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Abstract. In unpublished work, Geelen proved that a matroid is near-
regular if and only if it has no minor isomorphic to U2,5, U3,5, F7, F

∗

7 ,
F−

7 , (F−

7 )∗, AG(2, 3)\e, (AG(2, 3)\e)∗, ∆T (AG(2, 3)\e), or P8. We pro-
vide a proof of this characterization.

1. Introduction

Suppose that F is a set of fields, and that M(F) is the class of matroids
that are representable over every field in F . It is well-known that the fam-
ily of binary matroids contains exactly two classes that arise in this way:
the binary matroids themselves, and the regular matroids. A striking result
due to Whittle [Whi97] shows that the family of ternary matroids contains
exactly six such classes of matroids: the classes of ternary matroids, reg-
ular matroids, near-regular matroids, dyadic matroids, sixth-roots-of-unity
matroids, and those matroids obtained from dyadic and sixth-roots-of-unity
matroids using direct sums and 2-sums.

It is natural to ask for excluded-minor characterizations of the families
mentioned above. The excluded minors for binary, ternary, and regular ma-
troids have been known for some time [Bix79, Sey79, Tut58]. Geelen, Ger-
ards, and Kapoor [GGK00] characterized the excluded minors for GF(4)-rep-
resentable matroids.

Theorem 1.1. The excluded minors for representability over GF(4) are
U2,6, U4,6, P6, F

−
7 , (F−

7 )∗, P8, and P
′′
8 .

(Here P6 is the rank-3 matroid with six elements, and a triangle as its only
non-spanning circuit. Other matroids mentioned in the article are defined
in Section 7.1.) Since the class of sixth-roots-of-unity matroids is exactly
M({GF(3),GF(4)}), Theorem 1.1 leads to an excluded minor characteriza-
tion of the sixth-roots-of-unity matroids [GGK00, Corollary 1.4].
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In this article we consider the class of near-regular matroids, which is
exactly M({GF(3),GF(4),GF(5)}). By adapting the proof of Theorem 1.1,
Geelen was able to characterize the excluded minors for near-regularity.
However, this result remained unpublished until now. We present a proof of
Geelen’s theorem.

Theorem 1.2 (Geelen). The excluded minors for the class of near-regular
matroids are U2,5, U3,5, F7, F

∗
7 , F

−
7 , (F−

7 )∗, AG(2, 3)\e, (AG(2, 3)\e)∗,
∆T (AG(2, 3)\e), and P8.

We now give an informal outline of the proof. The classes of regular,
near-regular, sixth-roots-of-unity, and dyadic matroids can all be character-
ized as the matroids representable over a particular partial field. Partial
fields were introduced by Semple and Whittle [SW96]. They are much like
fields, except that addition is not always defined. If the subdeterminants of
a matrix over a partial field are all defined, then there is a corresponding
matroid, whose ground set consists of the rows and columns of the ma-
trix. Two matrices representing the same matroid are equivalent if they are
equal up to pivots, scaling, and applications of partial field automorphisms.
Kahn [Kah88] showed that a stable matroid is uniquely representable over
GF(4), up to equivalence, and this fact plays a crucial role in the proof of
Theorem 1.1. (A stable matroid is one that cannot be expressed as a direct
sum or a 2-sum of two nonbinary matroids.)

In order to proceed with our proof, we must establish a similar unique-
ness of representations for near-regular matroids. For this purpose we use
Whittle’s tool of stabilizers [Whi99]. In Section 3 we prove an analogue of
Kahn’s theorem by showing that a stable near-regular matroid is uniquely
representable over the near-regular partial field.

We reduce the proof of Theorem 1.2 to a finite case check by proving
that any excluded minor for near-regularity has at most eight elements.
We suppose that M is a counterexample to this proposition. Theorem 3.1
in [GGK00] shows that there are elements u and v, such that M\u, M\v,
and M\{u, v} are all stable, and M\{u, v} is connected and nonbinary. At
this point, Geelen et al. construct the unique GF(4)-representable matroid
N such thatM\u = N\u andM\v = N\v. Our proof is slightly different, in
that our matroid N need not be near-regular. However, N is representable
over the field Q(α), as is every near-regular matroid. Whittle’s characteri-
zation reveals that the counterexample M cannot be Q(α)-representable, so
M and N are genuinely different.

The core of the proof is contained in Section 6. This part of the proof
follows the proof of Theorem 1.1 very closely, only deviating when that
proof calls upon the structure of GF(4). We are advantaged here by the
fact that our counterexample must be ternary. In the proof of Theorem 1.1,
there is no a priori reason why the counterexample need be representable
over any field. Our fundamental tool is the uniqueness of the matroid N .
Suppose that M ′ is some small proper (and hence near-regular) minor of
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M , such that M ′\u, M ′\v, and M ′\{u, v} are all stable, and M ′\{u, v} is
connected and nonbinary. By using the same technique as before, we can
construct a Q(α)-representable matroid N ′ such that M ′\u = N ′\u and
M ′\u = N ′\v. The uniqueness of N guarantees that N ′ is the minor of N
that corresponds to M ′, and that M ′ = N ′. If we can find some certificate
thatM ′ and N ′ are not equal, then we have arrived at a contradiction. This
contradiction forces us to conclude that M ′ is not near-regular, and that
thereforeM ′ =M . Because we have a bound on the size of M ′, this induces
a bound on the size of M .

In order to invoke the uniqueness of N , certain connectivity conditions
have to be satisfied. To obtain these conditions we use blocking sequences,
which we review in Section 5.

Once we have completed the work of Section 6, finishing the proof is
relatively straightforward. In Section 7 we first introduce the matroids listed
in Theorem 1.2, and we show that they are in fact excluded minors for the
class of near-regular matroids. Then it remains only to perform the finite
case-check. All undefined matroid terms are as in Oxley [Oxl92].

2. Preliminaries

2.1. Partial fields. The classes of regular, near-regular, dyadic, and sixth-
roots-of-unity matroids have a common characteristic: for every such class,
there is a field F, and a subgroup G of F∗, such that a matroid belongs to
the class if and only if it can be represented by a matrix A over F, where
all the nonzero subdeterminants of A belong to G. Partial fields provide a
unified framework for studying this phenomenon. They were introduced by
Semple and Whittle [SW96], and studied further by Pendavingh and Van
Zwam [PZa, PZb].

Semple and Whittle developed partial fields axiomatically. We treat
them somewhat differently: Vertigan showed that every partial field can
be thought of as a ring along with a subgroup of units (see [PZb, Theo-
rem 2.16]), and we use this description as our definition.

Definition 2.1. A partial field is a pair (O,G), where O is a commutative
ring with identity, and G is a subgroup of the group of units O∗ of O, such
that −1 ∈ G.

Note that every field F is also a partial field (F,F∗). Suppose that P =
(O,G) is a partial field. We also use P to denote the set G ∪ 0, so we say
that p ∈ O is an element of P (and we write p ∈ P), if p ∈ G or p = 0. Thus,
p+ q may not be an element of P, even though both p and q are contained
in P. If p+ q is in P, then we say that p+ q is defined. We use P∗ to denote
the set of nonzero elements of P; thus P∗ = G.

Definition 2.2. Suppose that P is a partial field. We say that p ∈ P is a
fundamental element if 1− p ∈ P.
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Note that p + q is defined if and only if −q/p is a fundamental element,
since p+ q = p(1− (−q/p)).

Definition 2.3. Suppose that P1 and P2 are partial fields. A function
ψ : P1 → P2 is a partial-field homomorphism if

(i) ψ(1) = 1;
(ii) for all p, q ∈ P1, ψ(pq) = ψ(p)ψ(q); and
(iii) for all p, q ∈ P1 such that p+ q is defined, ψ(p) + ψ(q) = ψ(p + q).

In particular, if P1 = (O1,G1), P2 = (O2,G2), and ψ : O1 → O2 is a ring
homomorphism such that ψ(G1) ⊆ G2, then the restriction of ψ to P1 is a
partial-field homomorphism. It is easy to verify that if ψ is a partial-field
homomorphism then ψ(0) = 0 and ψ(−1) = −1.

A partial field isomorphism from P1 to P2 is a bijective homomorphism ψ
with the additional property that ψ(p)+ψ(q) is defined if and only if p+q is
defined. We use P1

∼= P2 to denote the fact that P1 and P2 are isomorphic.
An automorphism of a partial field P is an isomorphism from P to itself.

2.2. Representation matrices. Suppose that A is a matrix with entries
from a partial field P, and that the rows and columns of A are labeled by the
(ordered) sets X and Y respectively, where X ∩ Y = ∅. If the determinant
of every square submatrix of A is contained in P, then we say that A is an
X × Y P-matrix. If A is a P-matrix, then the rank of A, written rank(A),
is the largest value k such that A contains a nonzero k× k subdeterminant.

Since we will frequently work with submatrices, it is useful to introduce
some notation. If X ′ ⊆ X and Y ′ ⊆ Y , then A[X ′, Y ′] is the submatrix of
A induced by X ′ and Y ′. In particular, we define Axy to be A[{x}, {y}]. If
Z ⊆ X ∪Y , then A[Z] := A[Z ∩X,Z ∩Y ], and A−Z := A[X \Z, Y \Z]. If
A is a matrix over the partial field P, and ψ is a function on P, then ψ(A)
is obtained by operating on each entry in A with ψ. The following theorem
follows from [SW96, Theorem 3.6] (see also [PZa, Theorem 2.8]).

Lemma 2.4. Let P be a partial field, and let A be an X × Y P-matrix. Let

B := {X} ∪
{

X△Z
∣

∣ |X ∩ Z| = |Y ∩ Z|, det(A[Z]) 6= 0
}

.

Then B is the set of bases of a matroid on X ∪ Y .

Let M be the matroid of Lemma 2.4. We say that M is representable
over P, or is P-representable, and we say that M is represented by A. We
remark that this terminology is not standard: the usual convention is that a
matroid represented by a matrix A has the set of columns of A as its ground
set. Throughout this article, when we say that M is represented by A, we
mean that M is the matroid of Lemma 2.4, so the ground set of M is the
set of rows and columns of A, and the set of rows of A is a basis of M . If
M is represented by A (in our sense), then it is represented (in the standard
sense) by the matrix obtained from A by appending an |X| × |X| identity
matrix. For this reason, we write M =M [I|A] if A is a P-matrix, and M is
the matroid in Lemma 2.4. If A is an X×Y P-matrix, andM is the matroid
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represented by A, then M∗ is represented by AT , the transpose of A, where
the rows and columns of AT are labeled with Y and X respectively.

Proposition 2.5. [SW96, Proposition 4.2]. Let P be a partial field. The
class of P-representable matroids is closed under duality, taking minors, di-
rect sums, and 2-sums.

The next result follows from [SW96, Proposition 5.1] or [PZb, Proposi-
tion 2.10].

Proposition 2.6. Let P1,P2 be partial fields and let ψ : P1 → P2 be a
homomorphism. Let A be a P1-matrix. Then

(i) ψ(A) is a P2-matrix;
(ii) If A is square then det(A) = 0 if and only if det(ψ(A)) = 0; and
(iii) M [I|A] =M [I|ψ(A)].

Definition 2.7. Let A be an X × Y P-matrix, and let x ∈ X, y ∈ Y be
such that Axy 6= 0. Then we define Axy to be the (X△{x, y})× (Y△{x, y})
matrix given by

(Axy)uv =



















A−1
xy if uv = yx

A−1
xyAxv if u = y, v 6= x

−A−1
xyAuy if v = x, u 6= y

Auv −A−1
xyAuyAxv otherwise.

We say that Axy is obtained from A by pivoting over xy. Note that after
pivoting, x labels a column, and y labels a row. Suppose that P is a partial
field and that A is an X × Y P-matrix. Scaling means multiplying the rows
or columns of A by nonzero members of P. The next result is Proposition 3.3
in [SW96], or Proposition 2.5 in [PZb].

Proposition 2.8. If A is a P-matrix, and A′ is obtained from A by scaling
and pivoting, then A′ is a P-matrix.

Definition 2.9. Let P be a partial field, and let A,A′ be P-matrices. Then
A and A′ are scaling-equivalent if A′ can be obtained from A by scaling.
If A′ can be obtained from A by scaling, pivoting, permuting columns and
rows (permuting labels at the same time), and applying automorphisms of
P, then we say that A and A′ are equivalent.

The next result follows easily from [SW96, Proposition 3.5] and Proposi-
tion 2.6.

Proposition 2.10. Suppose that A and A′ are equivalent P-matrices. Then
M [I|A] =M [I|A′].

Definition 2.11. Let M be a matroid and suppose that P is a partial
field. We say that M is uniquely representable over P if, whenever A,A′ are
P-matrices such thatM =M [I|A] =M [I|A′], then A and A′ are equivalent.
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2.3. Bipartite graphs and twirls. Let M be a rank-r matroid with
ground set E, and let B be its set of bases. Suppose that B ∈ B. Let
GB(M) = (V,E) be the bipartite graph with vertices V := B ∪ (E \B) and
edges E := {(x, y) ∈ B × (E \B) | B△{x, y} ∈ B}.

Let A be an X × Y matrix. We associate with A a bipartite graph
G(A) = (V,E), where V := X ∪ Y and E := {(x, y) ∈ X × Y | Axy 6= 0}.
Thus each edge, e, of G(A) corresponds to a nonzero entry, Ae, of A. We
note here that if Axy 6= 0, and y′ and x′ are neighbors of x and y respectively
such that y′ and x′ are not adjacent in G(A), then y′ and x′ are adjacent in
G(Axy).

Lemma 2.12. Let P be a partial field, A an X × Y P-matrix, and let
M =M [I|A].

(i) GX(M) = G(A).
(ii) Let T be a forest of G(A) with edges e1, . . . , ek. Suppose that

p1, . . . , pk are elements of P∗. There exists a P-matrix A′ such that
A′ is scaling-equivalent to A, and A′

ei = pi for 1 ≤ i ≤ k.

Proof. Suppose that x ∈ X and y ∈ Y . Then xy is an edge of G(A) if and
only if the determinant of A[{x}, {y}] is nonzero, which is true if and only if
X△{x, y} is a basis ofM . This is equivalent to xy being an edge of GX(M).

We prove the second statement by induction on k. The result is trivially
true if T contains no edges. By relabeling as required, we can assume that in
the forest T , the edge ek is incident with a degree-one vertex v. By induction,
there is a matrix A′′ obtained from A by scaling, with the property that
A′′

ei = pi for 1 ≤ i ≤ k − 1. Certainly A′′
ek

is nonzero, let us say that it is
equal to the element β ∈ P∗. Now we multiply the row or column labeled
by v with pkβ

−1 to produce A′. �

Let A be a matrix and suppose that T is a forest of G(A). We say that A
is T -normalized if Axy = 1 for all xy ∈ T . By Lemma 2.12 there is always
a T -normalized matrix A′ that is scaling-equivalent to A.

We make repeated use of the following (easy) fact.

Proposition 2.13. Let G be a graph, and suppose that S is a set of edges
that contains a maximal forest of G. If e is an edge not contained in S, then
there is an induced cycle of G that contains e, and such that the edges of
this cycle are contained in S ∪ e.

Definition 2.14. Let A be a square P-matrix. Then A is a twirl if G(A) is
a cycle and det(A) 6= 0.

Recall that the rank-r whirl is denoted by Wr. A whirl is representable
over a field F if and only if |F| ≥ 3. Note that if A is a twirl then M [I|A] is
a whirl.

Proposition 2.15. [GGK00, Proposition 4.5]. Let A be an X × Y matrix
that is a twirl, and let x, y be such that Axy 6= 0.
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(i) If |X ∪ Y | = 4 then Axy is a twirl.
(ii) If |X ∪ Y | > 4 then Axy − {x, y} is a twirl.

