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Abstract. If E is a set of matroids, then Ex(E) denotes the set of
matroids that have no minor isomorphic to a member of E . If E ′ ⊆ E ,
we say that E ′ is superfluous if Ex(E −E ′)−Ex(E) contains only finitely
many 3-connected matroids. We determine the superfluous subsets of
six well-known collections of excluded minors.

Dedicated, with affection, to “Mathematician, gone 60, left fox with leg
trouble. (5, 7)”

1. Introduction

For a set E of matroids, let Ex(E) be the set of matroids such that M ∈
Ex(E) if and only if M has no minor isomorphic to a member of E . Thus,
if P = {U2,4, F7, F

∗
7 ,M(K3,3),M(K5),M

∗(K3,3),M
∗(K5)}, then Ex(P) is

the set of cycle matroids of planar graphs. Hall’s classical theorem on the
graphs without a K3,3-minor [5] can be interpreted as saying that

Ex(P − {M(K5)})− Ex(P)

contains only a single 3-connected matroid, namely M(K5) itself. This
motivates the following definition: if E is a set of matroids, then E ′ ⊆ E
is a superfluous subset of E if Ex(E − E ′) − Ex(E) contains only finitely
many 3-connected matroids. Thus {M(K5)} is a superfluous subset of P.
Obviously every subset of a superfluous subset is itself superfluous. In this
article we determine the superfluous subsets of six well-known collections of
excluded minors.

We will concentrate on the excluded minors for classes of matroids rep-
resentable over partial fields. Partial fields were introduced by Semple and
Whittle [15], prompted by Whittle’s investigation of classes of ternary ma-
troids [20, 21]. A partial field is a pair (R,G), where R is a commutative
ring with identity, and G is a subgroup of the multiplicative group of R,
such that −1 ∈ G. Note that every field, F, can be seen as a partial field,
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(F,F − {0}). For more information on partial fields, and matroid repre-
sentations over them, we refer to [14]. The reader should know that M is
representable over a partial field if and only if M∗ is. All undefined ma-
troids appearing in the paper can be found in the appendix of Oxley [10].
We assume that the reader is familiar with the terminology and notation
from that source. We use the terms line and plane to refer to rank-2 and
rank-3 flats of the ground set.

To date, the class of matroids representable over a partial field has been
characterized via excluded minors in only six cases. Those cases are: the
fields GF(2), GF(3), and GF(4), the regular partial field, and two of the
partial fields discovered by Whittle, namely the sixth-roots-of-unity partial
field, and the near-regular partial field. We will determine the superfluous
subsets of all these collections of excluded minors.

First of all, Tutte [19] showed that the only excluded minor for the class
of GF(2)-representable matroids is U2,4. It is clear that the only superfluous
subset in this case is the empty set. For a more interesting example, we
examine the regular partial field, U0 := (Z, {1,−1}). Tutte also proved that
the set of excluded minors for U0-representable matroids is {U2,4, F7, F

∗
7 }.

It is a well-known application of Seymour’s Splitter Theorem [18] that F7 is
a splitter for the class Ex({U2,4, F

∗
7 }). The next theorem follows easily from

this fact and the fact that infinitely many binary matroids are not regular.

Theorem 1.1. The only non-empty superfluous subsets of {U2,4, F7, F
∗
7 }

are {F7} and {F ∗7 }. The only 3-connected matroid in Ex({U2,4, F
∗
7 }) −

Ex({U2,4, F7, F
∗
7 }) is F7.

By duality, the only 3-connected matroid in Ex({U2,4, F7}) −
Ex({U2,4, F7, F

∗
7 }) is F ∗7 . From here on we will omit such dual statements.

Next we consider the excluded-minor characterization of GF(3)-
representable matroids, due to Bixby [1] and Seymour [17].

Theorem 1.2. The set of excluded minors for GF(3)-representable matroids
is {U2,5, U3,5, F7, F

∗
7 }.

In this paper we will prove the following:

Theorem 1.3. The only non-empty superfluous subsets of
{U2,5, U3,5, F7, F

∗
7 } are {F7} and {F ∗7 }. The only 3-connected matroid

in Ex({U2,5, U3,5, F
∗
7 })− Ex({U2,5, U3,5, F7, F

∗
7 }) is F7.

At this point we should observe that a 3-connected matroid of rank
and corank at least three has a U2,5-minor if and only if it has a U3,5-
minor (see [10, Proposition 12.2.15]), so U2,5 is not superfluous only because
Ex({U3,5, F7, F

∗
7 }) − Ex({U2,5, U3,5, F7, F

∗
7 }) contains arbitrarily long lines.

This raises the question if Ex(E −X)−Ex(E) is highly structured for other
choices of E and X ⊆ E . For instance, it is possible that there is only a finite
number of internally 4-connected members.

This is certainly not always the case: if all members of E − {F7, F
∗
7 } are

non-binary, then Ex(E − {F7, F
∗
7 })−Ex(E) contains all binary matroids. In
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the remaining cases in this paper we make no attempt to characterize the
full nature of Ex(E − X) − Ex(E). We focus purely on the finite/infinite
dichotomy captured by the definition of “superfluous”.

The set of excluded minors for GF(4)-representable matroids was deter-
mined by Geelen, Gerards, and Kapoor [3].

Theorem 1.4. The set of excluded minors for the class of GF(4)-
representable matroids is {U2,6, U4,6, F

−
7 , (F

−
7 )∗, P6, P8, P

=
8 }.

Let O be the set of excluded minors in Theorem 1.4. Geelen, Oxley,
Vertigan, and Whittle showed the following:

Theorem 1.5 ([4, Theorem 1.1]). Let M be a 3-connected matroid. Then
one of the following holds:

(i) M is GF(4)-representable;
(ii) M has a minor isomorphic to one of O − {P8, P

=
8 };

(iii) M is isomorphic to P=
8 ;

(iv) M is isomorphic to a minor of S(5, 6, 12).

