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Abstract. We show that for any infinite field K and any K-
representable matroid N there is an excluded minor for K-
representability that has N as a minor.

1. Introduction

In [2] it is proved that an excluded minor for the class of GF (q)-
representable matroids cannot contain a large projective geometry over
GF (q) as a minor. But what if the field is infinite? In contrast to the
behaviour for finite fields Geelen [1] made the striking conjecture that if N
is any matroid representable over R, then there is an excluded minor for
R-representability that contains N as a minor. In this paper we resolve
Geelen’s conjecture in the affirmative by proving the following theorem.

Theorem 1.1. Let K be an infinite field, and N be a matroid representable
over K. Then there exists an excluded minor for the class of K-representable
matroids that is not representable over any field and has N as a minor.

Perhaps the most famous open problem in matroid theory is Rota’s con-
jecture, which states that if F is a finite field, then there are, up to isomor-
phism, only finitely many excluded minors for the class of F-representable
matroids. If true, this would imply that, up to isomorphism, only a finite
number of F-representable matroids are minors of an excluded minor for
F-representability, making the contrast between the behaviour for finite and
infinite fields even sharper.

Geelen raised a number of other interesting questions in [1]. Here is one.
An example given by Seymour [6] shows that, for a matroid given by a rank
oracle, it requires exponentially many rank evaluations to decide if a ma-
troid is binary. It is straightforward to give similar examples for all other
fields. On the other hand, for a prime field GF (p), certifying non-GF (p)-
representability requires only O(n2) rank evaluations [3]. Indeed, if Rota’s
conjecture were true, certifying non-K-representability would require only
O(1) rank evaluations for any finite field K. Geelen asked the following
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question: “Can non-R-representability be certified using a polynomial num-
ber of rank evaluations?” We suspect that the answer to Geelen’s question
is “no”. It may be tempting to think that Theorem 1.1 sheds some light on
this question, but this is not the case. Each of the excluded minors we con-
struct in Theorem 1.1 violates the Ingleton condition—discussed below—so
each can be proved to be non-representable with only 10 rank evaluations.

2. The Proof

We first deal with some preliminaries. Let K be a field. We denote the
rank-r projective space over K by PG(r−1, K). Recall that a rank-r matroid
M is representable over K if its associated simple matroid is isomorphic to
PG(r− 1, K)|E for some subset E of PG(r− 1, K). For a set of points A in
a projective space, define 〈A〉 to be the subspace spanned by A.

Let E be a set of points of PG(r − 1, K) and let U be a subspace of
PG(r − 1, K). A set X ⊆ U is freely placed in U relative to E if, for all
x ∈ X, and all Z ⊆ E ∪ X − {x}, we have x ∈ 〈Z〉 if and only if U ⊆ 〈Z〉.
We now consider the situation where we wish to add more than one set
of elements freely. Let (U1, U2, . . . , Un) be subspaces of PG(r − 1, q), and
let (X1, . . . , Xn) be sets such that Xi ⊆ Ui for all i ∈ {1, . . . , n}. Then
(X1, . . . , Xn) is independently freely placed in (U1, . . . , Un) relative to E if
Xi is freely placed in Ui relative to E ∪ X1 ∪ · · · ∪ Xi−1 ∪ Xi+1 ∪ · · · ∪ Xn,
for all i ∈ {1, . . . , n}. The next lemma seems to be well-known, but hard
to pin down in the literature so we outline a proof. The case of the lemma
when n = 1 simply says that it is possible to add an arbitrary number of
elements freely to a given subspace relative to any given finite set of points,
and is certainly well-known.

Lemma 2.1. Let K be an infinite field, let E be a finite set of points of
PG(r − 1, K), let (U1, . . . , Un) be a collection of subspaces of PG(r − 1, K)
each having rank at least 2, and let s1, . . . , sn be non-negative integers. Then
there exist sets (X1, . . . , Xn) such that, for all i ∈ {1, . . . , n}, |Xi| = si, and
(X1, . . . , Xn) is independently freely placed in (U1, . . . , Un) relative to E.