2.4. Near-regular matroids. Recall that Q(α) is the field obtained from
the rational numbers by extending with the transcendental element α. Let
Z[α, 1/α, 1/(1 − α)] be the subring of Q(α) induced by α, 1/α, 1/(1 − α),
and the integers.

Definition 2.16. The near-regular partial field is

U1 :=

(

Z

[

α,
1

α
,

1

1− α

]

, 〈−1, α, 1 − α〉

)

.

Here 〈−1, α, 1 − α〉 denotes the subgroup of units generated by −1, α,
and 1− α. Thus U1 consists of zero, and elements of the form ±αi(1− α)j ,
where i and j are integers. We note that U1 is a special case of a class of
partial fields studied by Semple [Sem97].

A U1-matrix is said to be near-unimodular. A matroid is near-regular if
it is representable over U1. Whittle’s characterization shows, amongst other
things, that a matroid is near-regular if and only if it is representable over
every field with cardinality at least three.

Theorem 2.17. [Whi97, Theorem 1.4]. Let M be a matroid. The following
are equivalent:

(i) M is representable over GF(3), GF(4), and GF(5);
(ii) M is representable over GF(3) and GF(8);
(iii) M is near-regular; and
(iv) M is representable over all fields except, possibly, GF(2).

Next we collect some basic facts about the near-regular partial field. The
first result follows from Lemmas 2.23 and 4.3 in [PZb].

Proposition 2.18. The fundamental elements of U1 are

{

0, 1, α, 1 − α,
1

1− α
,

α

α− 1
,
α− 1

α
,
1

α

}

.

Proposition 2.19. Let αi and αj be fundamental elements of U1 that are
equal to neither 1 nor 0. There is an automorphism of U1 that takes αi to
αj.

Proof. Obviously an automorphism of U1 permutes the fundamental ele-
ments. Consider a function ψ : Q(α) → Q(α) which acts as the identity on
0 and 1, takes α to another fundamental element of U1, and which respects
addition and multiplication. The following table shows how ψ acts upon the
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element αi(1− α)j of U1.

ψ(α) ψ(αi(1− α)j)

α αi(1− α)j

1− α αj(1− α)i

1/(1− α) (−1)jαj(1− α)−(i+j)

α/(α − 1) (−1)iαi(1− α)−(i+j)

(α− 1)/α (−1)iα−(i+j)(1− α)i

1/α (−1)jα−(i+j)(1− α)j

Now it is clear that the restriction of ψ to U1 is indeed an automorphism.
Since the inverse of an automorphism is another automorphism, and so is
the composition of two automorphisms, the result follows easily. �

Recall that a matrix over the rationals is totally unimodular if every sub-
determinant belongs to {0, 1,−1}. A matroid is regular if and only if it can
be represented by a totally unimodular matrix. It is well-known that regular
matroids are representable over all fields ([Oxl92, Theorem 6.6.3]).

Proposition 2.20. Suppose that A is a near-unimodular matrix that is not
equivalent to a totally unimodular matrix. If ψ is an automorphism of U1

such that ψ(A) = A, then ψ is the trivial automorphism.

Proof. Suppose that the rows and columns of A are labeled with X and Y .
We assume that ψ is not the identity function on U1, so that ψ(α) 6= α. Let
T be a maximal forest of G(A). By examining the proof of Lemma 2.12,
we see that while T -normalizing A, we only ever multiply a row or column
by the inverse of a nonzero entry of A. If β is a nonzero entry of A, then
ψ(β) = β, and therefore ψ(β−1) = β−1. It follows easily that normalizing
A does not affect the assumption that ψ(A) = A. Moreover, normalizing
A does not produce a totally unimodular matrix, as A is not equivalent to
such a matrix. Henceforth we assume that A is T -normalized.

Let S be the set of nonzero entries of A that are equal to 1 or −1. There
is an edge e in G(A) not contained in S. As S contains the edge-set of T ,
Proposition 2.13 asserts that there is a set C ⊆ X ∪ Y such that G(A[C])
is an induced cycle of G(A) containing e, and the edges of G(A[C]) are
contained in S ∪ e.

Suppose that Ae = (−1)kαi(1− α)j for integers i, j, and k. Then

(1) ψ(αi(1− α)j) = αi(1− α)j .

By examining the table in the proof of Proposition 2.19, we see that if ψ(α)
is equal to 1/(1 − α) or (α − 1)/α, then the only solution to Equation (1)
is i = j = 0. This is a contradiction as e /∈ S. Therefore we suppose that
ψ(α) = 1− α. Then ψ(αi(1− α)j) = αj(1− α)i, so i = j.

Since every nonzero entry in A[C], other than Ae, is in {1,−1}, and
G(A[C]) is a cycle, it follows that the determinant of A[C] is, up to mul-
tiplication by −1, equal to Ae ± 1. As this determinant belongs to U1, it
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follows that either Ae or −Ae is a fundamental element. But no funda-
mental element, other than 1, is of the form ±αi(1 − α)i, and we have a
contradiction.

Similarly, if ψ(α) is equal to α/(α − 1) or 1/α, then i and j must satisfy
either 2j = −i, or 2i = −j. In either case we arrive at a similar contradic-
tion. �

The next result is an adaptation of Lemma 4.3 in [GGK00].

Lemma 2.21. Let A be a near-unimodular X × Y matrix. Then there is
some C ⊆ X∪Y such that A[C] is a twirl if and only if M [I|A] is nonbinary.

Proof. If A contains a twirl, then M [I|A] contains a whirl-minor, and is
therefore nonbinary. For the converse, let T be a maximal forest of G(A),
and assume that A is T -normalized. Let S be the set of nonzero entries in
A that are equal to 1 or −1. As M [I|A] is nonbinary, it is certainly not
regular, and therefore A is not totally unimodular. Hence there is an edge
e of G(A) such that e /∈ S. Proposition 2.13 provides a subset C ⊆ X ∪ Y
such that G(A[C]) is a cycle containing e, and the edges of G(A[C]) are
contained in S ∪ e. Then A[C] is a twirl. �

The following analogue of Lemma 4.4 in [GGK00] is proved in a similar
way to Lemma 2.21.

Lemma 2.22. Let A be an X×Y U1-matrix, and suppose that A[C] is a twirl
for some C ⊆ X ∪ Y . Let v0, . . . , vp be the vertices of A[C] in cyclic order.
Suppose that x ∈ (X ∪ Y ) \ C and the neighbors of x in C are vi1 , . . . , vik ,
where k ≥ 2. Then there exists a twirl of the form A[{x, vij , . . . , vij+1

}]
(where 1 ≤ j ≤ k − 1) or A[{x, v0, . . . , vi1 , vik , . . . , vp}].

2.5. Stabilizers. The notion of a stabilizer, introduced by Whittle [Whi99],
is an indispensable tool for controlling inequivalent representations.

Definition 2.23. Let P be a partial field, and let M and N be 3-connected
P-representable matroids such that N is a minor of M . Suppose that the
ground set of N is X ′ ∪ Y ′, where X ′ is a basis of N . We say that N is
a P-stabilizer for M if, whenever A1 and A2 are X × Y P-matrices (where
X ′ ⊆ X and Y ′ ⊆ Y ) such that

(i) M =M [I|A1] =M [I|A2];
(ii) A1[X

′, Y ′] is scaling-equivalent to A′
2[X

′, Y ′]; and
(iii) N =M [I|A1[X

′, Y ′]] =M [I|A2[X
′, Y ′]],

then A1 is scaling-equivalent to A2.

We say that N is a P-stabilizer for a class of matroids if N is a P-stabilizer
for every 3-connected member of the class.

Whittle proved that verifying that a matroid is a stabilizer can be accom-
plished with a finite case-check. (See also [PZa, Theorem 3.10].)
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Theorem 2.24 (Stabilizer Theorem, Whittle [Whi99]). Let P be a partial
field, and let N be a 3-connected P-representable matroid. Let M be a 3-con-
nected P-representable matroid having an N -minor. Then exactly one of the
following is true:

(i) N stabilizes M .
(ii) M has a 3-connected minor M ′ such that

(a) N does not stabilize M ′;
(b) N is isomorphic to M ′/x, M ′\y, or M ′/x\y, for some x, y ∈

E(M ′); and
(c) If N is isomorphic to M ′/x\y then at least one of M ′/x,M ′\y

is 3-connected.

Since U2,4 has no 3-connected, near-regular one-element extensions or
coextensions, the following result follows easily:

Corollary 2.25. U2,4 is a U1-stabilizer for the class of near-regular ma-
troids.

2.6. The ∆-Y operation. Suppose that M is a matroid and that T is a
coindependent triangle of M . Let N be an isomorphic copy of M(K4) such
that E(N) ∩ E(M) = T and T is a triangle of N . Then the generalized
parallel connection of M and N , denoted PT (N,M), is defined. This is the
matroid on the ground set E(M) ∪ E(N) whose flats are exactly the sets
F such that F ∩ E(N) and F ∩ E(M) are flats of N and M respectively.
Suppose that T = {a, b, c}. If x ∈ T , then there is a unique element, x′,
of N , that is in no triangle with x. We swap the labels on x and x′ in
PT (M,N), for each x ∈ T . Thus PT (M,N)\T andM have the same ground
set. We say that PT (M,N)\T is produced by a ∆-Y operation on M , and
we denote the resulting matroid with ∆T (M). The ∆-Y operation has been
studied by Akkari and Oxley [AO93] and generalized by Oxley, Semple, and
Vertigan [OSV00].

Suppose that T is an independent triad of the matroidM . Then ∆T (M
∗)

is defined, and (∆T (M
∗))∗ is said to be produced from M by a Y -∆ oper-

ation, and is denoted by ∇T (M). The next results follow by combining
Lemmas 2.6 and 2.11, and Theorem 1.1 in [OSV00].

Lemma 2.26. Suppose that T is a coindependent triangle of M . Then

r(∆T (M)) = r(M) + 1.

Moreover, T is an independent triad in ∆T (M), and ∇T (∆T (M)) =M .

Lemma 2.27. Suppose that P is a partial field and that M is an excluded
minor for the class of P-representable matroids. If T is a coindependent
triangle of M then ∆T (M) is also an excluded minor for the class of P-rep-
resentable matroids.
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3. Unique representations

In this section we prove an analogue of Kahn’s theorem by showing that
stable near-regular matroids are uniquely representable over U1. Brylawski
and Lucas [BL76] prove that binary matroids are uniquely representable
over any field. The proof of the following result sketches the straightforward
adaptation of their argument to partial fields.

Proposition 3.1. Suppose that P is a partial field, and that the X×Y P-ma-
trices A1 and A2 both represent the binary matroid M . Let T be a maximal
forest of G(A1) = G(A2). Suppose that both A1 and A2 are T -normalized.
Then A1 = A2. Hence M is uniquely representable over P.

Proof. We claim that A1 = A2 and that every nonzero entry of A1 and A2

belongs to {1,−1}. Let S be the set of edges of G(A1) = G(A2) such that
xy ∈ S if and only if (A1)xy ∈ {1,−1} and (A2)xy = (A1)xy. If our claim
is false, then there is an edge e of G(A1) not in S. Since S contains the
edge-set of T , Proposition 2.13 implies that there is a set C ⊆ X ∪ Y such
that G(A1[C]) is a cycle containing e, the edges of which are contained in
S ∪ e.

Let A be the X × Y GF(2)-matrix obtained from A1 by replacing every
nonzero entry with 1. As M is binary, A represents M over GF(2). Since
G(A[C]) is a cycle, it is easy to see that A[C] has zero determinant over
GF(2). Therefore the determinant of A1[C] is also zero. Let β = (A1)e.
Every nonzero entry of A1[C], other than (A1)e, belongs to {1,−1}. Now it
is easy to see that the determinant of A1[C] is, up to multiplication by −1,
equal to β ± 1. Thus β ∈ {1,−1}. However, the same argument shows that
(A2)e is equal to β, and we have a contradiction to the fact that e /∈ S. �

The direct sum or 2-sum of two uniquely representable matroids need not
be uniquely representable (for example, the 2-sum of two copies of U2,4 is not
uniquely representable over GF(4)). But we do have the following partial
result.

Proposition 3.2. Let P be a partial field, and suppose that the matroid M1

is uniquely representable over P. Let M2 be a P-representable matroid, and
suppose that, whenever A1 and A2 are two T -normalized X×Y P-representa-
tions of M2, then A1 = A2. (Here T is a maximal forest of G(A1) = G(A2).)
Then M1 ⊕1 M2 and M1 ⊕2 M2 are uniquely P-representable.

Proof. We present the proof that M1 ⊕2 M2 is uniquely representable. The
proof for M1 ⊕1 M2 is similar (and easier).

Let A1 and A2 be two P-representations of M1 ⊕2 M2. Let X be a basis
of M1 ⊕2 M2, and let Y = E(M1 ⊕2 M2)−X. By pivoting, we can assume
that A1 and A2 are X × Y matrices. Thus (A1)xy is nonzero if and only if
(A2)xy is nonzero. For i = 1, 2, let Xi and Yi be equal to X ∩ E(Mi) and
Y = Y ∩E(Mi) respectively. It is straightforward to prove (see Lemma 5.2)
that, by relabeling as necessary, we can assume that Ai[X2, Y1] is the zero
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matrix, and Ai[X1, Y2] has rank one. Therefore the nonzero columns of
Ai[X1, Y2] are equal, up to scaling; the same comment applies to the rows.

Let y ∈ Y2 be such that Ai[X1, {y}] is nonzero for i = 1, 2. (Note that
such a y exists, for otherwise we can reduce to the direct-sum case.) By
considering the result of contracting X2, it is easy to see that A1[X1, Y1 ∪ y]
and A2[X1, Y1 ∪ y] are representations of M1. By unique representability,
we can apply scalings and automorphisms of P to A2, and assume that
A2[X1, Y1 ∪ y] = A1[X1, Y1 ∪ y]. Now, since A2[X1, {y}] = A1[X1, {y}], and
the nonzero columns of Ai[X1, Y2] are parallel to Ai[X1, {y}], for i = 1, 2,
we can scale columns of A2 so that A2[X1, Y ] = A1[X1, Y ].

Let x ∈ X1 be such that Ai[{x}, Y2] is nonzero for i = 1, 2. By considering
the result of contracting X1 − x, we see that Ai[X2 ∪ x, Y2] represents M2.

Claim 3.2.1. Let T be a forest of G(A1) = G(A2), and assume that T
contains all the edges incident with x. By performing row and column scal-
ings, we can T -normalize both A1 and A2, without affecting the assumption
A2[X1, Y ] = A1[X1, Y ].

Proof. The proof of the claim is inductive on the number of edges in T . If
T contains only those edges incident with x, then we can T -normalize by
multiplying column y by 1/(A1)xy = 1/(A2)xy in both A1 and A2, for every
neighbor y of x. This proves the base case of the argument.