This implies that {P8, P
=
8 } is a superfluous subset of O. We complement

this theorem by showing that it is best possible:

Theorem 1.6. The only superfluous subsets of O are the subsets of
{P8, P

=
8 }. The only 3-connected matroids in Ex(O − {P8, P

=
8 }) − Ex(O)

are isomorphic to P=
8 , or are minors of S(5, 6, 12).

Let S := (C, {z ∈ C | z6 = 1}) be the sixth-roots-of-unity partial field, so
that a matroid is S-representable if and only if it is both GF(3)- and GF(4)-
representable. By combining Theorems 1.2 and 1.4, Geelen, Gerards, and
Kapoor derived the following result [3, Corollary 1.4].

Theorem 1.7. The set of excluded minors for the class of S-representable
matroids is {U2,5, U3,5, F7, F

∗
7 , F

−
7 , (F

−
7 )∗, P8}.

Let S be the set of excluded minors in Theorem 1.7. In this paper we
prove the following:

Theorem 1.8. The only superfluous subsets of S are the subsets of {F7, P8}
and {F ∗7 , P8}. The only 3-connected matroids in Ex(S − {F7, P8})− Ex(S)
are isomorphic to F7, or are minors of S(5, 6, 12).

Let U1 := (Q(α), {±αi(1 − α)j | i, j ∈ Z}) be the near-regular partial
field. A matroid is U1-representable if and only if it is representable over
GF(3), GF(4), and GF(5). The next theorem is proved in [6].

Theorem 1.9. The set of excluded minors for the class of U1-representable
matroids is

{U2,5, U3,5, F7, F
∗
7 , F

−
7 , (F

−
7 )∗,AG(2, 3)\e, (AG(2, 3)\e)∗,∆3(AG(2, 3)\e), P8}.
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The matroid ∆3(AG(2, 3)\e) in this theorem is obtained from AG(2, 3)\e
by performing a ∆-Y exchange on AG(2, 3)\e. It is represented over GF(3)
by [I4 A], where A is the following matrix.

(1) A =


5 6 7 8

1 1 0 −1 0
2 1 0 1 1
3 1 1 0 1
4 0 1 1 −1

.
Let N be the set featured in Theorem 1.9. In this paper we prove the
following:

Theorem 1.10. The only superfluous subsets of N are the subsets of
{F7,AG(2, 3)\e, (AG(2, 3)\e)∗} and {F ∗7 ,AG(2, 3)\e, (AG(2, 3)\e)∗}. The
only 3-connected matroids in Ex(N − {F7,AG(2, 3)\e, (AG(2, 3)\e)∗}) −
Ex(N ) are isomorphic to F7, AG(2, 3)\e, (AG(2, 3)\e)∗, AG(2, 3), or
(AG(2, 3))∗.

The paper is built up as follows. In Section 2 we use Seymour’s Splitter
Theorem to prove that certain subsets are superfluous. To prove that a
subset {M} is not superfluous, we need to generate an infinite number of
3-connected matroids in Ex(E − {M}) − Ex(E). We do so by the simple
expedient of growing arbitrarily long fans. Section 3 proves the technical
lemmas that allow us to do so. In Section 4 we introduce several matroids
to which our method of growing fans will be applied, and in Section 5 we
will round up the results. Note that the proofs in Sections 2 and 4 are finite
case-checks that could be replaced by computer checks. However, at the
moment of writing no sufficiently reliable software for this existed.

2. Applying the splitter theorem

The following result is very well-known [10, Proposition 12.2.3].

Proposition 2.1. The matroid F7 is a splitter for the class Ex({U2,4, F
∗
7 }).

Our next result, which seems not to be in the literature, proves a gener-
alization of Proposition 2.1.

Theorem 2.2. The matroid F7 is a splitter for the class
Ex({U2,5, U3,5, F

∗
7 }).

Proof. By Seymour’s Splitter Theorem we only have to check that
F7 has no 3-connected single-element extensions and coextensions in
Ex({U2,5, U3,5, F

∗
7 }). If M is a 3-connected matroid such that M\e ∼= F7,

then either e is on exactly one line of F7, or e is on no line of F7. In either
case M/e has a U2,5-minor.

We may now assume that M is a 3-connected matroid such that M/e ∼= F7

and M belongs to Ex({U2,5, U3,5, F
∗
7 }). LetM be the class of matroids that

are either binary or ternary. NowM is a minor-closed class, and its excluded
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minors are determined in [8]. Certainly M is not binary, since that would
lead to a contradiction to Proposition 2.1. Moreover, M is not ternary,
as it has an F7-minor. Therefore M is not contained in M. Hence [16,
Theorem 4.1] implies that M contains a 3-connected excluded minor forM.
There are only four such excluded minors, and as M does not have U2,5 or
U3,5 as a minor, M must have as a minor one of the matroids obtained from
the affine geometry AG(3, 2) or from T12 by relaxing a circuit-hyperplane.
As M has only 8 elements, M must be isomorphic to the unique relaxation
of AG(3, 2). But this matroid has an F ∗7 -minor ([10, Page 646]). This
contradiction completes the proof. �

We can make short work of the case in which we do not exclude P8. Geelen
et al. [4, Theorem 1.5] proved the following result:

Theorem 2.3. If M is a 3-connected matroid in
Ex({U2,6, U4,6, P6, F

−
7 , (F

−
7 )∗}), and M has a P8-minor, then M is a

minor of S(5, 6, 12).

Since each of U2,6, U4,6, and P6 has a minor in {U2,5, U3,5}, we immediately
have

Corollary 2.4. If M is a 3-connected matroid in
Ex({U2,5, U3,5, F

−
7 , (F

−
7 )∗}), and M has a P8-minor, then M is a mi-

nor of S(5, 6, 12).