Proof. Note that placing X = {x1, . . . , xt} freely on U relative to E is the
same as placing ({x1}, . . . , {xt}) independently freely on (U,U, . . . , U), so
it suffices to prove the lemma in the case that each si = 1 for all i. We
prove the lemma for the case n = 2. The general case follows from a routine
induction. Let B1 and B2 be bases for U1 and U2. It is easily seen that U1

is not a union of a finite number of its proper subspaces and it follows from
this that there is an element x1 ∈ U1 that is freely placed in U1 relative to
E ∪ B2. Now let x2 be freely placed in U2 relative to E ∪ B ∪ {x1}. It is
easily checked that ({x1}, {x2}) is independently freely placed in (U1, U2)
relative to E. �

If N is a matroid represented over K by a set E, then a special case of
the above operation occurs when X is added freely in 〈E〉 relative to E.
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It is well-known that the resulting matroid N ′ on E ∪ X is independent of
the choice of representation or infinite field and we say that N ′ has been
obtained by extending N freely by the set X.

The next lemma shows that to prove Theorem 1.1 we may restrict atten-
tion to a specific subclass of matroids.

Lemma 2.2. Let N be a matroid representable over an infinite field K.
Then N is a minor of a K-representable matroid whose ground set can be
partitioned into two independent hyperplanes.

Proof. Let B be a basis for N , F = E(N) − B, let A be a maximum-sized
independent set in F and let m = |F − A|. We construct a matroid N ′

from N as follows. First extend N by adding a set C of r − |A| points
freely to N . Now replace each point xi in F − A with a series pair x′i, x

′′
i .

The sets B1 = B ∪ {x′1, . . . , x′m} and B2 = A ∪ C ∪ {x′′1, . . . , x′′m} are bases
which partition the ground set of N ′ and N ′ is K-representable. Moreover
N ′ certainly has an N -minor.

Say r(N ′) = n. We may assume that E(N ′) = E is a representation of
N ′ in PG(n + 1, K). Let {y0, z0} be freely placed in PG(n + 1, K) relative
to E. Note that y0 and z0 are coloops of PG(n + 1, K)|(E ∪ {y0, z0}).
Say B1 = {y1, . . . , yn} and B2 = {z1, . . . , zn}. By Lemma 2.1, we
may let ({y′1}, . . . , {y′n}, {z′1}, . . . , {z′n}) be independently freely placed in
(〈{y0, y1}〉, . . . , 〈{y0, yn}〉, 〈{z0, z1}〉, . . . , 〈{z0, zn}〉) relative to E. Let B′

1 =
{y0, y

′
1, . . . , y

′
n} and B′

2 = {z0, z
′
1, . . . , z

′
n}. Let N ′′ = PG(r+1, K)|(B′

1∪B′
2).

It is easily seen that N ′′/y0, z0
∼= N ′ so that N ′′ has an N -minor. Moreover

B′
1 and B′

2 are independent hyperplanes of N ′′. �

A circuit-hyperplane of a matroid M is a subset of E(M) that is both a
circuit and a hyperplane. It is well-known and easily seen that, if Z is a
circuit-hyperplane of M and B is the collection of bases of M , then B∪{Z}
is also the collection of bases of a matroid M ′. We say that M ′ is obtained
by relaxing the circuit-hyperplane Z. The next lemma is elementary.

Lemma 2.3. Let Z be a circuit-hyperplane of the matroid M and M ′ be the
matroid obtained by relaxing Z.

(i) If x ∈ Z, then M\x = M ′\x.
(ii) If x /∈ Z, then M/x = M ′/x.