Suppose that T contains edges that are not incident with x. Let u be a
degree-one vertex in T that is not adjacent to x, and let v be the vertex of T
adjacent to u. By the inductive hypothesis, we can assume that A1 and A2

are both (T − uv)-normalized, and the assumption A2[X1, Y ] = A1[X1, Y ]
still holds. If u ∈ X2 then we can scale row u in Ai by 1/(Ai)uv, for i =
1, 2. The resulting matrices are T -normalized, and agree on the submatrices
induced by X1 and Y . If u ∈ X1 then we can multiply row u in both A1

and A2 by 1/(A1)uv = 1/(A2)uv, and we see that the claim holds for T .
A similar argument holds if u ∈ Y1. Thus we suppose that u ∈ Y2. Since
u is not adjacent to x, it follows that (Ai)xu = 0 for i = 1, 2. Therefore
Ai[X1, {u}] is the zero column, since the nonzero rows of Ai[X1, Y2] are
parallel. It follows that we can multiply column u by 1/(Ai)vu for i = 1, 2
without changing Ai[X1, Y ]. This completes the proof of the claim. �

Now we let T ′ be a maximal forest of the subgraph of G(A1) = G(A2)
induced by X2∪Y2∪x. Assume that T ′ contains all the edges incident with
x. We extend T ′ to a maximal forest T , of G(A1) = G(A2), where T also
contains all edges incident with x. By Claim 3.2.1, we can T -normalize A1

and A2 without affecting the assumption that A2[X1, Y ] = A1[X1, Y ].
Since A1[X2∪x, Y2] and A2[X2∪x, Y2] are T

′-normalized, the hypotheses
imply that A2[X2 ∪ x, Y2] = A1[X2 ∪ x, Y2]. Now we see that, by pivoting,
scaling rows and columns, and possibly applying an automorphism, we have
converted A1 and A2 into identical matrices. The result follows. �
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Definition 3.3. Let M be a matroid. Then M is stable if it can not be
expressed as the direct sum or 2-sum of two nonbinary matroids.

Lemma 3.4. Let M be a stable near-regular matroid. Then M is uniquely
representable over U1.

Proof. LetM be a stable near-regular matroid, and suppose that the lemma
holds for all smaller matroids. We start by assuming that M is 3-connected.
If M is binary, then the result follows immediately from Proposition 3.1.
Therefore we suppose that M is nonbinary, and therefore has a U2,4-minor.
Let A1 and A2 be X × Y U1-matrices that represent M . By pivoting, we
can assume that there are 2-element subsets X ′ ⊆ X and Y ′ ⊆ Y , such that
Ai[X

′, Y ′] represents U2,4 for i = 1, 2. By scaling, we can assume that

Ai[X
′, Y ′] =

[

1 1
pi 1

]

for some pi ∈ U1. Since det(Ai[X
′, Y ′]) = 1 − pi is defined, p1 and p2 are

fundamental elements. By Proposition 2.19, we can apply an automorphism
of U1 to A2, and assume that A2[X

′, Y ′] = A1[X
′, Y ′]. Now the lemma

follows immediately from Corollary 2.25.
Hence we assume that M is not 3-connected, and can therefore be ex-

pressed as a direct sum or a 2-sum of M1 and M2. Since M is stable, we
can assume that M2 is binary. It is easy to see that M1 must be stable.
ThereforeM1 is uniquely representable over U1 by the inductive hypothesis.
The result now follows from Propositions 3.1 and 3.2. �

4. The setup

In this section we collect the results that underlie our proof strategy.
An excluded minor M for near-regularity with more than eight elements
has a “companion” matroid N that is representable over Q(α). Our main
objective here is to develop the tools for constructing N .

Note that if an excluded minor for near-regularity is not ternary, then
it is an excluded minor for the class of ternary matroids. Now the fol-
lowing lemmas follow immediately from Reid’s characterization of ternary
matroids [Bix79, Sey79], and Proposition 2.5.

Lemma 4.1. Let M be an excluded minor for the class of near-regular
matroids, and assume M is not isomorphic to U2,5, U3,5, F7, or F

∗
7 . Then

M is ternary.

Lemma 4.2. Let M be an excluded minor for the class of near-regular
matroids. Then M is 3-connected.

Lemma 4.3. Let M be an excluded minor for the class of near-regular ma-
troids. Then M∗ is an excluded minor for the class of near-regular matroids.

Definition 4.4. Suppose that M is a matroid, and that u, v ∈ E(M). We
will say that u, v is a deletion pair if
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(i) {u, v} is coindependent;
(ii) Each of M\u,M\v,M\{u, v} is stable; and
(iii) M\{u, v} is connected and nonbinary.

Our definition here is slightly different from that used in [GGK00]. The
next result follows from [GGK00, Theorem 3.1].

Lemma 4.5. LetM be a 3-connected nonbinary matroid such that r(M) ≥ 4
or r∗(M) ≥ 4. Then, for some M ′ ∈ {M,M∗}, there is a pair of elements
u, v such that M ′\{u, v} is connected, and each of M ′\u, M ′\v, M ′\{u, v}
is a 0-, 1-, or 2-element coextension of a 3-connected nonbinary matroid.
Hence u, v is a deletion pair for M ′.

Lemmas 4.6 and 4.9 are analogues of Lemmas 2.2 and 2.3 in [GGK00].
Suppose that A is a matrix (not necessarily a U1-matrix) over the field Q(α),
and that all the entries of A belong to U1. If ψ is a homomorphism from U1

to some other partial field, then we use ψ(A) to denote the matrix obtained
by applying ψ to all the entries of A.

Lemma 4.6. Suppose M is a matroid, and that u, v is a deletion pair of
M such that M\u and M\v are near-regular. Let X be a basis of M\{u, v},
and define Y := E(M)\X. Then there exists an X×Y matrix A over Q(α)
such that

(i) M [I|A− u] =M\u;
(ii) M [I|A− v] =M\v; and
(iii) A− u and A− v are near-unimodular.

Moreover, A is unique up to row and column scaling and applying automor-
phisms of U1.

Proof. Let A1 be a near-unimodular X × (Y \ u) matrix representing M\u.
Likewise, let A2 be a near-unimodular X×(Y \v) matrix representingM\v.
If u is a loop, then it is straightforward to confirm that the matrix obtained
from A1 by adding a zero column satisfies the statements of the lemma.
Therefore we assume that u (and v, by symmetry) is not a loop. Now
A1 − v and A2 − u are near-unimodular matrices representing M\{u, v}.
Since M\{u, v} is stable by the definition of a deletion pair, it follows from
Lemma 3.4 that by scaling, and applying automorphisms of U1 to A2, we
can assume that A2 − u = A1 − v. Propositions 2.6 and 2.8 imply that
A2 remains near-unimodular after these operations. Let A be the matrix
obtained from A1 by adding the column A2[X, {u}]. Since A− u = A1 and
A− v = A2 the conditions of the lemma clearly hold.

To prove that A is unique, we first assume that A is T -normalized, for
some spanning tree T of G(A) that has u and v as degree-one vertices.
(Such a tree exists becauseM\{u, v}, and hence G(A−{u, v}), is connected;
neither u nor v is a loop; and because u and v are not adjacent.) Let A′

be some other X × Y matrix over Q(α) that satisfies the conditions of the
lemma. Since A − u and A′ − u both represent M\u over U1, and M\u is
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stable, we can, by scaling and applying automorphisms of U1 to A′, assume
that A′−u = A−u. Similarly, as A′−v and A−v both represent the stable
matroid M\v, there are nonsingular diagonal matrices D1 and D2, and an
automorphism ψ of U1, such that D1ψ(A

′ − v)D2 = A− v.
Let xy be an edge in T − {u, v}. Then

(2) 1 = (A− v)xy = (D1)xxψ((A
′ − v)xy)(D2)yy

= (D1)xxψ(1)(D2)yy = (D1)xx(D2)yy.

Let γ = (D1)xx, so that (D2)yy = 1/γ. Let w be some vertex in T − {u, v}.
It is easy to prove, using Equation (2), and induction on the length of the
path in T − {u, v} joining w to x, that if w ∈ X then (D1)ww = γ, and
if w ∈ Y then (D2)ww = 1/γ. Thus A − v = D1ψ(A

′ − v)D2 is obtained
from A′ − v by applying ψ, and possibly scaling the column u by a nonzero
constant. Thus ψ(A′ −{u, v}) = A−{u, v} = A′ −{u, v}. Since A′ −{u, v}
represents the nonbinary matroid M\{u, v}, it follows that A′ − {u, v} is
near-unimodular but not totally unimodular. Proposition 2.20 implies that
ψ is the trivial automorphism. Thus A− v can be obtained from A′ − v by
possibly scaling the column u. Now, as A′[X, v] = A[X, v], it follows that
A′ and A are equal, up to scaling and automorphisms of U1. �

We will need a few more properties of the matrix appearing in Lemma 4.6.
First of all, we need to be able to modify the choice of the basis X. The
straightforward proof of the next result is omitted.

Lemma 4.7. Suppose that M is a matroid, and that u, v is a deletion pair of
M such that M\u and M\v are near-regular. Let X be a basis of M\{u, v},
and let Y = E(M)\X. Let A be the X×Y Q(α)-matrix such that M [I|A−
u] = M\u, M [I|A− v] = M\v, and A− u and A− v are near-unimodular.
Suppose that x ∈ X, y ∈ Y \{u, v} and that Axy 6= 0. Then M [I|Axy −u] =
M\u, M [I|Axy − v] =M\v, and Axy − u and Axy − v are near-unimodular.

Consider the function from U1 to GF(3) which takes 0 to 0, 1 to 1, and
α to −1. It is not difficult to confirm that this induces a partial-field homo-
morphism from U1 to GF(3). Indeed, if φ : U1 → GF(3) is a partial-field
homomorphism, then φ(0) = 0 and φ(1) = 1, by elementary properties of
homomorphisms, and φ(α) cannot be equal to 0, as φ(α) must have a mul-
tiplicative inverse. Nor, for the same reason, can φ(1 − α) be equal to 0.
Thus φ(α) = −1, so there is a unique partial-field homomorphism from U1

to GF(3).

Lemma 4.8. Suppose M is a ternary matroid, and that u, v is a deletion
pair of M such that M\u and M\v are near-regular. Let X be a basis of
M\{u, v}, and let Y = E(M) \X. Let A be the X × Y Q(α)-matrix such
that M [I|A − u] = M\u, M [I|A − v] = M\v, and A − u and A − v are
near-unimodular. Let φ be the homomorphism from U1 to GF(3). Then
M =M [I|φ(A)].
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Proof. We assume that φ(A) is T -normalized for some maximal forest T of
G(φ(A)), where u and v are degree-one vertices of T . Let A′ be an X × Y
GF(3)-matrix that represents M . Then both A′ − u and φ(A)−u represent
M\u over GF(3) (by Proposition 2.6). Since representations are unique over
GF(3) ([BL76]), and GF(3) has no non-trivial automorphisms, by scaling we
can assume that A′ − u = φ(A) − u. Now there are nonsingular diagonal
matrices D1 and D2 such that D1(A

′ − v)D2 = φ(A) − v. Just as in the
proof of Lemma 4.6, we can prove that A′ − v = φ(A) − v, up to scaling of
the column u. The result follows. �

Lemma 4.9. Let M be a matroid, and let u, v be a deletion pair for M such
that M\u and M\v are near-regular. Let X be a basis of M\{u, v}, and let
Y = E(M) \X. Let A be the X × Y Q(α)-matrix such that M [I|A − u] =
M\u, M [I|A− v] =M\v, and A− u and A− v are near-unimodular. Now
assume that X ′ ⊆ X and Y ′ ⊆ Y − {u, v} are such that

(i) u, v is a deletion pair for M/X ′\Y ′; and
(ii) M/X ′\Y ′ 6=M [I|A − (X ′ ∪ Y ′)].

Then M/X ′\Y ′ is not near-regular.

Proof. Suppose that M/X ′\Y ′ is near-regular, and that A′ is an (X \X ′)×
(Y \ Y ′) U1-matrix that represents M/X ′\Y ′. Deleting u or v from A′ pro-
duces a near-unimodular matrix that represents M\u or M\v respectively.
But the same statements apply to A − (X ′ ∪ Y ′). The uniqueness guaran-
teed by Lemma 4.6 means that M [I|A′] = M [I|A − (X ′ ∪ Y ′)], so we have
a contradiction to the hypotheses of the lemma. �

Lemma 4.10. Let M be an excluded minor for the class of near-regular
matroids such that M is representable over GF(3) and GF(4). Then M is
not representable over Q(α).

Proof. Let M be the set of matroids representable over GF(3), GF(4), and
Q(α). We claim that this is precisely the class of near-regular matroids.
Theorem 1.5 of [Whi97] shows that M is exactly the set of matroids repre-
sentable over both GF(3) and GF(q), for some q ∈ {2, 3, 4, 5, 7, 8}. It cannot
be the case that q = 2, for then M would be the set of regular matroids.
Since M contains U2,4 this is impossible.

Consider the matroid AG(2, 3). It is representable over the field F if and
only if F contains a solution to x2 − x+1 = 0 ([Oxl92, p. 515]). Since Q(α)
contains no such solution, it follows that AG(2, 3) is not Q(α)-representable,
and therefore does not belong toM. However, AG(2, 3) is representable over
GF(3), GF(4), and GF(7) (since x = 3 is a solution to x2−x+1 = 0). Thus
q cannot be equal to 3, 4, or 7. We conclude that q is equal to either 5 or
8. In either case Theorem 2.17 implies that M is the class of near-regular
matroids, as desired. The result follows immediately. �
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5. Connectivity

Much of this paper consists of recovering connectivity in situations where
it seems to have been lost. Our tool for this is the blocking sequence.
Suppose that M is a matroid on the ground set E. We introduce a similar
notation to that used for induced submatrices. Suppose E = B ∪ Y where
B ∩ Y = ∅ and B is a basis of M . Let Z and Z ′ be subsets of E. Then
MB[Z] := M/(B \ Z)\(Y \ Z), and MB − Z := MB [E \ Z]. Moreover,
MB[Z]− Z ′ =MB [Z \ Z ′].

Definition 5.1. Let M be a matroid, B a basis of M , and suppose that X
and Y are subsets of E(M). Then

λB(X,Y ) := rM/(B\Y )(X \B) + rM/(B\X)(Y \B).

It is straightforward to verify that this is the same as the function
λB(X,Y ) employed in [GGK00]. Moreover, if X and Y are disjoint, then

λB(X,Y ) = rMB [X∪Y ](X) + rMB [X∪Y ](Y )− r(MB [X ∪ Y ]),

which is the usual connectivity function of MB [X ∪ Y ]. In particular, if X
and Y partition E(M), then λB(X,Y ) = rM (X)+ rM (Y )− r(M). If X and
Y are disjoint, then we say that (X,Y ) is a k-separation of MB [X ∪ Y ] if
|X|, |Y | ≥ k and λB(X,Y ) < k.

When M is representable the following holds:

Lemma 5.2. Suppose A is an (X1 ∪X2) × (Y1 ∪ Y2) P-matrix (where X1,
X2, Y1, and Y2 are pairwise disjoint). Let M =M [I|A]. Then

λX1∪X2
(X1 ∪ Y1,X2 ∪ Y2) = rank(A[X2, Y1]) + rank(A[X1, Y2]).

Let M be a matroid on the ground set E, and let B be a basis of M . It
is well-known that GB(M) is connected if and only if M is connected. A
partition (X,Y ) of E is a split with respect to B if |X|, |Y | ≥ 2 and the
edges in GB(M) that join vertices in X to vertices in Y induce a complete
bipartite graph. Note that this bipartite graph need not span all vertices in
either X or Y .

Proposition 5.3. [GGK00, Proposition 4.11]. Let M be a matroid, and
suppose B is a basis of M . If (X,Y ) is a 2-separation of M , then (X,Y ) is
a split with respect to B.

Not every split corresponds to a 2-separation:

Proposition 5.4. [GGK00, Proposition 4.12]. Let B be a basis of the ma-
troid M , and let (X,Y ) be a split with respect to B. Suppose x1y1 is an
edge of GB(M) with x1 ∈ X and y1 ∈ Y . Then (X,Y ) is not a 2-sep-
aration of M if and only if there exist x2 ∈ X and y2 ∈ Y such that
MB[{x1, y1, x2, y2}] ∼= U2,4.

The following definitions and lemmas are directly from [GGK00, Section
4], and will be presented here without proof. There is some overlap with



18 HALL, MAYHEW, AND VAN ZWAM

results due to Truemper [Tru86], who also gives a very detailed analysis of
the structure of the resulting matrices when M is representable.