Next, we determine what happens if we do not exclude AG(2, 3)\e. Our
starting point is the automorphism group of AG(2, 3)\e. Note that it is
transitive on elements of the ground set ([10, Page 653]). For each element
p in AG(2, 3)\e, there is a unique element p′ such that p and p′ are not on
a 3-point line of AG(2, 3)\e. Any automorphism will map {p, p′} to another
such pair, so specifying the image of p also specifies the image of p′. Consider
automorphisms of the diagram in Figure 1 that point-wise fix 1 and 8. It is
easy to confirm that the permutations below (presented in cyclic notation),

(2) (1)(2, 4)(3, 7)(5, 6)(8)

and

(3) (1)(2, 3, 5)(4, 6, 7)(8)

are two such automorphisms. The next result follows easily from this dis-
cussion.

Lemma 2.5. Let p and p′ be points in AG(2, 3)\e such that there is no
3-point line containing p and p′. The subgroup of the automorphism group
of AG(2, 3)\e that point-wise fixes p and p′ is transitive on E(AG(2, 3)\e)−
{p, p′}.

We wish to find automorphisms mapping a basis B to a basis B′. This
cannot be done for arbitrary bases B and B′, but the following lemma gives
sufficient conditions for the automorphism to exist.
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Figure 1. The matroid AG(2, 3)\e.

Lemma 2.6. Let B and B′ be bases of AG(2, 3)\e such that every pair p, q ∈
B, and every pair k, l ∈ B′ spans a 3-point line. There is an automorphism
of AG(2, 3)\e mapping B to B′.

Proof. If x is any element of AG(2, 3)\e, then let x′ be the point that is in no
3-point line with x. Let B = {p, q, r}. The hypotheses of the lemma imply
that |{p, q, r, p′, q′, r′}| = 6. Let epq be the unique point such that {p, q, epq}
is a circuit. Define epr and eqr symmetrically. Then |{p, q, r, epq, epr, eqr}| =
6. As AG(2, 3)\e has only 8 points, we can relabel as necessary, and assume
eqr is in {p′, q′, r′}. Since eqr is in a non-trivial line with q and r, it follows
that eqr = p′, so that {p′, q, r} is a circuit. Let B′ = {k, l,m}. By relabeling
and using the same arguments, we can assume that {k′, l,m} is a 3-point
line of AG(2, 3)\e.

Consider the automorphism that maps k to p. It must map k′ to p′. By
composing this automorphism with an automorphism that fixes p and p′,
and referring to Lemma 2.5, we can assume that l is mapped to q. But an
automorphism maps lines to lines, so then m must be mapped to r, and the
result follows. �

In the proof of the next lemma we will show several times that a matroid
M = M [I A] is isomorphic to one of ∆3(AG(2, 3)\e), P8, F

−
7 , or (F−7 )∗.

Unless the isomorphism is obvious (i.e. one merely needs to permute rows
and columns), we will specify which isomorphism we use. For this we use the
representation of ∆3(AG(2, 3)\e) with elements labeled as in Equation (1).
Moreover, we will label the elements of P8, F

−
7 , (F−7 )∗ so that P8 = [I4 A8],

F−7 = [I3 A7], and (F−7 )∗ = [−AT
7 I4], where A7 and A8 are the following



ON THE RELATIVE IMPORTANCE OF EXCLUDED MINORS 7

matrices over GF(3).

A8 =


5 6 7 8

1 0 1 1 −1
2 1 0 1 1
3 1 1 0 1
4 −1 1 1 0

 A7 =


4 5 6 7

1 1 1 0 1
2 1 0 1 1
3 0 1 1 1


Lemma 2.7. Let M be a 3-connected S-representable matroid such that
M/f ∼= AG(2, 3)\e for some f ∈ E(M). Then M has ∆3(AG(2, 3)\e) as
minor.

Proof. Suppose that M is a counterexample. Let M ′ := M\f .

Claim 2.7.1. There exists a set X ⊆ E(M) − f such that |X| = 5 and
r(X) = 3.

Proof. Suppose M ′ has no 5-point planes. First we show that M ′ has no
3-point lines. Observe that each line of M ′ is a line of AG(2, 3)\e, so M ′ has
no 4-point lines. Suppose {x, y, z} is a line of M ′. If x is on another 3-point
line, then the union of those lines would be a 5-point plane, a contradiction.
It follows that M ′/x\y is simple. Furthermore, z is in no 3-point line in
M ′/x\y, or else the union of this line with {x, y} is a 5-point plane in M ′.
Therefore M ′/x\y/z is simple, has rank 2, and has 5 points. Therefore M ′

has a U2,5-minor, which is impossible since it is S-representable. Hence M ′

has no 3-point lines.
Let e be an arbitrary point in E(M ′). Then M ′/e is a simple rank-3

matroid with 7 points. Since M ′ has no 5-point planes, M ′/e has no 4-point
lines. Hence M ′/e cannot be the union of two lines, so it is 3-connected.
Then M ′/e is isomorphic to one of the matroids F7, F

−
7 , P7, or O7 (see [3,

Page 292]). Since M ′/e is S-representable, it is not isomorphic to F7 or F−7 .
Furthermore, O7 has a 4-point line restriction, so M ′/e must be isomorphic
to P7. By the uniqueness of representation over GF(3), we can assume that
the following GF(3)-matrix A′ is such that M ′ = [I4 A

′].

A′ :=


4 5 6 7

1 1 1 0 −1
2 1 0 1 1
3 0 1 1 1
e α β γ δ

.
As M ′ has no 3-point lines, all of α, β, and γ are non-zero. By scaling

the row labeled e, we assume that α = 1. Also, γ 6= δ as {1, 6, 7} is not a
triangle.

