y{ Ux) < 2 by Lemma 4.5(ii). Since |Y{| > 2 it
follows that A(Y{ Uz) = 2 and hence A\(X; UY2) = 2. Since z € cl(X; UY3)
it follows that A(Y{) = 2, so Lemma 2.2 implies that x € cl(Y7). O

5.1.6. Neither Y{ N Z{ nor Yy N Z} is empty.

Proof. We know from 5.1.5 that € cl(Y]). Since z € cl(Z5) but (X1NZ1) €
cl(Z3), we deduce that x ¢ cl(Z3) as L' is a segment containing both = and
z. Thus = ¢ cl(Z5U2’). Hence Y{ — Z # 0 so Y{ N Z] # 0.

Note that z is in the closure of Zy = Z, U a’, but z ¢ cl(Z}) as X is a
cocircuit by 5.1.2. This observation means that ' € cl(Z, U z). However
z € Y1, and 2’ ¢ cl(Y1) by Lemma 4.5(iv). Thus 2’ ¢ cl(Y{ U z). It follows
that Z, — Y] # 0, so Z, NYy # 0. O
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5.1.7. (L'U(Y{NZ)),Y2U Zy) is a 3-separation of M.
Proof. Note that A(Y2) = A(Z2) = 2, so A(Ya N Z2) + A(Yo U Z3) < 4.

From 5.1.6 we see that Yy N Z} # 0. Moreover 2/ € (Yo N Z3) — (V5 ﬁ_Zé),
which implies that |Ya2 N Za| > 2. Thus A(Ya N Z3) > 2, so A(Ya U Z7) < 2.
As both L' U (Y{ N Z{) and Y2 U Z5 have cardinality at least three the claim

follows. O

Note that y, z € cl(Yo U Z3). As y and z are contained in the segment L’
it follows that L' C cl(Ya U Z2). If |Y{ N Z]| > 2 then it must be the case
that L' C cl(Y{NZ}), for otherwise (Y{NZ}, (Y2UZ2)UL') is a 2-separation
of M. But L' C cl(Y{ N Z}) implies that X; NY; C cl(X32), a contradiction.

Therefore |Y{ N Z]| < 1. We know from 5.1.6 that Y/ N Z} is not empty.
Let e be the unique element in Y{ N Z]. Suppose that e € cl(L’). As Xo Uz
is a hyperplane and L’ is a segment we see that M(Xo Uz, L' —x) =1. As
e, x € cl(L’ — x) it follows from Proposition 2.14 that r({e, z}) < 1. We
deduce from this contradiction that e ¢ cl(L’).

Hence r(L' Ue) = 3, so r(Ya U Z3) = r(M) — 1 by 5.1.7. Thus the
complement of ¢l(Y2 U Z3) is a cocircuit. However L' C cl(Ya U Zs), so e is
a coloop of M, a contradiction.

Our assumption that |Xo N Y;| > 2 has lead to an impossibility. Since
X9 NY; is non-empty by Lemma 4.5(i) we conclude that 5.1.4 is true. 0O

Now we are in a position to complete the proof of Theorem 5.1. Let
x1 = x, and let x5 be some element in C*NX7. There is a vertical 3-partition
(Y2, Y2, x3) such that 71 € Y2, Lemma 4.8 tells us that | X; NYZ| = 1. Let
1 be the unique element in X7 N YZ.

We know that | X1NY$| > 2 and (X1NY2)U{x1, 22} is a segment by 5.1.1.
It follows from Proposition 2.14, and the fact that (X;NY?)Uxs is a segment
while Xo U z; is a hyperplane, that (X1 N Y?) U {x1, 72} is a flat. The
complement of C* can contain at most one element of (X1 NYZ) U {x1, x2}.
Let L = C* N ((X1 NY?) U {x1, 22}). Then cl(L) = (X1 NYE) U {z1, 22},
and cl(L) — L contains at most one element.

Suppose that L = {x1,...,z:}. We know that ¢ > 3. Let ¢ be a member of
{2,...,t}. As z; € C* the fact that M is a counterexample to the theorem
means that si(M/z;) is not 3-connected, so there is a vertical 3-partition
(Y, Y, z;) such that z; € Y{. Then

(X1 NYY) U {ay, 2} = (X1 NYP) U {z1, 22}

by 5.1.3, and 5.1.4 implies that there is a unique element in Xo NY}. Let y;
be this element.