Definition 5.5. Let M be a matroid, and let B be a basis of M . Suppose
that (X,Y ) is an exact k-separation of MB [X ∪ Y ]. We say that (X,Y )
is induced if there exists a k-separation (X ′, Y ′) of M with X ⊆ X ′ and
Y ⊆ Y ′.

Definition 5.6. Suppose that M is a matroid, and that B is a basis of M .
Let (X,Y ) be a k-separation of MB [X ∪ Y ]. A blocking sequence for (X,Y )
is a sequence of elements v1, . . . , vp of E(M) \ (X ∪ Y ) such that

(i) λB(X,Y ∪ v1) = k;
(ii) λB(X ∪ vi, Y ∪ vi+1) = k for i = 1, . . . , p− 1;
(iii) λB(X ∪ vp, Y ) = k; and
(iv) No proper subsequence of v1, . . . , vp satisfies the first three proper-

ties.

The following proposition shows how useful blocking sequences are:

Proposition 5.7. [GGK00, Theorem 4.14]. Let M be a matroid, and
suppose that B is a basis of M . Let (X,Y ) be an exact k-separation of
MB[X ∪ Y ]. Exactly one of the following holds:

(i) There exists a blocking sequence for (X,Y ).
(ii) (X,Y ) is induced.

The first of the following propositions lists basic properties of blocking
sequences; the next provides a means of shortening a given sequence.

Proposition 5.8. [GGK00, Proposition 4.15 (i, ii, iv)]. Suppose that M is
a matroid on the ground set E, and that B is a basis of M . Let (X,Y ) be an
exact k-separation in MB [X ∪ Y ], and suppose that v1, . . . , vp is a blocking
sequence for (X,Y ). Then the following hold:

(i) For 1 ≤ i ≤ j ≤ p, vi, . . . , vj is a blocking sequence for the exact
k-separation (X ∪{v1, . . . , vi−1}, Y ∪{vj+1, . . . , vp}) of MB [X∪Y ∪
{v1, . . . , vi−1, vj+1, . . . , vp}].

(ii) Let x1, x2 ∈ X ∪ Y be such that x1x2 is an edge of GB(M). Then
v1, . . . , vp is a blocking sequence for the exact k-separation (X,Y )
of MB△{x1,x2}[X ∪ Y ].

(iii) For i = 1, . . . , p − 1, vi ∈ B implies vi+1 ∈ E \ B, and vi ∈ E \ B
implies vi+1 ∈ B.

Proposition 5.9. [GGK00, Proposition 4.16]. LetM be a matroid. Suppose
that B is a basis of M , and that (X,Y ) is an exact k-separation in MB [X ∪
Y ]. Let v1, . . . , vp be a blocking sequence for (X,Y ). Then the following
hold:

(i) Suppose that Y ′ ⊆ Y contains at least k elements and that
λB(X,Y

′) = k − 1. If p > 1, then v1, . . . , vp−1 is a blocking se-
quence for the exact k-separation (X,Y ′ ∪ vp) of MB [X ∪ Y ′ ∪ vp].
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(ii) Let y ∈ Y be such that vpy is an edge of GB(M), and λB(X∪y, Y ) =
k. If p > 1, then v1, . . . , vp−1 is a blocking sequence for the exact
k-separation (X, (Y ∪ vp) \ y}) of MB△{vp ,y}[(X ∪ Y ∪ vp) \ y].

(iii) If vi has no neighbors in X ∪ Y in GB(M), then 1 < i < p; vi−1vi
is an edge of GB(M); and v1, . . . , vi−2, vi+1, . . . , vp is a blocking
sequence for the exact k-separation (X,Y ) of MB△{vi−1,vi}[X ∪ Y ].

For 2-separations more can be said. If (X1, Y1) and (X2, Y2) are both
partitions of a set, then these partitions cross if Xi ∩ Yj 6= ∅ whenever
i, j ∈ {1, 2}.

Definition 5.10. LetM be a matroid, and suppose that (X1, Y1) is a 2-sepa-
ration ofM . We say (X1, Y1) is crossed if there exists a 2-separation (X2, Y2)
ofM such that (X1, Y1) and (X2, Y2) cross. Otherwise (X1, Y1) is uncrossed.

Proposition 5.11. [GGK00, Proposition 4.17]. Let B be a basis of the
matroid M . Suppose that (X1,X2) is an uncrossed 2-separation of MB[X1∪
X2], and let v1, . . . , vp be a blocking sequence for (X1,X2). Let (Y1, Y2) be
a 2-separation of MB [X1 ∪X2 ∪ {v1, . . . , vp}]. Then, for some i, j ∈ {1, 2},
Xi ∪ {v1, . . . , vp} ⊆ Yj .

Proposition 5.12. [GGK00, Proposition 4.18]. Let M be a matroid, and
let B be a basis of M . Suppose that (X1,X2) is an uncrossed 2-separation in
MB[X1∪X2], and let v ∈ E(M)\(X1∪X2) be such that λB(X1∪v,X2) = 2.
If (Y1, Y2) is a 2-separation of MB [X1 ∪ X2 ∪ v] such that X2 ⊆ Y2, then
v ∈ Y2.

Proposition 5.13. [GGK00, Corollary 4.19]. Suppose B is a basis of the
matroid M . If (X1,X2) is the unique 2-separation in MB [X1 ∪ X2], and
v1, . . . , vp is a blocking sequence for (X1,X2), thenMB [X1∪X2∪{v1, . . . , vp}]
is 3-connected.

6. The reduction

This section contains the core of the proof of Theorem 1.2. We reduce
the proof to a finite case-analysis by showing that any excluded minor for
the class of near-regular matroids has at most eight elements. This part
of the proof follows the arguments in [GGK00] very closely. Deviations
necessarily occur when the nature of GF(4) comes into play. This happens
in the case k = 0 of Claim 6.1.16 (which is (15) in [GGK00]) and from
Claim 6.1.21 (which is (20) in [GGK00]) to the end. All other differences
are largely cosmetic: for example, rather than work with the bipartite graphs
associated with matrices, we choose to work with the matrices themselves.

We denote the simplification or cosimplification of a matroid M by si(M)
or co(M). Suppose that the matroid M has E as its ground set and B as
its set of bases. Let B be a basis of M , and suppose that x ∈ E. Then
nighB(x) denotes the set of vertices of GB(M) that are adjacent to x. Thus

nighB(x) =
{

y ∈ E
∣

∣ B△{x, y} ∈ B
}

.
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Theorem 6.1. Let M be an excluded minor for the class of near-regular
matroids other than AG(2, 3)\e or (AG(2, 3)\e)∗. Then r(M) ≤ 4 and
r∗(M) ≤ 4.

Proof. Suppose the theorem is false. Let M be an excluded minor for the
class of near-regular matroids on the ground set E, such that r(M) > 4 or
r∗(M) > 4, and suppose that M is isomorphic to neither AG(2, 3)\e nor
(AG(2, 3)\e)∗. Lemmas 4.1 and 4.2 imply that M is ternary and 3-con-
nected. If M is not GF(4)-representable, then it is an excluded minor for
GF(4)-representability. But none of the matroids in Theorem 1.1 is a coun-
terexample to Theorem 6.1, so this is a contradiction. Thus M is also
GF(4)-representable.

Lemma 4.5 says that for some M ′ ∈ {M,M∗}, there is a deletion pair u,
v of M ′, and that M ′\{u, v} contains a 3-connected nonbinary minor of size
at least |E| − 4.

Assumption 6.1.1. M ′, u, and v have been chosen so that | co(M ′\{u, v})|
is as large as possible.

Lemma 4.3 implies that M is a counterexample to the theorem if and
only if M∗ is, so henceforth we relabel M ′ with M .

Since {u, v} is coindependent, there is a basis B ofM that contains neither
u nor v. Define Y := E \ B. Lemma 4.6 supplies a B × Y Q(α)-matrix A
with entries in U1 such that M [I | A − u] = M\u, M [I | A − v] = M\v,
and both A − u and A − v are near-unimodular. Let N be the matroid
represented over Q(α) by A. Thus N\u = M\u and N\v = M\v. Since
M is representable over both GF(3) and GF(4), Lemma 4.10 implies that
M is not Q(α)-representable. Hence M 6= N . There is a set B′ that is a
basis in exactly one of M and N , and such a basis must contain {u, v}. By
extending B′ \ {u, v} to a basis of M\{u, v} we see that the following claim
holds.

Claim 6.1.2. Let B′ be a set that is a basis in exactly one of M and N .
There is a basis B′′ of M\{u, v} = N\{u, v} such that B′ \B′′ = {u, v}.

Let B′ and B′′ be as in Claim 6.1.2. By Lemma 4.7, we can pivot, and
assume that A is a B′′ × (E \ B′′) matrix. Henceforth we relabel B′′ with
B and E \ B′ with Y . Note that, although M 6= M [I|A], the fact that
M\u and M\v are represented by A− u and A− v respectively means that
GB(M) = G(A).

If B1 is a basis of M\{u, v} = N\{u, v}, and B2 is a basis of exactly one
of M and N , then we say that B1△B2 is a distinguishing set with respect
to B1. Define {a, b} := B \B′. Then {a, b, u, v} is a distinguishing set with
respect to B.

Claim 6.1.3. B′ is a basis of N .

Proof. Suppose that the claim is false. Then the determinant of
A[{a, b, u, v}], evaluated over Q(α), is equal to zero. Let φ be the unique
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homomorphism from U1 to GF(3). Proposition 2.6 implies that the deter-
minant of φ(A)[{a, b, u, v}], evaluated over GF(3), is also zero. Thus B′ is
not a basis of M [I|φ(A)]. But Lemma 4.8 says that M [I|φ(A)] is M , so we
have a contradiction. �

Claim 6.1.4. G(A[{a, b, u, v}]) is a cycle.

Proof. Suppose that the claim fails. Then there is some zero entry in
A[{a, b, u, v}], and hence in φ(A)[{a, b, u, v}]. Since B′ is not a basis of
M , the determinant of φ(A)[{a, b, u, v}] evaluated over GF(3) must be zero.
This implies that φ(A)[{a, b, u, v}] must contain a zero row or column. How-
ever, as φ takes no nonzero element to zero, this implies that A[{a, b, u, v}]
has a zero row or column, which is a contradiction as B′ is a basis of N . �

The remainder of the proof consists of refining the choices of u, v, B,
a, and b, always relabeling as necessary so that {a, b, u, v} remains a dis-
tinguishing set. For that, we need to restrict our pivots. A pivot over xy,
where x ∈ B and y ∈ Y \ {u, v}, is allowable if

(i) x ∈ {a, b};
(ii) Aay = Aby = 0; or
(iii) Axu = Axv = 0.

In the first case, {a, b, u, v}△{x, y} is a distinguishing set with respect
to B△{x, y}. This is obvious, since (B△{x, y})△({a, b, u, v}△{x, y}) =
B△{a, b, u, v} = B′. Suppose that Aay = Aby = 0. Then the determinant
of A[{a, b, u, v, x, y, }] evaluated over Q(α), is equal to Axy times the deter-
minant of A[{a, b, u, v}], which is nonzero as B′ is a basis of N . It follows
that B′△{x, y} is a basis of N . On the other hand, the determinant of
φ(A)[{a, b, u, v, x, y}] evaluated over GF(3), is equal to φ(A)xy times the de-
terminant of φ(A)[{a, b, u, v}], which is zero. Thus B′△{x, y} is not a basis
of M [I|φ(A)] =M . Therefore

(B△{x, y})△(B′△{x, y}) = {a, b, u, v}

is a distinguishing set with respect to the basis B△{x, y}. A similar argu-
ment shows that if Axu = Axv = 0, then {a, b, u, v} is a distinguishing set
with respect to B△{x, y}.

SinceM\{u, v} = N\{u, v} is nonbinary, there is some C ⊆ B∪(Y \{u, v})
such that A[C] is a twirl, by Lemma 2.21. If x is a vertex of G(A− {u, v}),
then d(x,C) denotes the length of a shortest (possibly empty) path in G(A−
{u, v}) that joins x to a vertex in C.

Assumption 6.1.5. Subject to 6.1.1, we choose u, v, B, a, b, and C so
that (|C|, d(a,C), d(b, C)) is lexicographically minimal.

Claim 6.1.6. If x ∈ E \ C, then |nighB(x) ∩ C| ≤ 2. If a /∈ C, then
|nighB(a) ∩ C| ≤ 1. If b /∈ C and |nighB(b) ∩ C| = 2, then a ∈ C.

Proof. Suppose that x ∈ E \ C and that |nighB(x) ∩ C| ≥ 2. Lemma 2.22
implies that we can find a twirl C ′ in C ∪ x. If |nighB(x) ∩ C| ≥ 3, then
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|C ′| < |C|, and this contradicts 6.1.5, so |nighB(x)∩C| = 2 and |C ′| = |C|.
Now we suppose that x = a. Then 0 = d(a,C ′) < d(a,C), and we have a
contradiction to 6.1.5 that proves the second statement. Finally, if x = b,
then d(a,C ′) ≤ d(b, C ′) = 0, and this proves the third statement. �

Claim 6.1.7. |C| = 4.

Proof. Suppose |C| ≥ 6, and let x, y ∈ C be such that Axy 6= 0. A pivot over
xy is not allowable, because otherwise, by Proposition 2.15, a shorter twirl
can be found, contradicting 6.1.5. It follows that {a, b} ∩ C = ∅. Therefore
Claim 6.1.6 implies that

|nigh(a) ∩ C|, |nigh(b) ∩ C| ≤ 1.

Hence there is an edge xy in A[C] such that neither x nor y is adjacent to
either a or b. Thus the pivot on xy is allowable, and we have a contradiction
that proves the claim. �

Now we split the proof into three different cases:

(i) a, b ∈ C;
(ii) a ∈ C and b /∈ C; and
(iii) a, b /∈ C.

By using Claim 6.1.6, and by scaling A, we can assume that in cases (i), (ii),
and (iii) (respectively), A[C ∪ {a, b, u, v}] is equal to A1, A2, or A3 (re-
spectively), where these matrices are shown in Table 1. Here elements in
C \ {a, b, u, v} are labeled with elements from {1, 2, 3, 4}. A star marks an
unknown entry (possibly equal to zero); entries labelled by g, q, and r are
not equal to 0 or 1. In the remainder of the proof we deal with these cases

A1 =

[

1 2 u v

a 1 1 1 1
b q r 1 g

]

A2 =





1 2 u v

3 q 1 ∗ ∗
a 1 1 1 1
b ∗ ∗ 1 g





A3 =









3 1 u v

4 q 1 ∗ ∗
2 1 1 ∗ ∗
a 0 ∗ 1 1
b ∗ ∗ 1 g









Table 1. A[C ∪ {a, b, u, v}] is one of these matrices.

one by one. Most of the work will be in the second case, which we will save
for last.
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Claim 6.1.8. If Aay 6= 0 and Aby 6= 0 for some y ∈ Y \{u, v} then Aby/Aay 6∈
{1, g}.

Proof. Suppose that the claim fails. Then, after pivoting on ay, and relabel-
ing y with a, we see that A[{a, b, u, v}] contains a zero entry. But pivoting
on ay is allowable, so {a, b, u, v} remains a distinguishing set. Now we can
deduce a contradiction to Claim 6.1.4. �

We dispose of the first case very easily.

Claim 6.1.9. b 6∈ C.