If β = 1, then γ 6= 1, or else M ′\7 ∼= (F−7 )∗. Therefore γ = −1. If δ = 0,
then A′ represents P8, which is impossible as M is GF(4)-representable.
Therefore δ = 1. By the discussion above, M ′/1 ∼= P7. But in M ′/1,
the sets {2, 4, e}, {3, 5, e}, and {6, 7, e} are triangles containing e, whereas
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{3, 5, e}, {4, 5, 6}, and {2, 5, 7} are triangles containing 5. This is a contra-
diction, since P7 has only one element that is on three lines. Therefore
β = −1. It follows that δ 6= 0, or else {4, 5, 7} is a triangle of M ′.

Assume that γ = −1, from which it follows that δ = 1. Then we find that
M ′ ∼= P8, with isomorphism

1→ 1 2→ 2 3→ 5 4→ 7 5→ 8 6→ 3 7→ 6 e→ 4.

Therefore we must have γ = 1, and hence δ = −1. But then again M ′ ∼= P8,
with isomorphism

1→ 1 2→ 5 3→ 3 4→ 8 5→ 6 6→ 2 7→ 7 e→ 4.

From this final contradiction we conclude that the claim holds. �

Let X be a set of 5 points of a plane of M ′, and Y := E(M ′)−X. Note
that f /∈ clM (X), as M/f has no rank-2 flat with 5 elements.

Since M/f is isomorphic to AG(2, 3)\e, we can distinguish three cases.
Either Y is a 3-point line of M/f ; or Y is a basis of M/f , and every pair of
elements of Y spans a 3-point line in M/f ; or Y is a basis of M/f , and there
is exactly one pair of elements in Y that does not span a 3-point line of M/f .
We can use Lemmas 2.5 and 2.6, and the fact that the automorphism group
of AG(2, 3)\e is transitive on 3-point lines ([10, Page 653]), and thereby
assume that either Y = {4, 6, 7} or Y = {4, 6, 8} or Y = {4, 5, 6}, where the
elements of AG(2, 3)\e are labeled as in Figure 1.

Case I. Suppose Y = {4, 6, 7}, so that X = {1, 2, 3, 5, 8}. Since f is not
a coloop and not in a series pair, there are two elements in Y that are
not spanned by X in M ′. Let σ be the automorphism in Equation (3),
so that Y is an orbit of σ. There is some i ∈ {0, 1, 2} such that σi takes
the two elements in Y − clM ′(X) to {4, 6}. Now σi induces a relabeling of
the elements of M ′ that set-wise fixes X. After applying this relabeling,
M/f is still equal to AG(2, 3)\e, as labeled in Figure 1. Moreover, X is
a 5-point plane of M ′ that does not contain 4 or 6. By the uniqueness
of representations over GF(3) we can assume that M = M [I A] for some
GF(3)-matrix of the form

A :=


4 5 6 7 8

f 1 0 α β 0
1 1 0 1 1 1
2 1 1 0 −1 1
3 0 1 1 −1 −1


with α 6= 0. If α = 1 then M\{5, 7} ∼= (F−7 )∗, with isomorphism

1→ 5 2→ 7 3→ 6 4→ 4 6→ 2 8→ 3 f → 1.

Hence α = −1. But now M\7 ∼= ∆3(AG(2, 3)\e). This completes the
analysis in Case I.

From now on, we assume that Y is not a triangle of M/f . We will also
assume that if X spans an element y ∈ Y , then there is no triangle T of M/f
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that contains Y − y. To justify this assumption, note that if y ∈ clM ′(X),
then (Y −y)∪f must be a triad of M , so that rM (X∪y) = 3. Furthermore, Y
is not a triangle in M/f , so T contains exactly one element of X. Therefore,
if T exists, we can replace X with (X − T ) ∪ y, and replace Y with T , and
reduce to Case I.

Case II. Suppose Y = {4, 6, 8}. Since any pair of elements from {4, 6, 8} is
in a triangle of M/f , we can assume that X spans no element of Y , by the
argument in the previous paragraph. Hence we have M = M [I A] for some
GF(3)-matrix of the form

A :=


4 5 6 7 8

f 1 0 α 0 β
1 1 0 1 1 1
2 1 1 0 −1 1
3 0 1 1 −1 −1

,
where α and β are non-zero.

If (α, β) = (1, 1), then M\5 ∼= ∆3(AG(2, 3)\e), with isomorphism

1→ 1 2→ 2 3→ 4 4→ 3 6→ 8 7→ 7 8→ 6 f → 5.

If (α, β) = (1,−1), then M\5 ∼= P8, with isomorphism

1→ 2 2→ 3 3→ 4 4→ 6 6→ 1 7→ 5 8→ 8 f → 7,

contradicting GF(4)-representability of M .
If (α, β) = (−1, 1), then M/1\5 ∼= F−7 , with isomorphism

2→ 2 3→ 3 4→ 1 6→ 7 7→ 6 8→ 5 f → 4.

If (α, β) = (−1,−1), then M\5 ∼= ∆3(AG(2, 3)\e), with isomorphism

1→ 2 2→ 7 3→ 5 4→ 4 6→ 3 7→ 6 8→ 8 f → 1.

Thus M has a ∆3(AG(2, 3)\e)-minor.

Case III. Suppose Y = {4, 5, 6}. Since {4, 6, 7} and {5, 6, 8} are triangles
of M/f , we assume that neither 4 nor 5 is in the span of X, by the argument
immediately preceding Case II. Hence M = M [I A] for some GF(3)-matrix
of the form

A :=


4 5 6 7 8

f 1 α β 0 0
1 1 0 1 1 1
2 1 1 0 −1 1
3 0 1 1 −1 −1

,
where α 6= 0. If α = 1 then M\{6, 8} ∼= (F−7 )∗, with isomorphism

1→ 5 2→ 6 3→ 7 4→ 1 5→ 4 7→ 3 f → 2.

Therefore α = −1. But now M\6 ∼= ∆3(AG(2, 3)\e), with isomorphism

1→ 8 2→ 3 3→ 2 4→ 7 5→ 1 7→ 4 8→ 6 f → 5.

The result follows. �
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We must now study coextensions of AG(2, 3). Luckily our previous anal-
ysis can be used for this.