Define L* to be {y1,...,y:}. Note that L N L* = (. We already know
that (cl(L) — x1) Uy; = X; is a cocircuit. Suppose that ¢ € {2,...,t}.
Then (cl(L) — ;) Uy, is Y{. As Y{ contains only one element that is not in
the segment cl(L) it follows that r(Y{) = 3. Thus r(Y§ U z;) = r(M) — 1.
Furthermore Y3 U z; is a flat, for otherwise the complement of cl(Yy U ;) is
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a cocircuit of rank at most two, which cannot occur since M is 3-connected.
Hence (cl(L) — x;) Uy; is a cocircuit.

We have shown that (L, L*) is a segment-cosegment pair. Proposition 3.3
says that M/ cl(L) is 3-connected. It is easy to see that the hypotheses of
Lemma 3.5 are satisfied, so M /x; is 3-connected up to the unique spore
(cl(L) — x4, yi), for all i € {1,...,t}. We know that M/xs has an N-minor,
but as cl(L) — x4 is a parallel class of M/zy it follows that M /xo\(cl(L) —
{71, x2}) has an N-minor. Since {z1, y2} is a series pair of M /z2\(cl(L) —
{z1, z2}) it follows that M /xo\(cl(L) — {z1, x2})/x1, and hence M/ cl(L),
has an N-minor.

Suppose that |cl(L) — C*| = 0. Then L = cl(L), and statement (iv) of
Theorem 5.1 holds. Therefore we must assume that there is a single element
ein cl(L) — L. Lemma 2.10 tells us that M /e has an N-minor. If si(M/e) is
3-connected, then statement (iii) holds. Therefore we must assume si(M/e)
is not 3-connected.

Let x4+1 = e. There must be a vertical 3-partition (Yf“, YZtH, xi41). We
assume that x1 € Yf“. Since cl(YfH) contains x1 and x4y it follows that
cl(L) C cl(Y{™). By Proposition 2.6 we may assume that Y;*! contains
CI(L) — Ti41 = L.

As XoUzq is a flat it follows that x4 ¢ cl(X2). However x4 € cl(thH),
so X4 ﬂY;H # (0. We know that X; = (LU{x¢11, y1})—x1, and as L C Yf“
it follows that X7 N Y™ = {y}.

Since 11 € Cl(Y;H), there is a circuit C; C Y2t+1 U zyy1 such that
Ty € Cp. But Y2 = (LU {211, y2}) — o2 is a cocircuit of M and C; must
meet this cocircuit in more than one element. The only element of Y{? — x4, 1
that can be in C is yo. Thus yo € Y;H.

Since (X7, X», x) is a minimal partition it follows that X5 N Yf“ is non-
empty. Assume that |Xo N Y] > 2. As A(X1) + MY Uaypr) = 4, it
follows that

MX NV Ur) + MX UV <4
Furthermore (X1 U 1) + M(Y4 T Uziyq) = 4, so
MX I NYITY Uz ) + XX Uy ug) <4

As (X3 DYQtH)UxtH = {2441, y1} we deduce that A((X; ﬂY2t+1)UZL't+1> = 2.
Thus

(1) MX UYSh A uYittua) <2

Both of the sets in Equation (1) contain at least two elements, and by
assumption |Xy N Y1t+1| > 2. Therefore X5 N Yf“ and (X2 N Yf“) Uz
are exactly 3-separating. Since x; € cl(X;) we see from Lemma 2.2 that
x1 € cl(XaN Yf“). Thus there is a circuit Co C (X2 N Yf“) Uz such that
x1 C C5. We have already noted that Yf is a cocircuit, and as 1 € Yf it
follows that |Co N Y| > 2. As Cy — 21 C Xo the only element other than
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x1 that can be in Cy N Y12 is yo. Hence yo € Cy C Yltﬂ, a contradiction as
we have already deduced that y» € Y;H.

We are forced to conclude that XoN YltJrl contains a unique element. Let
this element be ;1. Therefore Yf“ = LUyq. Thus r(YfH) = 3, so
r(Y ) = v(M) — 1. Tf Y{™ U 2441 is not a hyperplane, then the comple-
ment of Cl(YgltJrl U 2¢41) s a cocircuit of rank at most two, a contradiction.
Therefore (cl(L) — x441) Uyes1 = Y] is a cocircuit.

Let Ly = {z1,...,2¢+1} and let L§ = {yi1,...,y+1}. Note that
Ly = cl(L), so Ly is a flat. We have shown that (Lo, L§) is a segment-
cosegment pair. Moreover, M /x;y1 is 3-connected up to a unique spore
(Lo — Zt41, Yt4+1), by Lemma 3.5. By relabeling Ly and L as L and L*
respectively we see that statement (iv) of Theorem 5.1 holds. Hence M is
not a counterexample, and this contradiction completes the proof of Theo-
rem 5.1. [l
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