Proof. Suppose otherwise, so that a, b ∈ C, and A[{a, b, 1, 2, u, v}] = A1.
Claim 6.1.8 implies that r /∈ {1, g}, and r /∈ {0, q} as A[{a, b, 1, 2}] is a twirl.
It follows that M [I|A[{a, b, 1, 2, u}]] ∼= U2,5, which contradicts the fact that
M\v is ternary. �

Note that if {u, v} ⊆ Z ⊆ E, then {u, v} is necessarily coindependent in
MB[Z], since neither u nor v is in B. Now the following result is an easy
consequence of Lemma 4.9:

Claim 6.1.10. Let Z ⊆ E be such that {u, v} ⊆ Z, MB [Z]−u, MB[Z]− v,
MB[Z]−{u, v} are stable, MB [Z]− {u, v} is connected and nonbinary, and
MB[Z] 6= NB[Z]. Then Z = E.

Now we dispense with the third case:

Claim 6.1.11. a ∈ C.

Proof. Suppose this is false. Let Z := {a, b, u, v, 1, 2, 3, 4}, so A[Z] = A3.
Our first step is to recover some connectivity.

Claim 6.1.11.1. Aa1 6= 0.

Proof. Suppose otherwise. Then d(a,C) > 1. Since M\{u, v}, and hence
G(A − {u, v}), is connected, there is a path from a to C in G(A − {u, v}).
Let x1, . . . , xk be the internal vertices of a shortest path from a to C. Then
xk has exactly one neighbor in C, because otherwise Lemma 2.22 implies
the existence of a twirl A[C]′, where xk ∈ C ′, and C ′ ⊆ C ∪ {xk}. Then
|C ′| = 4, and d(a,C ′) < d(a,C), contradicting 6.1.5. Let x be the unique
neighbor of xk in C. Let y ∈ C be a neighbor of x and let z ∈ C be the other
neighbor of y. Since d(b, C) ≥ d(a,C) > 1, pivoting on xy is allowable. But
after this pivot, xk is adjacent to both y and z, so we have reduced to a
previous case and we can again derive a contradiction. �

Claim 6.1.11.2. Aa3 = Ab3 = 0.

Proof. We have already assumed that Aa3 = 0, by virtue of Claim 6.1.6.
The same claim implies that |nigh(b) ∩ C| ≤ 1. Suppose Ab3 6= 0. Then
Ab1 = 0. In this case MB [Z] − {u, v} is connected (since G(A[Z] − {u, v})
is connected), nonbinary (because it has a whirl-minor), and stable (since it
is a 2-element coextension of a whirl). By examining G(A[Z] − {u, 2}) and
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using Proposition 5.3, it is easy to see that MB [Z] − {u, 2} is 3-connected.
Thus MB[Z] − u is stable. A similar argument shows that MB [Z] − v is
stable. Since {a, b, u, v} is a distinguishing set, Claim 6.1.10 implies that
E = Z, contradicting the assumption that r(M) ≥ 5 or r∗(M) ≥ 5. �

Claim 6.1.11.3. ({a, b, 1}, {2, 3, 4}) is an induced 2-separation of MB −
{u, v}.

Proof. Proposition 5.3 and Claim 6.1.11.2 imply that ({a, b, 1}, {2, 3, 4}) is a
2-separation of MB [Z]−{u, v}. Suppose that it is not induced. Then there
is a blocking sequence v1, . . . , vp. We will assume that, subject to 6.1.1
and 6.1.5, u, v, B, a, b, and C have been chosen so that p is as small as
possible.

First suppose that vp labels a column of A. By Definition 5.6,
({a, b, 1, vp}, {2, 3, 4}) is not a 2-separation in MB [(Z \ {u, v}) ∪ vp]. In the
graph G(A[Z] − {u, v}), 1 is the only vertex in {a, b, 1} that is adjacent to
a vertex in {2, 3, 4}. Thus it follows without difficulty from Proposition 5.4
that vp is adjacent to either 2 or 4 in G(A[(Z\{u, v})∪vp ]). Now, by pivoting
on either A32 or A34 (and relabeling), we can assume vp is adjacent to both
2 and 4. (Note that this pivot is allowable.) Thus ({a, b, 1, vp}, {2, 3, 4})
is a split, but not a 2-separation. It follows from Proposition 5.4 that
A[{1, 2, vp, 4}] is a twirl. We can now replace 3 with vp. If p = 1 then
vp is adjacent to a or b, contradicting Claim 6.1.11.2. If p > 1, then by
taking Y ′ = {2, 4}, we see that Proposition 5.9 (i) implies v1, . . . , vp−1 is a
blocking sequence for ({a, b, 1}, {2, vp , 4}). This contradicts our assumption
of minimality, so we are done.

Now suppose vp labels a row. Again, ({a, b, 1, vp}, {2, 3, 4}) is not a 2-sep-
aration in MB[(Z \ {u, v}) ∪ vp]. Hence Avp3 6= 0. Using an allowable pivot
if necessary we also have Avp1 6= 0. By Lemma 2.22 either A[{vp, 1, 2, 3}] or
A[{vp, 1, 3, 4}] is a twirl. By relabeling we may assume the latter holds.
We now replace 2 by vp. Since ({a, b, 1}, {vp, 2, 3, 4}) is a 2-separation,
p > 1. But Proposition 5.9 (i) implies v1, . . . , vp−1 is a blocking sequence for
({a, b, 1}, {vp, 3, 4}), and we again have a contradiction to minimality. �

Claim 6.1.11.4. MB−{a, b, u, v} is 3-connected, and 1 is the only neighbor
of a and b in G(A− {u, v}).

Proof. By the previous claim, MB −{u, v} has a 2-separation (Z1, Z2) with
{a, b, 1} ⊆ Z1. By our choice of u and v, M\{u, v} contains a 3-connected
minor on at least |E| − 4 elements. This means that Z1 is equal to {a, b, 1}.
Since A[{1}, {2, 4}] is nonzero, it follows from Lemma 5.2 that A[{a, b}, Y −
{1, u, v}] must be the zero matrix. Thus a and b can have no neighbor in
G(A − {u, v}) other than 1. However, MB − {u, v} is connected, so both a
and b are adjacent to 1. Now we see that co(M\{u, v}) =MB − {u, v, a, b},
so we are done. �

Claim 6.1.11.5. A2u and A2v are not both equal to zero. Likewise, A4u

and A4v are not both equal to zero.
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Proof. If A2u = A2v = 0, then a pivot over 12 is allowable. But after
performing this pivot, we see that |nigh(a) ∩ C| = 2, and this contradicts
Claim 6.1.6. The same argument shows that either A4u or A4v is nonzero.

�

Claim 6.1.11.6. If b′ ∈ {a, b} and v′ ∈ {u, v} then MB − {b′, v′} is 3-con-
nected.

Proof. Without loss of generality, we can assume that b′ = b and v′ =
v. It follows from Claim 6.1.11.4 that ({a, 1}, E \ {a, b, u, v, 1}) is the
unique 2-separation of MB − {b, u, v}. Since Aau 6= 0, it follows that
({a, 1}, E \ {a, b, v, 1}) is not a 2-separation in MB − {b, v}. Suppose
now, that ({a, u, 1}, E \ {a, b, u, v, 1}) is a 2-separation in MB − {b, v}.
Since the only neighbors of b in G(A) are u, v, and 1, we deduce that
({a, b, u, 1}, E \ {a, b, u, v, 1}) is a 2-separation in MB − v. But Claim 6.1.8
implies that A[{a, b, u, 1}] is a twirl. Since A[{1, 2, 3, 4}] is a twirl, this con-
tradicts the fact that M\v is stable. Thus ({a, u, 1}, E \{a, b, u, v, 1}) is not
a 2-separation of MB − {b, v}, and it follows that u is a blocking sequence
for the 2-separation ({a, 1}, E \ {a, b, u, v, 1}). Proposition 5.13 implies that
MB − {b, v} is 3-connected, as desired. �

Claim 6.1.11.7. M/a = N/a, and M/b = N/b.

Proof. Claim 6.1.11.6 says that MB − {a, u}, and MB − {a, v} are 3-con-
nected, and therefore stable. Since MB − {a, b, u, v} is 3-connected by
Claim 6.1.11.4, and b is adjacent to 1 in G(A − {a, u, v}), it follows that
MB − {a, u, v} is connected and stable. It is nonbinary since it contains a
whirl-minor. Now, if MB [E \a] 6= NB [E \a], then Claim 6.1.10 implies that
E \ a = E. This contradiction shows that M/a = N/a. The same argument
shows that M/b = N/b. �

Claim 6.1.11.8. a, b is a deletion pair of M∗, and M∗\{a, b} contains a
3-connected nonbinary minor on at least |E| − 4 elements.

Proof. Certainly {a, b} is independent in M . Claim 6.1.11.4 implies that
M/{a, b}\{u, v} is 3-connected. It follows that M/{a, b} is stable. Sim-
ilarly, Claim 6.1.11.6 shows that M/a and M/b are stable. Moreover,
Claim 6.1.11.4 asserts that both M/a\u and M/a\v are 3-connected. Thus
both M/{a, b}\u and M/{a, b}\v, and hence both G(A − {a, b, u}) and
G(A−{a, b, v}), are connected. This means that G(A−{a, b}) is connected,
and therefore so isM/{a, b}. ClearlyM/{a, b} is nonbinary, for A[{1, 2, 3, 4}]
is a twirl. The second part of the claim follows because M/{a, b}\{u, v} is
3-connected. This completes the proof. �

Claim 6.1.11.4 implies that {a, b, 1} is a series class in M\{u, v}, and that
M/{a, b}\{u, v} is 3-connected. Therefore co(M\{u, v}) ∼=M/{a, b}\{u, v},
so |E(co(M\{u, v}))| = |E| − 4. Now 6.1.1 implies that |E(si(M/{a, b}))| ≤
|E| − 4. The fact that M/{a, b}\{u, v} is 3-connected implies that u and v
are either loops or in parallel pairs inM/{a, b}, and that |E(si(M/{a, b}))| =
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|E| − 4. Now we choose M∗ instead of M , and a and b instead of u and v.
The arguments of this paragraph show that 6.1.1 is still satisfied.

If we let B0 = E \ B, then B0 is a basis of M∗ that avoids {a, b}, and
(B0 \ {u, v}) ∪ {a, b} = E \ B′ is a basis of N∗, but not of M∗. Now AT ,
the transpose of A, is a B0 × (E \ B0) Q(α)-matrix that represents N∗.
Claim 6.1.11.7 shows that AT − a and AT − b represent M∗\a = N∗\a and
M∗\b = N∗\b respectively. Moreover, G(AT ) is equal to G(A), so AT [C] is
a twirl. We substitute u and v for a and b, and B0 for B. The arguments
above show that 6.1.5 is still satisfied. Thus we can repeat the arguments of
Claim 6.1.11.2 and show that either AT

u2 = AT
v2 = 0, or AT

u4 = AT
v4 = 0. But

this contradicts Claim 6.1.11.5, and completes the proof of Claim 6.1.11. �

The remainder of the proof deals with the second case, in which A[C ∪
{a, b, u, v}] = A2. Let x0, . . . , xk+1 be the vertices of a shortest path from b
to C in G(A− {u, v}), with x0 = b and xk+1 ∈ C.

Claim 6.1.12. d(b, C) = k + 1 is odd.

Proof. Suppose not. Then xk labels a column of A. Assume first that
Aaxk

6= 0. By pivoting over a1, if necessary, we may assume that A3xk
6= 0

as well. But then Lemma 2.22 implies that A[{1, 2, 3, a, xk}] contains a twirl
using xk. This contradicts the minimality of d(b, C) in 6.1.5. Therefore
Aaxk

= 0, and hence A3xk
6= 0. Let Z := {u, v, a, 1, 2, 3, x0 , . . . , xk}.

Note that G(A[Z] − {u, v, 1}) is a path with x0 = b and a as its end
vertices. Since A[{a, b}, {u, v}] contains no zero entries, it follows that
G(A[Z]−{u, 1}) and G(A[Z]−{v, 1}) both contain a spanning cycle. More-
over, it is not difficult to see that neither of these graphs contains a split.
Proposition 5.3 implies that MB [Z]− {u, 1} and MB [Z]− {v, 1} are 3-con-
nected. Hence MB [Z] − u and MB [Z] − v are both stable. Furthermore,
MB[Z]−{u, v} is clearly connected, and nonbinary, as it contains MB[C] as
a minor. Since G(A[Z] − {u, v}) contains a single cycle, namely G(A[C]),
and G(A[Z] − {u, v, 1}) is a path, it follows that by repeatedly simplifying
and cosimplifying MB [Z] − {u, v}, we eventually reduce to a whirl. This
implies that MB[Z] − {u, v} is stable. As Z contains a distinguishing set,
Claim 6.1.10 now implies that Z = E.

We wish to prove that u, 1 is a deletion pair of M . Certainly {u, 1} is
coindependent inM . We have already proved thatM\{u, 1} is 3-connected.
Therefore M\{u, 1}, M\u, and M\1 are all stable. It remains to show that
M\{u, 1} is nonbinary. We noted that G(A[Z] − {u, 1}) = G(A − {u, 1})
contains a spanning cycle. Thus there is an induced cycle C ′ in G(A−{u, 1})
that contains the edge bv. We can assume that A has been scaled in such
a way that Ae = 1 for every edge e ∈ C ′ other than bv. (Note that this is
compatible with our assumption that A[C∪{a, b, u, v}] = A2.) Now Abv = g
is not equal to one, for A[{a, b, u, v}] has nonzero determinant over Q(α).
Suppose that g = −1. Then φ(A)[{a, b, u, v}] has nonzero determinant over
GF(3). But this implies that B′ is a basis of M = M [I|φ(A)], and this
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is a contradiction. Therefore g is neither 1 nor −1, so A[C ′] has nonzero
determinant. It follows that MB[C

′] = NB [C
′] is a whirl. Thus M\{u, 1} is

nonbinary, as desired.
We have shown that u, 1 is a deletion pair. Moreover, M\{u, 1} is 3-con-

nected, so M\{u, 1} certainly contains a 3-connected nonbinary minor on
at least |E| − 4 elements. But d(b, C) > 1, so b is a degree-one vertex of
G(A− {u, v}), and hence M\{u, v} is not 3-connected. Thus

|E(co(M\{u, 1}))| > |E(co(M\{u, v}))|,

and we have a contradiction to 6.1.1. This completes the proof of
Claim 6.1.12. �

It follows from Claim 6.1.12 that xk labels a row, and hence either
Axk1 6= 0 or Axk2 6= 0. By pivoting over a1 or a2 as needed, we assume
that both are nonzero. If k > 2, then the pivot over x2x3 is allowable,
and such a pivot reduces d(b, C), contradicting 6.1.5. Thus k ∈ {0, 2}.
Likewise, A[{a, 1, 2, xk}] is not a twirl, because otherwise replacing 3 by
xk would reduce d(b, C). It follows that, by scaling, we can assume that
A[{a, 1, 2, 3, x0 , . . . , xk, u, v}] is one of the following matrices:





1 2 u v

3 q 1 ∗ ∗
a 1 1 1 1

x0=b r r 1 g



,









1 2 x1 u v

3 q 1 0 ∗ ∗
a 1 1 0 1 1
x2 1 1 1 ∗ ∗

x0=b 0 0 r 1 g









.

Claim 6.1.13. For w ∈ {u, v}, MB [{w, a, 1, 2, 3, x0 , . . . , xk}] is 3-con-
nected if and only if A3w 6= 0. Furthermore, if A3w =
0, then ({w, a, x0, . . . , xk}, {1, 2, 3}) is the unique 2-separation of
MB[{w, a, 1, 2, 3, x0 , . . . , xk}].