Lemma 2.8. Let M be a 3-connected S-representable matroid such that
M/f ∼= AG(2, 3) for some f ∈ E(M). Then M has an element g 6= f such
that M\g is 3-connected.

Proof. LetM be as stated, and suppose the result is false, so for each element
g 6= f , M\g is not 3-connected. Since M\g/f is 3-connected, g must be in
a triad with f . Two distinct triads T1 and T2, both containing f , intersect
only in f , or else M/f ∼= AG(2, 3) has a triad. From this we find that
M\f can be partitioned into series pairs. However, this matroid has an odd
number of elements, a contradiction. �

Corollary 2.9. Let M be a 3-connected S-representable matroid such that
M/f ∼= AG(2, 3) for some f ∈ E(M). Then M has ∆3(AG(2, 3)\e) as
minor.

Proof. Let g be an element as in Lemma 2.8. Then M\g is a matroid
satisfying all the conditions of Lemma 2.7, and the result follows. �

Now we combine the previous results and the Splitter Theorem to prove
the following theorem.

Theorem 2.10. Let M be a 3-connected matroid in

Ex({U2,5, U3,5, F7, F
∗
7 , F

−
7 , (F

−
7 )∗,∆3(AG(2, 3)\e), P8}).

Then either M is near-regular, or one of M and M∗ is isomorphic to a
member of {AG(2, 3)\e,AG(2, 3)}.

Proof. By the excluded-minor characterization of S-representable matroids
(Theorem 1.7), it follows that M is S-representable. We assume that M
is not U1-representable. Then Theorem 1.9 implies that M has a minor
isomorphic to AG(2, 3)\e or its dual. By duality, we assume that M has an
AG(2, 3)\e-minor. If M ∼= AG(2, 3)\e, we are done, so we assume otherwise.
By Seymour’s Splitter Theorem, M has a 3-connected minor M ′, such that
M ′ is a single-element extension or coextension of AG(2, 3)\e. Lemma 2.7
implies that M ′ is a single-element extension of AG(2, 3)\e. Thus M ′ is
simple and r(M ′) = 3. Moreover |E(M ′)| = 9, so [12, Theorem 2.1] implies
that M ′ ∼= AG(2, 3). If M = M ′, we are done, so we assume that M has
a 3-connected minor M ′′, such that M ′′ is a single-element extension or
coextension of AG(2, 3). But r(M ′′) > 3, or else we have contradicted [12,
Theorem 2.1]. Therefore M ′′/f ∼= AG(2, 3), for some element f . Corollary
2.9 implies that M ′′ has a ∆3(AG(2, 3)\e)-minor, a contradiction. �

3. Creating bigger fans

In this section we prove two results that allow us to replace a fan by a
bigger fan while keeping a certain minor N , without losing 3-connectivity,
and without introducing an undesired minor N ′ (subject to the conditions
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that N ′ is 3-connected and has no 4-element fans). We will use Brylawski’s
generalized parallel connection [2] for this. We refer the reader to Oxley
[10, Section 11.4] for definitions and elementary properties, including the
following:

Lemma 3.1. Let M and N be matroids having a common restriction with
ground set T , such that T is a modular flat of N . Let M ′ := PT (N,M).

(i) A subset F ⊆ E(M ′) is a flat of M ′ if and only if F ∩ E(N) is a
flat of N and F ∩ E(M) is a flat of M ;

(ii) M ′|E(N) = N and M ′|E(M) = M ;
(iii) If e ∈ E(N)− T then M ′\e = PT (N\e,M);
(iv) If e ∈ E(N)− clN (T ) then M ′/e = PT (N/e,M);
(v) If e ∈ E(M)− T then M ′\e = PT (N,M\e);

(vi) If e ∈ E(M)− clM (T ) then M ′/e = PT (N,M/e).

Let M be a matroid on the ground set E. A subset of E is fully closed
if it is closed in M and M∗. If X ⊆ E, then fcl(X) is the intersection of
all fully closed sets that contain X. We can obtain fcl(X) by applying the
closure operator to X, applying the coclosure operator to the result, and so
on, until we cease to add any new elements. We omit the elementary proof
of the following lemma.

Lemma 3.2. Let M be a simple, cosimple, connected matroid, and let (A,B)
be a 2-separation of M . Then (fclM (A), B − fclM (A)) is a 2-separation.

Definition 3.3. Let M be a matroid, and F = (x1, x2, . . . , xk) an ordered
subset of E(M), with k ≥ 3. We say F is a fan of M if, for all i ∈
{1, . . . , k − 2}, Ti := {xi, xi+1, xi+2} is either a triangle or a triad, and if Ti
is a triad, then Ti+1 is a triangle; if Ti is a triangle then Ti+1 is a triad.

Assume that F = (x1, . . . , xk) is a fan. Then F is a fan of M∗. We say
that F is a maximal fan if there is no fan (y1, . . . , yl) such that l > k and
{x1, . . . , xk} ⊆ {y1, . . . , yl}. We say xi is a rim element if 1 < i < k and
xi is contained in exactly one triangle that is contained in {x1, . . . , xk}, or
if i ∈ {1, k} and xi is contained in no such triangle. We say xi is a spoke
element if it is not a rim element. The following is an easy consequence of
Lemma 3.2.

Lemma 3.4. Let M be a simple, cosimple, connected matroid, let F =
(x1, . . . , xk) be a fan of M , and let (A,B) be a 2-separation of M . Then M
has a 2-separation (A′, B′) with {x1, . . . , xk} ⊆ A′.

In what follows, the elements of the wheel M(Wn) and whirl Wn are
labeled {s1, r1, s2, . . . , sn, rn} where, for all indices i (interpreted modulo n),
{si, ri, si+1} is a triangle and {ri, si+1, ri+1} is a triad. Hence, {s1, . . . , sn}
is the set of spokes and {r1, . . . , rn} is the set of rim elements.