Proof. Let Z := {w, a, 1, 2, 3, x0 , . . . , xk}. Clearly r 6= 0. It is easy to
see that if G(A[Z \ {2, 3}]) contains a split, then k = 0. Claim 6.1.8
implies that r 6∈ {1, g}. Now it follows from Propositions 5.3 and 5.4
that MB [Z \ {2, 3}] is 3-connected. Hence ({w, a, x0, . . . , xk}, {1, 2}) is the
unique 2-separation in MB [Z] − 3. Now A[{a, 1, 2, 3}] is a twirl, so Propo-
sition 5.4 implies that ({3, w, a, x0, . . . , xk}, {1, 2}) is not a 2-separation in
MB[Z]. Moreover ({w, a, x0, . . . , xk}, {1, 2, 3}) is a 2-separation of MB [Z]
if and only if A3w = 0. If A3w 6= 0 then 3 is a blocking sequence for
({w, a, x0, . . . , xk}, {1, 2}), and Proposition 5.13 implies thatMB[Z] is 3-con-
nected. If A3w = 0 then it follows without difficulty from Proposition 5.12
that ({w, a, x0, . . . , xk}, {1, 2, 3}) is the unique 2-separation of MB [Z]. �

Claim 6.1.14. We may assume A3v 6= 0.

Proof. Suppose A3v = A3u = 0 (if A3u 6= 0 then we may swap u and v).
Then a pivot over 3x is allowable for all x such that A3x 6= 0. Claim 6.1.13
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implies that

(3) ({v, a, x0, . . . , xk}, {1, 2, 3})

is the unique 2-separation in MB [{v, a, 1, 2, 3, x0 , . . . , xk}]. If k = 0 then
the 2-separation in (3) is not an induced separation of MB − u, because
M\u is stable, and A[{a, 1, 2, 3}] and A[{v, a, b, 1}] are twirls (since r /∈
{0, 1, g}). Now suppose that k = 2, and that the 2-separation in (3) is
induced inMB −u. Our choice of u and v implies that MB−{u, v} contains
a 3-connected nonbinary minor of size at least |E| − 4. It follows that
(E−{u, 1, 2, 3}, {1, 2, 3}) must be a 2-separation of MB −u, and that MB −
{u, v, 1, 3} is 3-connected and nonbinary. But since A[{a, 1, 2, 3}] is a twirl,
we now have a contradiction to the fact that M\{u, v} is stable. Thus, in
either case, the 2-separation in (3) is not induced inMB−u. We let v1, . . . , vp
be a blocking sequence, and we suppose that, subject to 6.1.1 and 6.1.5, we
have chosen u, v, B, a, b, and C such that p is as small as possible.

First suppose vp labels a row. Then ({v, a, x0, . . . , xk, vp}, {1, 2, 3}) is
not a 2-separation in MB [{v, a, 1, 2, 3, x0 , . . . , xk, vp}], so Avpw 6= 0 for
some w ∈ {1, 2}. By pivoting over 31 or 32 as needed, we may assume
Avpw 6= 0 for all w ∈ {1, 2}. Then ({v, a, x0, . . . , xk, vp}, {1, 2, 3}) is a split
in G(A[{v, a, 1, 2, 3, x0 , . . . , xk, vp}]). Since it is not a 2-separation, it follows
without difficulty from Proposition 5.4 that A[{a, vp, 1, 2}] is a twirl. If p = 1
then either Avpv 6= 0 or Avpx1

6= 0 (in the case that k = 2). If Avpv 6= 0,
then we can replace 3 with vp, and we are done. Therefore we assume that
Avpv = 0 and that Avpx1

6= 0. But then d(b, {a, 1, 2, vp}) < d(b, {a, 1, 2, 3}),
contradicting 6.1.5. Therefore p > 1. Now it follows from Proposi-
tion 5.9 (i) that v1, . . . , vp−1 is a blocking sequence for the 2-separation
({v, a, x0, . . . , xk}, {1, 2, vp}) of MB [{v, a, 1, 2, vp, x0, . . . , xk}]. This contra-
dicts our assumption of minimality.

Therefore we assume that vp labels a column. It follows that A3vp 6= 0
and, by pivoting on A32 as necessary, Aavp 6= 0. Lemma 2.22 implies
that A[{a, 1, 3, vp}] is a twirl (we swap the labels of columns 1 and 2
as necessary). By pivoting over 13 as necessary, we can assume that
Axkvp 6= 0. Now consider replacing 2 by vp. If p > 1 then Proposi-
tion 5.9 (i) again implies that v1, . . . , vp−1 is a blocking sequence for the
2-separation ({v, a, x0, . . . , xk}, {1, 3, vp}) of MB [{v, a, 1, 3, vp, x0, . . . , xk}],
contradicting our assumption of minimality. Therefore p = 1. Then
({v, a, x0, . . . , xk}, {1, 2, 3, vp}) is a split in G(A[{v, a, 1, 2, 3, vp , x0, . . . , xk}]),
but is not a 2-separation of MB[{v, a, 1, 2, 3, vp , x0, . . . , xk}]. There-
fore Proposition 5.4 implies that A[{a, 1, xk , vp}] is a twirl. But
d(b, {a, xk, 1, vp}) < d(b, {a, 1, 2, 3}), and again we have a contradiction
to 6.1.5. This completes the proof of the claim. �

Claim 6.1.15. A3u = 0.

Proof. Suppose A3u 6= 0. Let Z := {u, v, a, x0, . . . , xk, 1, 2, 3}. By
Claim 6.1.13, MB [Z]−u andMB [Z]−v are both 3-connected, and therefore
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stable. Furthermore, MB [Z] − {u, v} is certainly nonbinary. By examining
G(A[Z] − {u, v}), we see that MB [Z] − {u, v} is connected and stable, so
Claim 6.1.10 implies that Z = E. Since r(M) > 4 or r∗(M) > 4, this means
that k = 2. Now b is in a series pair in MB − {u, v}, and x1 is in a parallel
pair in MB − {u, v, b}. We have chosen u and v so that MB − {u, v} has a
3-connected nonbinary minor of size at least |E| − 4, and this minor must
beMB −{u, v, b, x1}. But {a, x2} is a series pair in this matroid, so we have
a contradiction. �

Although the page count suggests otherwise, we are now entering the
endgame of the proof: from now on we will deal only with the 2-separation
({u, a, x0, . . . , xk}, {1, 2, 3}) of MB [{u, a, 1, 2, 3, x0 , . . . , xk}]. That this is a
2-separation follows from Claims 6.1.13 and 6.1.15. Assume that it is in-
duced inMB −v. If k = 0 then this immediately leads to a contradiction, as
M\v is stable, and A[{a, 1, 2, 3}] and A[{u, a, b, 1}] are twirls. Now suppose
that k = 2. There is a 3-connected nonbinary minor of size at least |E|−4 in
MB−{u, v}. Therefore (E−{v, 1, 2, 3}, {1, 2, 3}) is a 2-separation ofMB−v,
and MB −{u, v, 1, 3} is 3-connected and nonbinary. Since A[{a, 1, 2, 3}] is a
twirl, this contradicts the fact that M\{u, v} is stable. Thus, in either case,
({u, a, x0, . . . , xk}, {1, 2, 3}) is not induced inMB−u. Therefore there exists
a blocking sequence v1, . . . , vp in MB − v. Assume that, subject to 6.1.1,
6.1.5, 6.1.14, and 6.1.15, B, a, b, C, x1, . . . , xk, and v1, . . . , vp have been
chosen so that p is as small as possible.

Claim 6.1.16. p 6= 1.

Proof. Suppose p = 1, and let Z := {u, v, a, x0, . . . , xk, 1, 2, 3, v1}.
Claims 6.1.13 and 6.1.14 imply that MB [Z] − {u, v1} is 3-connected,
so MB [Z] − u is stable. Claims 6.1.13 and 6.1.15 imply that
({u, a, x0, . . . , xk}, {1, 2, 3}) is the unique 2-separation in MB [Z] − {v, v1}.
Since v1 is a blocking sequence for this 2-separation, Proposition 5.13 states
that MB[Z] − v is 3-connected, and therefore stable. It is easy to see that
MB[Z] − {u, v} is connected and nonbinary. Suppose that MB[Z] − {u, v}
is not stable. If k = 0 then the only 2-separation in MB[Z] − {u, v, v1} is
({a, x0}, {1, 2, 3}). If k = 2, then ({1, 2, 3}, {a, x0 , x1, x2}) is a 2-separation.
Since MB [Z]− {u, v} is not stable, and MB [{a, 1, 2, 3}] is nonbinary, it fol-
lows that we can create a 2-separation of MB [Z] − {u, v} by adding v1 to
the side of one of these separations that does not contain {1, 2, 3}. However,
u is spanned by {a, x0} (in the case that k = 0) or {a, x0, x2} (in the case
that k = 2) in MB [Z] − v. It follows that MB [Z] − v contains a 2-separa-
tion, contradicting our earlier conclusion that it is 3-connected. Therefore
MB[Z]− {u, v} is stable. Now Claim 6.1.10 implies that Z = E.

Suppose k = 0. Since M has either rank or corank at least 5, it
follows that v1 labels a column. Since v1 is a blocking sequence, nei-
ther ({u, a, b, v1}, {1, 2, 3}) nor ({u, a, b}, {v1 , 1, 2, 3}) is a 2-separation of
MB − v. Now Lemma 5.2 implies that rank(A[{u, v1, 3}]) > 0 and
rank(A[{a, b, v1, 1, 2}]) > 1. Hence A3v1 6= 0 and one of Aav1 and Abv1
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is nonzero. Note that exactly one of these is nonzero, because otherwise
A[{a, b, 1, v1}] forms a twirl, and we have reduced to the case that a and b are
contained in C. By swapping a and b if necessary, we assume that Aav1 6= 0.
Now we consider the ternary matrix φ(A). Recall that M =M [I|φ(A)]. Up
to scaling we may assume

φ(A) =





1 2 v1 u v

3 q 1 t 0 s
a 1 1 1 1 1
b r r 0 1 g



,

where g, q, r, s, and t are all nonzero. Since MB [{a, 1, 2, 3}] =
NB[{a, 1, 2, 3}] ∼= U2,4, it follows that q = −1. Claim 6.1.3 implies that
B′ = (B \ {a, b}) ∪ {u, v} is dependent in M , so g = 1. Now Claim 6.1.8
implies that r = −1. By scaling row 3 and swapping columns 1, 2 as nec-
essary, we may assume t = 1. This leaves us to consider two choices for
s. If s = 1 then M\2 ∼= F−

7 . But this contradicts our conclusion that M
is GF(4)-representable. Therefore we assume that s = −1. In this case
M ∼= AG(2, 3)\e, which we assumed was not so.

Therefore k = 2. Here we have to distinguish two cases. First, sup-
pose v1 labels a column. Since v1 is a blocking sequence, we can ar-
gue as before, and deduce that A3v1 6= 0 while Awv1 6= 0 for at least
one w ∈ {a, b, x2}. Since A3v1 6= 0 and d(b, C) = 3, it follows that
Abv1 = 0. As both A[{a, 1, 2, 3}] and A[{x2, 1, 2, 3}] are twirls, Proposi-
tion 2.22 implies that one of A[{a, x2, 1, 3, v1}] or A[{a, x2, 2, 3, v1}] con-
tains a twirl. By swapping 1 and 2 if necessary, we can assume that
A[{a, x2, 2, 3, v1}] contains a twirl. Claim 6.1.13 implies thatMB−{v, v1, 1}
has a unique 2-separation, namely ({u, a, b, x1, x2}, {2, 3}). It is easy to
see that ({u, a, b, x1, x2, v1}, {2, 3}) is not a 2-separation in MB − {v, 1}. If
({u, a, b, x1, x2}, {v1, 2, 3}) is a 2-separation of MB − {v, 1}, then Aav1 and
Ax2v1 must be nonzero, and A[{a, x2, v1, 2] must have determinant zero. But
this implies that ({u, a, b, x1, x2}, {v1, 1, 2, 3}) is a 2-separation of MB − v, a
contradiction. Therefore v1 is a blocking sequence in MB−{v, 1}, so Propo-
sition 5.13 implies that MB −{v, 1} is 3-connected. Hence MB − v, MB − 1,
and MB − {v, 1} are all stable, and MB − {v, 1} is 3-connected and nonbi-
nary. Therefore v, 1 is a deletion pair, and furthermore,MB−{v, 1} certainly
contains a 3-connected nonbinary minor on at least |E| − 4 elements. Since
M\{v, 1} is 3-connected, and b is a degree-one vertex of G(A − {u, v}), we
now have a contradiction to 6.1.1.

Next we suppose that v1 labels a row. Suppose that
({a, x0, x1, x2}, {v1, 1, 2, 3}) is a 2-separation of MB − {u, v}. Then
MB−{u, v} cannot contain a 3-connected minor of size at least |E|−4, which
contradicts our choice of u and v. Therefore ({a, x0, x1, x2}, {v1, 1, 2, 3})
is not a 2-separation, so Lemma 5.2 implies that Av1x1

6= 0. Simi-
larly, ({u, a, x0, x2, x3, v1}, {1, 2, 3}) is not a 2-separation in MB − v, so
rank(A[{a, v1, 1, 2}]) > 1. It cannot be the case that A[{a, v1, 1, 2}] is a
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twirl, since 2 = d(b, {a, v1, 1, 2}) < d(b, C) = 3. Hence exactly one of Av11

and Av12 is nonzero; by relabeling as necessary we assume Av12 = 0.

Claim 6.1.16.1. MB − {u, v, 3} is binary.

Proof. By examining G(A[{a, b, 1, 2, x1 , x2]), we see that
({a, 1, 2, x2, v1}, {b, x1}) is the unique 2-separation in MB − {u, v, 3}.
Therefore MB − {u, v, 3} is stable. By inspection, ({a, 1, 2, x2 , v1}, {b, x1})
is uncrossed, and u and v are blocking sequences. Now by using Propo-
sition 5.11, we can see that MB − {u, 3} and MB − {v, 3} must be
stable. Certainly MB − {u, v, 3} is connected. If it were nonbinary, then
Claim 6.1.10 would imply that E \ 3 = E. Therefore MB − {u, v, 3} is
binary, as desired. �

Claim 6.1.16.2. A[{v, a, 2, 3}] is a twirl.

Proof. Note that Proposition 2.22 implies either A[{a, v, 1, 3}] or
A[{a, v, 2, 3}] is a twirl. Let us assume that the claim fails, so that
A[{v, a, 1, 3}] is a twirl. Consider G(A − {u, x2}). There are two splits
in this graph: ({b, v, v1, x1, 2}, {a, 3}) and ({b, v, v1, x1}, {a, 2, 3}). Proposi-
tion 5.4 implies that neither of these is a 2-separation, so MB − {u, x2} is
3-connected.

By repeatedly cosimplifying and simplifying, we reduceMB−{u, v, x2} to
a whirl. Therefore MB −{u, v, x2} is nonbinary and stable. It is easy to see
that it is connected. There are no splits in G(A− {v, x2}), so MB −{v, x2}
is 3-connected. Now Claim 6.1.10 implies E \ x2 = E, and we have a
contradiction. �

Since MB − {u, v, 3} is binary, A[{x1, x2, v1, 1}] is not a twirl. Therefore
Av11 = Av1x1

. By scaling row v1, we can assume that Av11 = Av1x1
= 1.

Now

A =













1 2 x1 u v

3 q 1 0 0 s
a 1 1 0 1 1
x2 1 1 1 ∗ ∗
b 0 0 r 1 g
v1 1 0 1 ∗ ∗













, Aa2 =













1 a x1 u v

3 q − 1 -1 0 -1 s− 1
2 1 1 0 1 1
x2 0 -1 1 ∗ ∗
b 0 0 r 1 g
v1 1 0 1 ∗ ∗













The fact that A[{v, a, 2, 3}] is a twirl means that s 6= 1. Since A − {u, v}
is a near-unimodular matrix, we see that q is a fundamental element of U1.
We write B′ for B△{a, 2} and A′ for Aa2.

Claim 6.1.16.3. We may assume that one of A′[{u, a, x2, 3}] and
A′[{u, v1, 1, 3}] is a twirl.

Proof. Assume that neither A′[{u, a, x2, 3}] nor A
′[{u, v1, 1, 3}] is a twirl.

The fact that A′[{u, a, x2, 3}] is not a twirl means that A′
x2u ∈ {0,−1}.

Similarly, since A′[{u, v1, 1, 3}] is not a twirl we deduce that A
′
v1u ∈ {0, 1/(1−

q)}. Now we pivot on bx1 and swap the labels on b and x1. If A′
x2u is no
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longer 0 or −1, then A′[{u, a, x2, 3}] is a twirl, and we are done. Therefore
we assume that after this pivot, A′

x2u is still either 0 or −1, so r ∈ {1,−1}.
Similarly, we assume that after the pivot, A′

v1u is still either 0 or 1/(1− q).
This means that r is either q − 1 or 1 − q. We deduce that q − 1 is equal
to either 1 or −1. But q is an element of U1, and is therefore not equal to
2. Thus q = 0, which contradicts the fact that A[{a, 1, 2, 3}] is a twirl. This
completes the proof of the claim. �

Now we let C ′ be either {u, a, x2, 3} or {u, v1, 1, 3}, so that A′[C ′] is a
twirl.

Claim 6.1.16.4. M/b = N/b and M/2 = N/2. Moreover b, 2 is a deletion
pair of M∗, MB′ −{b, 2} contains a 3-connected nonbinary minor of size at
least |E| − 4, and | co(M∗\{b, 2})| ≥ | co(M\{u, v})|.

Proof. Note that A′[{a, 1, 2, 3}] is a twirl by Proposition 2.15. Therefore
MB′ − {b, u, v} is nonbinary. By examining G(A′ − {b, u, v}) and applying
Propositions 5.3 and 5.4 we see that MB′ − {b, u, v} is 3-connected. There-
fore MB′ − {b, u} and MB′ − {b, v} are both stable. If M/b 6= N/b, then
Claim 6.1.10 implies that E \ b = E. Thus M/b = N/b.

By examining G(A−{u, v, 2}), we see that ({v1, 2, 3, a, x2}, {b, x1}) is the
only 2-separation of MB′ −{u, v, 2}. Moreover, since s−1 6= 0, both u and v
are length-one blocking sequences for this 2-separation. It now follows from
Proposition 5.13 that MB′ − {u, 2} and MB′ − {v, 2} are both 3-connected.
Therefore MB′ − {u, v, 2, }, MB′ − {u, 2}, and MB′ − {v, 2} are all stable.
Moreover MB′ − {u, v, 2} is connected and nonbinary. Now it follows from
Claim 6.1.10 that M/2 = N/2.

As A′[C ′] is a twirl, it follows without difficulty from Propositions 5.3
and 5.4 that MB′ − {b, v, 2} is 3-connected. Hence M/{b, 2} is stable. It
is certainly nonbinary and connected. We have noted that MB′ − {u, 2} is
3-connected, so M/2 is stable. Note that A′[{u, 1, 2, 3}] is a twirl, as q 6= 0.
Now it follows from Proposition 5.4 that MB′ − {b, v} is 3-connected. Thus
M/b is stable. Certainly {b, 2} is independent, so b, 2 is a deletion pair of
M∗.

SinceMB′ −{b, v, 2} is 3-connected, it follows thatMB′ −{b, 2} contains a
3-connected nonbinary minor on at least |E|−3 elements. EitherMB′−{b, 2}
is 3-connected, or it contains a single parallel pair, and this pair contains v.
In either case | co(M∗\{b, 2})| ≥ |E|−3. As b is in a series pair in M\{u, v},
we see that | co(M\{u, v})| ≤ |E| − 3, so we are done. �

By Lemma 4.6 and Claim 6.1.16.4, A′ is the unique matrix over Q(α)
such that M/b = M [I|A′ − b] and M/2 = M [I|A′ − 2]. Now {2, b, u, v}
distinguishesM from N =M [I|A′], so if we replace M byM∗, u and v with
2 and b, replace a and b with u and v, B with B′, and C with C ′, then we
have not violated 6.1.1. However in G(A′ − {b, 2}), the distance between v
and C ′ is 1, which is less than d(b, C). Thus we have a contradiction to 6.1.5,
and this completes the proof of Claim 6.1.16. �
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Claim 6.1.17. vp labels a row.

Proof. Suppose vp labels a column. Since ({u, a, x0, . . . , xk, vp}, {1, 2, 3})
is not a 2-separation in MB [{u, a, x0, . . . , xk, 1, 2, 3, vp}], it follows that
A3vp 6= 0. Claim 6.1.16 says that p > 1, so the definition of block-
ing sequences implies that ({u, a, x0, . . . , xk}, {1, 2, 3, vp}) is a 2-separa-
tion. Then rank(A[{a, x0, 1, 2, vp}]) = 1 (in the case that k = 0), or
rank(A[{a, x0, x2, 1, 2, vp}]) = 1 (if k = 2). It follows from this that either
Aavp = Axkvp = 0, or both Aavp and Axkvp are nonzero. Moreover, if k = 2,
then Abvp = 0. Suppose that Aavp and Axkvp are nonzero. Lemma 2.22 and
Claim 6.1.14 imply that one of A[{vp, a, 1, 3}] and A[{vp, a, 2, 3}] is a twirl.
By swapping the labels of columns 1 and 2 as needed, assume A[{vp, a, 1, 3}]
is a twirl. By taking Y ′ = {1, 3} and applying Proposition 5.9 (i) we see
that v1, . . . , vp−1 is a blocking sequence for ({u, a, x0, . . . , xk}, {vp, 1, 3}) in
MB[{u, a, x0, . . . , xk, 1, 3, vp]. Now we can replace 2 with vp, and we obtain
a contradiction to the minimality of p.

It follows that Aavp = Axkvp = 0. Since Abvp = 0 if k = 2, this means that
3 is the only neighbor of vp in G(A[{u, v, a, x0 , . . . , xk, 1, 2, 3, vp}]),
so {3, vp} is a parallel pair in MB [{u, v, a, x0, . . . , xk, 1, 2, 3, vp}].
Therefore MB△{3,vp}[{u, v, a, x0, . . . , xk, 1, 2, vp}] is isomorphic to
MB[{u, v, a, x0, . . . , xk, 1, 2, 3}]. It is very easy to verify that

λB({u, a, x0, . . . , xk, 3}, {1, 2, 3}) = λB({u, a, x0, . . . , xk, 3}, {1, 2}) = 2.

Proposition 5.9 (ii) implies that v1, . . . , vp−1 is a blocking sequence for
({u, a, x0, . . . , xk}, {1, 2, vp}) of MB△{3,vp}[{u, a, x0, . . . , xk, 1, 2, vp}]. By re-
placing 3 with vp we obtain a contradiction to the minimality of p. �

Claim 6.1.18. p 6= 2.

Proof. Suppose p = 2. Then v1 labels a column and v2 labels a row
by Claim 6.1.17. As ({u, a, x0, . . . , x2, v1}, {1, 2, 3}) is a 2-separation of
MB[{u, a, x0, . . . , x2, v1}] it follows that A3v1 = 0. On the other hand,
A[{a, x0, xk}, {v1}] is not the zero matrix. Suppose Azv1 6= 0 for exactly
one z ∈ {x0, xk, a}. Then a pivot over zv1 is allowable, and v1 is parallel to
z in MB [{u, v, a, x0, . . . , xk, 1, 2, 3, v1}]. Therefore

MB△{z,v1}[{u, v, a, x0, . . . , xk, 1, 2, 3}△{z, v1}]
∼=MB[{u, v, a, x0, . . . , xk, 1, 2, 3}].

Moreover λB({u, a, x0, . . . , xk}, {1, 2, 3, z}) = 2, so Proposi-
tion 5.9 (ii), and symmetry, implies that v2 is a block-
ing sequence for ({u, a, x0, . . . , xk}△{z, v1}, {1, 2, 3}) in
MB[{u, a, x0, . . . , xk, 1, 2, 3}△{z, v1}]. Now we can replace z with v1,
and derive a contradiction to the minimality of p.

Hence Azv1 6= 0 for at least two elements z ∈ {a, x0, x2}. Suppose
k = 2 and Ax0v1 6= 0. Since d(b, C) = 3 we have that Aav1 = 0 and
hence Ax2v1 6= 0. We consider replacing x1 by v1. By using symmetry
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and Proposition 5.9 (i), with Y ′ = {u, a, x0, x2}, we see that v2 is a block-
ing sequence for ({u, a, x0, v1, x2}, {1, 2, 3}) in MB [{u, a, x0, v1, x2, 1, 2, 3}].
But this leads to a contradiction, as the minimality of p is violated. It
follows that, for k = 0 and for k = 2, both Aav1 and Axkv1 are nonzero.
Since ({u, a, x0, . . . , x2}, {v1, 1, 2, 3}) is not a 2-separation, it follows that
rank(A[{a, xk}, {v1, 1, 2}]) > 1, and therefore A[{a, xk, 1, v1}] is a twirl. But
d(b, {a, xk, 1, v1}) < d(b, C), contradicting 6.1.5. �

Define Z := {u, v, a, x0, . . . , xk, 1, 2, 3, vp−1, vp}. By Claim 6.1.17, vp
labels a row, and hence vp−1 labels a column. From the definition of
blocking sequence we find that both ({u, a, x0, . . . , xk, vp−1}, {1, 2, 3}) and
({u, a, x0, . . . , xk}, {1, 2, 3, vp−1}) are 2-separations inMB [Z \{v, vp}]. It fol-
lows from Lemma 5.2 that A3vp−1

= 0. As ({u, a, x0, . . . , xk, }, {vp, 1, 2, 3})
is a 2-separation, but ({u, a, x0, . . . , xk, vp−1}, {vp, 1, 2, 3}) is not, it fol-
lows that Avpvp−1

6= 0. Furthermore, either Aavp−1
= Axkvp−1

= 0 or
both Aavp−1

and Axkvp−1
are nonzero. Suppose Aavp−1

= Axkvp−1
= 0.

As ({u, a, x0, . . . , xk, }, {vp−1, 1, 2, 3}) is a 2-separation, it follows that vp
is the only neighbor of vp−1 in G(A[Z \ vp]). Thus MB△{vp,vp−1}[Z] −
{vp−1, vp} is isomorphic to MB[Z] − {vp−1, vp}. Proposition 5.9 (iii)
implies that v1, . . . , vp−2 is a blocking sequence for the 2-separation
({u, a, x0, . . . , xk}, {1, 2, 3}) in MB△{vp−1,vp}, and we have contradicted the
minimality of p. Therefore Aavp−1

and Axkvp−1
are both nonzero.

At least one of Avp1 and Avp2 needs to be nonzero. Assume, exchanging
1 and 2 if necessary, that Avp1 6= 0. We deduce that, up to scaling, A[Z] is
equal to one of the following matrices:









1 2 vp−1 u v

3 q 1 0 0 s
vp 1 ∗ t 0 ∗
a 1 1 1 1 1

x0=b r r r 1 g









,













1 2 vp−1 x1 u v

3 q 1 0 0 0 s
vp 1 ∗ t 0 0 ∗
a 1 1 1 0 1 1
x2 1 1 1 1 ∗ ∗

x0=b 0 0 0 r 1 g













.

Claim 6.1.19. A[{a, vp−1, vp, 1}] is not a twirl.

Proof. Suppose A[{a, vp−1, vp, 1}] is a twirl. By applying Proposition 5.9 (i)
twice, we see that v1, . . . , vp−2 is a blocking sequence for the 2-separation
({u, a, x0, . . . , xk}, {1, vp−1, vp}) of MB [Z \ {v, 2, 3}]. If Avpv 6= 0 then we
can replace 3 with vp and 2 with vp−1, and derive a contradiction to the
minimality of p. Therefore Avpv = 0. Now a pivot over vp1 is allowable, and

by scaling, we can assume that Avp1[Z]− 2 is one of the following matrices:









vp vp−1 u v

3 q q 0 s′

1 1 1 0 ∗
a 1 β 1 1

x0=b r rβ 1 g′









,













vp vp−1 x1 u v

3 q q 0 0 s′

1 1 1 0 0 ∗
a 1 β 0 1 1
x2 1 β 1 ∗ ∗

x0=b 0 0 r 1 g













.
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Here, β = (t−1)/t, s′ = s−qAvpv, and g
′ = g−qAvpv. Our assumption that

A[{a, vp−1, vp, 1}] is a twirl implies t is a fundamental element of U1 other
than zero or one, so β is defined, and is equal to neither 0 nor 1. Hence
Avp1[{a, vp−1, vp, 3}] is a twirl.

Proposition 5.8 (i) and (ii) implies that v1, . . . , vp−1 is a blocking se-
quence for the 2-separation ({u, a, x0, . . . , xk}, {vp, 1, 2, 3}) in MB△{1,vp}[Z \
{v, vp−1}]. Proposition 5.9 (i) implies that v1, . . . , vp−2 is a blocking se-
quence for ({u, a, x0, . . . , xk}, {vp−1, vp, 3}) in MB△{vp ,1}[Z] − {v, 1, 2}. It
follows that we can replace B by B△{vp, 1} and C by {a, vp, vp−1, 3}, which
contradicts the minimality of p. �

Claim 6.1.20. Avp2 = 0.

Proof. Suppose Avp2 6= 0. As ({u, a, x0, . . . , xk, vp}, {1, 2, 3}) is not a 2-sep-
aration of MB [Z] − {v, vp−1} it follows that A[{a, vp, 1, 2}] must be a
twirl. Hence either A[{a, vp−1, vp, 1}] or A[{a, vp−1, vp, 2}] is a twirl, by
Lemma 2.22. But, possibly after exchanging 1 and 2, this contradicts
Claim 6.1.19. �

Claim 6.1.21. Avpv 6= 0.

Proof. Suppose Avpv = 0. Then vp1 is an allowable pivot, and vp is adjacent
only to 1 in G(A[Z] − vp−1). Thus MB△{vp,1}[Z] − {vp−1, 1} is isomorphic
to MB [Z]− {vp−1, vp}. Furthermore

λB({u, a, x0, . . . , xk, 1}, {1, 2, 3}) = λB({u, a, x0, . . . , xk, 1}, {2, 3}) = 2,

so Proposition 5.9 (ii) then implies that v1, . . . , vp−1 is a blocking sequence
for ({u, a, x0, . . . , xk}, {vp, 2, 3}) ofMB△{1,vp}[Z\{vp−1, 1}]. This contradicts
the minimality of p. �

Let ψ be an automorphism of the near-regular partial field. Then both
A− u and ψ(A)− u represent M\u over U1. Similarly, A− v and ψ(A)− v
represent M\v over U1. Obviously ψ(A) − u and ψ(A) − v are both near-
unimodular. Thus ψ(A) satisfies the conditions of Lemma 4.6, so Lemma 4.8
implies that M =M [I|φ(ψ(A))], where φ is the homomorphism from U1 to
GF(3).

Consider A[{a, 3}, {1, 2}]. It is a submatrix of the near-unimodular matrix
A − u, and its determinant is q − 1. We deduce that q is a fundamental
element of U1 other than 0 and 1. By Proposition 2.19, and the discussion
in the previous paragraph, we can assume that q = α.