Theorem 3.5. Let M be a 3-connected matroid, and let F = (x1, . . . , xk)
be a fan of M with T := {x1, x2, x3} a triangle. Let n ≥ 3 be an integer,
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and relabel the elements s1, rn, sn of M(Wn) by x1, x2, x3, in that order.
Let M ′ := PT (M(Wn),M), and M ′′ := M ′\x2. Then M ′′ has the following
properties:

(i) (x1, r1, s2, r2, . . . , sn−1, rn−1, x3, . . . , xk) is a fan of M ′′;
(ii) M is isomorphic to a minor of M ′′, with the isomorphism fixing all

elements but x2; and
(iii) M ′′ is 3-connected.

Proof. Let M , F , T , n, M ′, and M ′′ be as stated, and define N := M(Wn).
Since T is a modular flat ofN , we knowM ′ = PT (N,M) is defined. It follows
from Lemma 3.1 that (s1, r1, . . . , sn−1, rn−1, sn) is a fan of M ′ and of M ′′. If
k = 3, then (i) holds. If k ≥ 4, then we only need to show that {rn−1, sn, x4}
is a triad of M ′′. Consider H := E(M ′)−{rn−1, sn, rn, x4}. Since H ∩E(N)
and H ∩ E(M) are hyperplanes of their respective matroids, H is a flat
of M ′. Since clM ′(H ∪ sn) = E(M ′), it follows that {rn−1, sn, rn, x4} is a
cocircuit of M ′. But then {rn−1, sn, x4} is a cocircuit of M ′′, as desired.

Statement (ii) is a straightforward consequence of Lemma 3.1. Statement
(iii) follows immediately from [13, Corollary 2.8]. �

We will denote the matroid M ′′, as described in the statement of Theorem
3.5, by �n

T (M). Theorem 3.5 shows that we can make a fan arbitrarily long
while keeping 3-connectivity. Our next task is to show that we can do so
without introducing certain minors. The following lemma, whose elementary
proof we omit, will be useful:

Lemma 3.6. Let N be a 3-connected matroid without 4-element fans. Let
M be a 3-connected matroid having N as minor, and let F be a 4-element
fan of M . Then |F ∩ E(N)| ≤ 3.

Recall that if T is a coindependent triangle of the matroidM , then ∆T (M)
is the matroid obtained from M by a ∆-Y exchange (see [10, Section 11.5]).

Theorem 3.7. Let N be a 3-connected matroid with no 4-element fan. Let
M be a 3-connected matroid with at least 5 elements that does not have an
N -minor. Let F = (x1, . . . , xk) be a fan of M , where T := {x1, x2, x3} is a
triangle, and let n ≥ 3 be an integer. If �n

T (M) has an N -minor, then so
does ∆T (M).

Proof. We will assume that n ≥ 3 has been chosen so that it is as small as
possible, subject to the condition that �n

T (M) has an N -minor. Let N ′ be
a minor of �n

T (M) that is isomorphic to N .
First assume that n ≥ 4. Since {r1, s2, r2, s3} is a 4-element fan of �n

T (M),
it follows from Lemma 3.6 that this set is not contained in E(N). We
claim that �n

T (M)/r1\s2 has an N -minor. Assume this is not the case. If
�n

T (M)/r1 has an N -minor, then, as {s1, s2} is a parallel pair, �n
T (M)/r1\s2

has an N -minor. Therefore �n
T (M)/r1 does not have an N -minor. Similarly,

{r1, r2} is a series pair in �n
T (M)\s2, so we assume that �n

T (M)\s2 has no N -
minor. As {s2, s3} is a parallel pair in �n

T (M)/r2, this means that �n
T (M)/r2
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has no N -minor. Moreover, {r2, r3} is a series pair in �n
T (M)\s3, so this

matroid does not have an N -minor. As {s2, r2} is a series pair in �n
T (M)\r1,

and we concluded that �n
T (M)/r2 has no N -minor, neither does �n

T (M)\r1.
Since {r1, s1} is a parallel pair in �n

T (M)/s2, and deleting r1 destroys all
N -minors, �n

T (M)/s2 has no N -minor. Deleting r2 creates the series pair
{r1, s2}, and contracting r1 destroys all N -minors, so �n

T (M)\r2 does not
have an N -minor. Lastly, contracting s3 creates the parallel pair {s2, r2},
so �n

T (M)/s3 does not have an N -minor, or else �n
T (M)\s2 does. From

this discussion, we conclude that {r1, s2, r2, s3} ⊆ E(N ′), contradicting our
earlier conclusion. Therefore �n

T (M)/r1\s2 has an N -minor.
Since contracting r1 and deleting s2 from M(Wn) produces a copy of

M(Wn−1), it follows easily from Lemma 3.1 that �n
T (M)/r1\s2 is isomorphic

to �n−1
T (M). Thus our assumption on the minimality of n is contradicted.

Now we must assume that n = 3.
If {r1, s2, r2} * E(N ′), then it is readily seen that M has an N -minor,

contrary to hypothesis. It follows that {r1, s2, r2} ⊆ E(N ′).
Since N ′ has no 4-element fans, s1 /∈ E(N ′). Then we must have that

N ′ is a minor of �n
T (M)\s1. Likewise, N ′ is a minor of �n

T (M)\s3. So
N ′ is a minor of PT (M(W3),M)\T . Since |E(M)| ≥ 5, any triangle of
M is coindependent ([10, Lemma 8.7.5]). Therefore PT (M(W3),M)\T is
isomorphic to ∆T (M), and we are done. �

4. Infinite families

In this section we describe a collection of matroids to which we can apply
our operation of growing fans. Recall that O, S, and N , respectively, denote
the sets of excluded minors for GF(4)-representable, sixth-roots-of-unity,
and near-regular matroids, as listed in Theorems 1.4, 1.7, and 1.9.

Let M8 be the rank-3 matroid shown in Figure 2. Then M8 is represented
over GF(3) by [I3 A], where A is the following matrix.


4 5 6 7 8

1 1 1 0 1 0
2 1 0 1 1 1
3 0 1 1 1 −1


Lemma 4.1. Let T be the triangle {3, 6, 8} of M8. If n ≥ 3 is an integer,
then �n

T (M8) is 3-connected, and has an F−7 -minor but no minor in (O ∪
S ∪N )− {F−7 }.

Proof. Clearly M8 is 3-connected, and M8\8 is isomorphic to F−7 . By The-
orem 3.5, then, �n

T (M8) is 3-connected and has an F−7 -minor for any n ≥ 3.
Now assume that �n

T (M8) has a minor in (O∪S ∪N )−{F−7 }. Therefore
either M8 or ∆T (M8) has such a minor, by Theorem 3.7. By observing that
M8 and ∆T (M8) are both ternary, considering ranks, and counting triangles,
we can rule out minors isomorphic to U2,6, U4,6, P6, P

=
8 , U2,5, U3,5, F7, F

∗
7 ,

(AG(2, 3)\e)∗, P8, AG(2, 3)\e, and ∆3(AG(2, 3)\e).
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1

2 3

4

5

6

7

8

Figure 2. Geometric representation of M8.

The only matroid left to check is (F−7 )∗. Obviously M8 does not have
an (F−7 )∗-minor. Assume that ∆T (M8) does. As (F−7 )∗ has no triangles,
∆T (M8)\2 must be isomorphic to (F−7 )∗. Now {3, 6, 8} is a triad of this
matroid, and performing a Y -∆ exchange on this triad should produce a
copy of F−7 . Instead it produces a copy of M8\2, which contains disjoint
triangles, and is therefore not isomorphic to F−7 . �

Let M9 be the matroid represented by [I4 A] over GF(3), where A is the
following matrix. 

5 6 7 8 9

1 1 0 −1 0 1
2 1 0 1 1 1
3 1 1 0 1 0
4 0 1 1 −1 0


Then M9 is represented by the geometric diagram in Figure 3.

3

2

8

4
6

1

7

5

9

Figure 3. Geometric representation of M9.
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Lemma 4.2. Let T be the triangle {3, 5, 9} of M9. If n ≥ 3 is an inte-
ger, then �n

T (M9) is 3-connected, and has an ∆3(AG(2, 3)\e)-minor, but no
minor in N − {∆3(AG(2, 3)\e)}.

Proof. Note that M9 is 3-connected and ternary, and M9\9 ∼=
∆3(AG(2, 3)\e), so by Theorems 3.5 and 3.7 it suffices to check that nei-
ther M9 nor ∆T (M9) has a minor isomorphic to one of F−7 , (F−7 )∗, P8,
AG(2, 3)\e, or (AG(2, 3)\e)∗.

In M9/7, the sets {3, 5, 8, 9} and {1, 2, 4, 9} are 4-point lines. Therefore
any 7-element restriction of M9/7 has either a 4-point line or two disjoint
triangles. It follows that M9/7 has no minor in N . Similarly M9/8 has no
minor in N .

The triangles of M9 are {1, 2, 9}, {3, 5, 9}, and {3, 4, 6}. It follows easily
that every 8-element restriction of M9 contains at least one triangle, so M9

does not have P8 as minor. The rank of M9 is too low to have (AG(2, 3)\e)∗
as minor. Suppose M9 has AG(2, 3)\e as minor. We need to contract one
element. But this cannot be on a 3-point line, and elements 7 and 8 were
ruled out above.

Suppose M9 has a (F−7 )∗-minor. To obtain this minor we must delete two
elements so that no triangles remain. Deleting 9 gives us ∆3(AG(2, 3)\e)
again, so we must delete 3 and one of {1, 2}. But M9\{1, 3} has disjoint
triads {2, 4, 6} and {5, 7, 9}, whereas M9\{2, 3} has disjoint triads {1, 7, 8}
and {4, 5, 9}. Hence neither is isomorphic to (F−7 )∗.

Therefore we assume thatM9 has an F−7 -minor. We must contract a single
element from M9, and then delete a single element to obtain a copy of F−7 . If
we contract either 3 or 9, then we produce two disjoint parallel pairs, which
cannot be rectified with a single deletion. If we contract one of 1, 2, 4, or 6
then we create a single parallel pair, so up to isomorphism we must delete,
respectively, 2, 1, 6, or 4 to obtain a copy of F−7 . But in these minors, the
triangle {3, 5, 9} is disjoint from, respectively, the triangles {6, 7, 8}, {4, 6, 8},
{1, 2, 7}, and {1, 7, 8}. If we contract 5, then up to isomorphism we must
delete 3 to obtain a copy of F−7 , but in this minor {1, 4, 8} and {2, 6, 7} are
disjoint triangles. Thus M9 does not have a minor in N −{∆3(AG(2, 3)\e)}.

Assume that ∆T (M9) has a minor N ′ that is isomorphic to a ternary
member of N − {∆3(AG(2, 3)\e)}. If T * E(N ′), then an element x ∈
T is contracted to obtain N ′. But ∆T (M9)/x ∼= M9\x, by [11, Lemma
2.13], and we are back in the previous case. Hence T is a triad of N ′, and
therefore N ′ is isomorphic to (F−7 )∗ or (AG(2, 3)\e)∗. It follows easily from
[11, Corollary 2.17] and Seymour’s Splitter Theorem, that∇T (N ′) is a minor
of ∇T (∆T (M9)) = M9. If N ′ ∼= (F−7 )∗, then ∇T (N) ∼= F−7 , and this leads
to a contradiction. Therefore N ′ ∼= (AG(2, 3)\e)∗. The definition of Y -∆
exchange implies that ∇T (N ′) ∼= (∆3(AG(2, 3)\e))∗. But ∆3(AG(2, 3)\e)
is a self-dual matroid, so M9 has a minor isomorphic to ∆3(AG(2, 3)\e)
that contains {3, 5, 9} in its ground set. To obtain this minor, we must
delete a single element, but in each case the result has two triangles, namely
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{3, 5, 9} and at least one of {1, 2, 9} and {3, 4, 6}. This is a contradiction as
∆3(AG(2, 3)\e) has only one triangle. �

For a third infinite class, consider the following matrix, A, over GF(8).
Here α is an element that satisfies α3 + α + 1 = 0. Let M7 be [I3 A]. A
geometric representation of M7 can be found in Figure 4.