Since B′ = B△{a, b, u, v} is a dependent set in M = M [I|φ(A)], the
determinant of φ(A)[{a, b, u, v}] must be zero evaluated over GF(3). It fol-
lows that φ(g) = 1. Claim 6.1.8 implies that B△{a, b, u, 1} is independent
in N\v = M\v. Hence φ(A)[{a, b, u, 1}] has a nonzero determinant over
GF(3). Since r 6= 0, and the only element of U1 taken to zero by φ is
zero itself, it follows that φ(r) = −1. It follows from Claim 6.1.19 that
φ(A)[{a, vp−1, vp, 1}] has zero determinant, so φ(t) = 1.
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Suppose k = 0. By the preceding discussion we see that

φ(A)[Z] =









1 2 vp−1 u v

3 -1 1 0 0 s
vp 1 0 1 0 w
a 1 1 1 1 1

x0=b -1 -1 -1 1 1









,

where s and w are nonzero. By scaling the column labeled with v and, if
necessary, scaling the column labeled by u, the rows labeled by a and b, and
swapping the labels on the last two rows, we can assume that s = 1. Thus
there are two cases to consider, according to whether w is equal to 1 or −1.

If w = 1 then MB△{v,3}[Z]−{v, 3} ∼= F−
7 , which contradicts the fact that

M is GF(4)-representable. Similarly, in the case that w = −1. then it is
easy to check that MB△{a,u}[Z]− {a, u} ∼= F−

7 .
Now we assume k = 2. Let Z ′ = Z \ {x1, x2}, so that

φ(A[Z ′]) =









1 2 vp−1 u v

3 -1 1 0 0 s
vp 1 0 1 0 w
a 1 1 1 1 1

x0=b 0 0 0 1 1









.

We consider four cases. If (s,w) = (1, 1) then MB△{v,3}[Z
′]− {v, 1} ∼= F−

7 .

If (s,w) is equal to (1,−1) or (−1, 1) then MB△{a,u}[Z
′] − {a, u} ∼= F−

7 .
Finally, if (s,w) = (−1,−1), then MB△{3,v}[Z

′]− v ∼= AG(2, 3)\e. Thus M
has a minor isomorphic to AG(2, 3)\e. But we will show in Proposition 7.3
that AG(2, 3)\e is an excluded minor for the class of near-regular matroids.
Thus M ∼= AG(2, 3)\e, which contradicts our assumption, and completes
the proof of Theorem 6.1. �

7. Conclusion

In this section we complete the proof of the excluded-minor character-
ization. We start by describing in detail the matroids listed in Theo-
rems 1.1 and 1.2, and proving that they are indeed excluded minors for
near-regularity. Theorem 6.1 means that to prove this list is complete, we
need only perform a finite case-analysis. That analysis is carried out in the
second half of the section.

7.1. The excluded minors. The next result follows easily from Proposi-
tion 6.5.2 of [Oxl92].

Proposition 7.1. Both U2,5 and U3,5 are excluded minors for the class of
near-regular matroids.

Recall that F7, the Fano plane, and F−
7 , the non-Fano matroid, are the

rank-3 matroids shown in Figure 1.
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F7 F−
7

Figure 1. The Fano plane, and the non-Fano matroid.

The Fano plane is representable only over fields of characteristic two, and
F−
7 is representable only over fields of characteristic other than two [Oxl92,

p. 505]. Moreover, any proper minor of F7 or F
−
7 is either regular, or a whirl

(up to the addition of parallel points). The next result follows immediately.

Proposition 7.2. The matroids F7, F
−
7 , and their duals, are excluded mi-

nors for the class of near-regular matroids.

The affine geometry AG(2, 3) is produced by deleting a hyperplane from
the projective geometry PG(2, 3). Figure 2 shows a geometric representa-
tion of AG(2, 3). Up to isomorphism there is a unique matroid produced by
deleting an element from AG(2, 3). We denote this matroid by AG(2, 3)\e.
It is not difficult to see that the automorphism group of AG(2, 3)\e acts
transitively upon the triangles of AG(2, 3)\e. It follows that up to isomor-
phism there is a unique matroid produced by performing a ∆-Y operation
on AG(2, 3)\e. We shall denote this matroid by ∆T (AG(2, 3)\e). Then
∆T (AG(2, 3)\e) is represented over GF(3) by the following matrix.









0 1 1 1
1 -1 1 -1
1 1 1 0
1 -1 0 0









Obviously ∆T (AG(2, 3)\e) is self-dual.

Figure 2. AG(2, 3).

Proposition 7.3. The matroids AG(2, 3)\e, (AG(2, 3)\e)∗, and
∆T (AG(2, 3)\e) are excluded minors for the class of near-regular ma-
troids.
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Proof. Suppose that we obtain a representation of AG(2, 3) by deleting from
PG(2, 3) all points [x1, x2, x3]

T on the hyperplane defined by x1+x2+x3 =
0. We then obtain a representation of AG(2, 3)\e by deleting the point
[1, 1,−1]T . Thus AG(2, 3)\e is represented over GF(3) by the following
matrix.





0 1 1 -1 1
1 0 1 1 -1
1 1 0 1 1





If AG(2, 3)\e is GF(5)-representable, then by normalizing, we can assume
that it is represented over GF(5) by the following matrix.





0 1 1 1 1
1 0 a b c
1 1 0 d e





Here, {a, b, c, d, e} are nonzero elements of GF(5). By comparing subde-
terminants, we see that e = 1, and that c − a − e = 0, so that c = a + 1.
Moreover, b = d = c, so b and d are also equal to a+1. Finally ad+b−a = 0.
This means that a is a root of the polynomial x2+x+1. But there is no such
root in GF(5), so we have a contradiction. Therefore AG(2, 3)\e is certainly
not near-regular.

The automorphism group of AG(2, 3) is transitive on pairs of elements. It
follows that the automorphism group of AG(2, 3)\e is transitive on points.
Using this fact, it is not difficult to see that any single-element deletion of
AG(2, 3)\e is isomorphic to P7 (illustrated in Figure 3). Now P7 is repre-
sentable over every field of cardinality at least three [Oxl92, Lemma 6.4.13],
and is therefore near-regular.

On the other hand, by again using the transitivity of AG(2, 3)\e we can
see that contracting any element from AG(2, 3)\e produces a matroid that
is obtained from U2,4 by adding parallel elements. Thus every proper minor
of AG(2, 3)\e is near-regular, so AG(2, 3)\e is indeed an excluded minor for
the class of near-regular matroids. It follows immediately that (AG(2, 3)\e)∗

is an excluded minor for the same class, and Lemma 2.27 implies that
∆T (AG(2, 3)\e) is also an excluded minor for near-regularity. �

The matroid P8 is represented over GF(3) by the following matrix:








0 1 1 -1
1 0 1 1
1 1 0 1
-1 1 1 0









The matroid P ′′
8 is obtained from P8 by relaxing its two circuit-hyperplanes.

Lemma 6.4.14 in [Oxl92] says that P8 is representable over a field if and
only if its characteristic is not two. Thus P8 is not near-regular. However,
every single-element deletion or contraction of P8 is isomorphic to either P7

or P ∗
7 [Oxl92, p. 513], and P7 is representable over every field containing at

least three elements. The next result follows.
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Proposition 7.4. The matroid P8 is an excluded minor for the class of
near-regular matroids.

7.2. Case-analysis. Next we show that the list of excluded minors in The-
orem 1.2 is complete. The matroids P7 and O7 are shown in Figure 3.

P7 O7

Figure 3. P7 and O7.

The following matrix represents O7 over any field F such that |F| ≥ 3.
Here, β ∈ F \ {0, 1} if F has characteristic equal to two, and β = −1
otherwise.





1 1 0 1
1 0 1 -1
0 1 -1 β





It follows that O7 is near-regular. We have already noted that P7 is near-
regular.

Proposition 7.5. Let M be a 3-connected single-element extension of W3,
the rank-3 whirl, such that M has no U2,5-minor. Then M is isomorphic to

one of F−
7 , P7, or O7.

Proof. Suppose that M\e is isomorphic to W3. Let E(M\e) =
{r1, r2, r3, s1, s2, s3} and suppose that the triangles of M\e are {r1, s2, s3},
{r2, s1, s3}, and {r3, s1, s2}. It is easy to see that if e is contained in a four-
point line of M , then M ∼= O7. Thus we assume M contains no four-point
lines. But e must be contained in a triangle with each of r1, r2, and r3, for
otherwise M has a U2,5-minor. Now the result follows easily. �

Lemma 7.6. Suppose that M is an excluded minor for the class of near-
regular matroids, and that r(M) = 3. Then M is isomorphic to one of U3,5,

F7, F
−
7 , or AG(2, 3)\e.

Proof. Suppose that M is a rank-3 excluded minor other than those listed
in the statement of the lemma. Then M must be ternary, for otherwise
it contains U2,5, U3,5, or F7 as a minor [Bix79, Sey79]. Since M is not
near-regular, and hence not regular, it is nonbinary. Certainly M has at
least six elements, and hence corank at least three, for otherwise the fact
that M ≇ U3,5 means that M is not 3-connected. Now Corollary 11.2.19
in [Oxl92], and the fact that M has no U2,5-minor, means that M has a
W3-minor. SinceM is not isomorphic to AG(2, 3)\e or its dual, Theorem 6.1
implies that r∗(M) ≤ 4, and that therefore, |E(M)| ≤ 7. As M is not
isomorphic to W3, it follows that M is a single-element extension of W3.
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Proposition 7.5 implies that M is isomorphic to either P7 or O7. As these
are both near-regular we have a contradiction. �

Now we complete the proof of Theorem 1.2.

Theorem 1.2. The excluded minors for the class of near-regular ma-
troids are U2,5, U3,5, F7, F ∗

7 , F−
7 , (F−

7 )∗, AG(2, 3)\e, (AG(2, 3)\e)∗,
∆T (AG(2, 3)\e), and P8.

Proof. The results in Section 7.1 certify that the matroids listed in the the-
orem are indeed excluded minors for near-regularity. Now we suppose that
M is an excluded minor and that M is not listed in the statement of the
theorem. Clearly the rank and corank of M both exceed two. Lemma 7.6
implies that they both exceed three. It now follows from Theorem 6.1 that
both are exactly equal to four, so M has precisely eight elements.

Suppose that M contains a triangle T . As M is 3-connected, T is coin-
dependent. Lemmas 2.26 and 2.27 imply that ∆T (M) is an excluded minor
for near-regularity with corank three. Now Lemma 7.6 implies that ∆T (M)
is either U2,5, F

∗
7 , (F

−
7 )∗, or (AG(2, 3)\e)∗. As M contains eight elements,

we conclude that ∆T (M) ∼= (AG(2, 3)\e)∗ . But T is an independent triad
in ∆T (M), by Lemma 2.26, and

M = ∇T (∆T (M)) ∼= ∇T ((AG(2, 3)\e)∗) =

(∆T (AG(2, 3)\e))∗ ∼= ∆T (AG(2, 3)\e).

This contradiction means that M has no triangles. The dual argument
shows that M has no triads.

As in the proof of Lemma 7.6, we see that M is ternary and nonbinary,
and that therefore M has a W3-minor. Since M does not have a W4-minor,
we may apply the Splitter Theorem. By exploiting duality, we can assume
that there are elements e, f ∈ E(M), such that M/e is 3-connected, and
M/e\f is isomorphic to W3. Therefore M/e is isomorphic to P7 or O7, by
Lemma 7.5.

Assume that M/e ∼= O7. Since M/e contains a four-point line, and M
contains no triangles, it follows that M contains a U3,5-restriction. This is a
contradiction, so we assume that M/e ∼= P7. By scaling, and uniqueness of
representations, we can assume that M/e is represented over GF(3) by the
following matrix.









a b c d

x 0 1 1 -1
y 1 0 1 1
z 1 1 0 1
e -1 α β γ









The fact that M contains no triangles means that α and β are nonzero, and
that γ 6= −1. Moreover, α + β − γ 6= 0. This leaves us with five cases to
check:

(i) α = 1, β = 1, γ = 0;
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(ii) α = 1, β = 1, γ = 1;
(iii) α = 1, β = −1, γ = 1;
(iv) α = −1, β = 1, γ = 1; and
(v) α = −1, β = −1, γ = 0.

If case (i) holds, then we immediately see that M is isomorphic to P8, a
contradiction. Suppose that (ii) holds. Then M/y ∼= F−

7 , a contradiction.
If (iii) or (iv) holds, then M ∼= P8. Finally, if (v) holds, then M/x ∼= F−

7 .
This contradiction completes the proof. �

8. Acknowledgements

Our thanks go to Jim Geelen and Geoff Whittle for their helpful advice
and discussions.

References

[AO93] S. Akkari and J. Oxley, Some local extremal connectivity results for matroids.
Combin. Probab. Comput., vol. 2, no. 4, pp. 367–384 (1993).

[Bix79] R. E. Bixby, On Reid’s characterization of the ternary matroids. J. Combin.
Theory Ser. B, vol. 26, no. 2, pp. 174–204 (1979).

[BL76] T. H. Brylawski and D. Lucas, Uniquely representable combinatorial ge-
ometries. In Teorie Combinatorie (Proc. 1973 Internat. Colloq.), pp. 83–104
(Accademia Nazionale del Lincei, Rome, 1976).

[GGK00] J. F. Geelen, A. M. H. Gerards, and A. Kapoor, The excluded minors for
GF(4)-representable matroids. J. Combin. Theory Ser. B, vol. 79, no. 2, pp.
247–299 (2000).

[Kah88] J. Kahn, On the uniqueness of matroid representations over GF(4). Bull. Lon-
don Math. Soc., vol. 20, no. 1, pp. 5–10 (1988).

[OSV00] J. Oxley, C. Semple, and D. Vertigan, Generalized ∆-Y exchange and k-
regular matroids. J. Combin. Theory Ser. B, vol. 79, no. 1, pp. 1–65 (2000).

[Oxl92] J. G. Oxley, Matroid Theory (Oxford University Press, 1992).
[PZa] R. A. Pendavingh and S. H. M. van Zwam, Confinement of matroid repre-

sentations to subsets of partial fields. J. Combin. Theory Ser. B, vol. 100, no. 6,
pp. 510–545 (2010).

[PZb] R. A. Pendavingh and S. H. M. van Zwam, Lifts of matroid representations
over partial fields. J. Combin. Theory Ser. B, vol. 100, no. 1, pp. 36–67 (2010).

[Sem97] C. Semple, k-regular matroids. In Combinatorics, complexity, & logic (Auck-
land, 1996), Springer Ser. Discrete Math. Theor. Comput. Sci., pp. 376–386
(Springer, Singapore, 1997).

[Sey79] P. D. Seymour, Matroid representation over GF(3). J. Combin. Theory Ser.
B, vol. 26, no. 2, pp. 159–173 (1979).

[SW96] C. Semple and G. Whittle, Partial fields and matroid representation. Adv.
in Appl. Math., vol. 17, no. 2, pp. 184–208 (1996).

[Tru86] K. Truemper, A decomposition theory for matroids. III. Decomposition con-
ditions. J. Combin. Theory Ser. B, vol. 41, no. 3, pp. 275–305 (1986).

[Tut58] W. T. Tutte, A homotopy theorem for matroids. I, II. Trans. Amer. Math.
Soc., vol. 88, pp. 144–174 (1958).

[Whi97] G. Whittle, On matroids representable over GF(3) and other fields. Trans.
Amer. Math. Soc., vol. 349, no. 2, pp. 579–603 (1997).

[Whi99] G. Whittle, Stabilizers of classes of representable matroids. J. Combin. Theory
Ser. B, vol. 77, no. 1, pp. 39–72 (1999).



42 HALL, MAYHEW, AND VAN ZWAM

School of Information Systems, Computing and Mathematics, Brunel Uni-

versity, Uxbridge UB8 3PH, United Kingdom

E-mail address: rhiannon.hall@brunel.ac.uk

School of Mathematics, Statistics, and Operations Research, Victoria Uni-

versity of Wellington, New Zealand

E-mail address: dillon.mayhew@msor.vuw.ac.nz

Centrum Wiskunde en Informatica, Postbus 94079, 1090 GB Amsterdam, The

Netherlands

E-mail address: Stefan.van.Zwam@cwi.nl