4 5 6 7

1 1 1 0 1
2 1 0 1 α
3 0 1 α α2


1

2 3

4 5

7

6

Figure 4. Geometric representation of M7.

Lemma 4.3. Let T be the triangle {1, 2, 4} of M7. If n ≥ 3 is an integer,
then �n

T (M7) is 3-connected, and has a P6-minor, but no minor in O−{P6}.

The proof is again a straightforward check and we skip it.

5. Proofs of the main results

Proof of Theorem 1.1. If M ∈ Ex({U2,4, F
∗
7 }) − Ex({U2,4, F7, F

∗
7 }) is 3-

connected, then M has an F7-minor, and Proposition 2.1 implies that M is
isomorphic to F7. Therefore {F7} is certainly superfluous. Dually, {F ∗7 } is
superfluous. Since Ex({F7, F

∗
7 })−Ex({U2,4, F7, F

∗
7 }) contains all non-binary

rank-2 uniform matroids, {U2,4} is contained in no superfluous subset. Sim-
ilarly, Ex({U2,4})−Ex({U2,4, F7, F

∗
7 }) contains all binary projective geome-

tries. Therefore {F7, F
∗
7 } is contained in no superfluous subset. The result

follows. �

Proof of Theorem 1.3. Theorem 2.2 implies that the only 3-connected ma-
troid in Ex({U2,5, U3,5, F

∗
7 }) − Ex({U2,5, U3,5, F7, F

∗
7 }) is F7 itself. Thus

{F7} and, by duality, {F ∗7 } are superfluous subsets. On the other hand,
Ex({U3,5, F7, F

∗
7 }) − Ex({U2,5, U3,5, F7, F

∗
7 }) contains all the non-ternary

rank-2 uniform matroids, so {U2,5} and, by duality, {U3,5} is not contained
in any superfluous subset. Finally, Ex({U2,5, U3,5})−Ex({U2,5, U3,5, F7, F

∗
7 })

contains all binary projective geometries, so {F7, F
∗
7 } is not superfluous. �
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Proof of Theorem 1.6. Theorem 1.5 implies that if M is a 3-connected ma-
troid in Ex(O−{P8, P

=
8 })−Ex(O), then M is isomorphic to P=

8 or a minor
of S(5, 6, 12). Thus {P8, P

=
8 } is superfluous. As Ex(O − {U2,6}) − Ex(O)

contains all rank-2 uniform matroids with at least 6 elements, {U2,6}, and by
duality {U4,6}, is not contained in any superfluous subset. By Lemma 4.1,
the set Ex(O−{F−7 })−Ex(O) contains all matroids of the form �n

T (M8), so
{F−7 }, and by duality {(F−7 )∗}, is not contained in any superfluous subset.
Finally, Lemma 4.3 shows that Ex(O − {P6}) − Ex(O) contains an infinite
number of 3-connected matroids, so {P6} is not contained in any superfluous
subset. �

Proof of Theorem 1.8. Let M be a 3-connected matroid in Ex(S −
{F7, P8}) − Ex(S). If M has an F7-minor, then Theorem 2.2 implies that
M ∼= F7. Hence we assume that M does not have an F7-minor, so that
M has a P8-minor. Corollary 2.4 says that M is a minor of S(5, 6, 12).
Therefore {F7, P8}, and by duality {F ∗7 , P8}, is superfluous. However,
Ex(S − {U2,5}) − Ex(S) contains infinitely many uniform matroids, and
Ex(S − {F−7 }) − Ex(S) contains all matroids of the form �n

T (M8). Dual-
ity implies that none of {U2,5}, {U3,5}, {F−7 }, {(F

−
7 )∗} is contained in a

superfluous subset. Finally, Ex(S − {F7, F
∗
7 }) − Ex(S) contains all binary

projective geometries, so {F7, F
∗
7 } is contained in no superfluous subset. �

Proof of Theorem 1.10. Let M be a 3-connected matroid in

Ex(N − {F7,AG(2, 3)\e, (AG(2, 3)\e)∗})− Ex(N ).

If M has an F7-minor, then Theorem 2.2 implies that M ∼= F7. Otherwise
Theorem 2.10 says that M is isomorphic to AG(2, 3)\e, AG(2, 3), or the
dual of one of these matroids. Therefore {F7,AG(2, 3)\e, (AG(2, 3)\e)∗},
and by duality {F ∗7 ,AG(2, 3)\e, (AG(2, 3)\e)∗}, is superfluous. As Ex(N −
{U2,5}) − Ex(N ) contains infinitely many uniform matroids, and Ex(N −
{F−7 })− Ex(N ) contains all matroids of the form �n

T (M8), none of {U2,5},
{U3,5}, {F−7 }, {(F

−
7 )∗} is contained in a superfluous subset. Moreover,

Ex(N − {∆3(AG(2, 3)\e)}) − Ex(N ) contains all matroids of the form
�n

T (M9), by Lemma 4.2. Therefore {∆3(AG(2, 3)\e)} is contained in no
superfluous subset. Again, we observe that Ex(N − {F7, F

∗
7 }) − Ex(N )

contains infinitely many binary matroids, so the proof is complete. �

Acknowledgements. Before writing our proofs we experimented to un-
cover the truth. These experiments were done using the MACEK software
by Hliňený [7], and occasionally we queried Mayhew and Royle’s database
of small matroids [9].
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