What follows is not necessary for the proof, but may aid intuition. Let
A,B, C and D be disjoint 2-element sets. Then there is a unique simple,
rank-4 matroid M on A ∪ B ∪ C ∪ D whose non-spanning circuits are pre-
cisely the sets X ∪Y , where X and Y are distinct elements of {A,B, C, D}.
Geometrically M is obtained by taking a set of four copunctual lines in rank
4 and placing a pair of points freely on each line. Let V8 be the matroid
obtained by relaxing the circuit-hyperplane C ∪ D. Then V8 is the Vámos
matroid and it is known that V8 is not representable over any field [7]. This
is the simplest example of the construction that we present in the proof of
Theorem 1.1.
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As a final preliminary we recall a necessary condition for representability
over any field, established by Ingleton [4].

Theorem 2.4 (Ingleton’s condition). For any subsets X1, X2, X3, X4 of a
representable matroid,

r(X1) + r(X2) + r(X1 ∪X2 ∪X3) + r(X1 ∪X2 ∪X4) + r(X3 ∪X4)

≤ r(X1 ∪X2) + r(X1 ∪X3) + r(X1 ∪X4) + r(X2 ∪X3) + r(X2 ∪X4).

Proof of Theorem 1.1. By Lemma 2.2 we lose no generality in assuming that
E(N) has a partition into disjoint independent hyperplanes. Say N has rank
r. If r ≤ 2, then N ∼= U2,2 and every excluded minor for K representability
has N as a minor. Thus we may assume that r ≥ 3. We may also assume
that N = PG(r, K)|E for some subset E of PG(r, K). Let P = PG(r, K).
Observe that E spans a hyperplane of P . Let (A,B) be a partition of E
into two independent hyperplanes of N .

We proceed by extending N to obtain a representable matroid M0 that
contains N as a restriction. We will then relax a circuit-hyperplane of M0 to
obtain an excluded minor containing N as a restriction. We use Lemma 2.1
freely.

Let {p, q} be a pair of points that is freely placed in P relative to E, and
let V = 〈A〉∩ 〈B〉. Choose c with 2 ≤ c ≤ r−1 (such a choice is possible for
c because r ≥ 3). By Lemma 2.1 we may let C be a set of c points and D
be a set of r + 1 − c points such that (C,D) is independently freely placed
in (〈V ∪ {p}〉, 〈V ∪ {q}〉) relative to E.

Let M0 = P |(A∪B∪C∪D). The following facts about M0 are elementary
consequences of the above constructions of C and D.

2.4.1. (i) If X and Y are distinct members of {A,B, C, D}, then r(X∪
Y ) = r.

(ii) If X, Y and Z are distinct members of {A,B, C, D}, then r(X∪Y ∪
Z) = r + 1 = r(M0).

(iii) C ∪D is a circuit-hyperplane of M0.

Let M be the matroid obtained from M0 by relaxing the circuit-
hyperplane C ∪ D. Note that M is not representable over any field as it
follows from 2.4.1 that the partition (A,B, C, D) of E(M) violates the In-
gleton condition. As M contains an N -minor, to complete the proof it
suffices to show that every proper minor of M is K-representable. We have
symmetry between A and B and symmetry between C and D. Thus it
suffices to show that any matroid obtained by deleting or contracting an
element x ∈ A or y ∈ C is K-representable.

Recall that the set of non-spanning circuits of a matroid together with its
rank determine the matroid uniquely [5].

2.4.2. A set Z is a non-spanning circuit of M if and only if either Z is a
circuit of N , or |Z| = r + 1 and, for some R ∈ {A,B} and S ∈ {C,D}, we
have Z ⊆ R ∪ S.
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Proof of Claim. We find the non-spanning circuits of M0. Assume that Z ⊆
A∪C. As A is independent, there is an element c ∈ C∩Z. As c ∈ cl(Z−{c}),
it follows from the fact that the elements of C are freely placed that C ⊆
cl(Z). Thus 〈V ∪{p}〉 ⊆ cl(Z). However, as Z contains at least one element
of A and V ∩ A = ∅, we see that cl(Z) properly contains 〈V ∪ {p}〉. But
r(A ∪ C) = r〈V ∪ {p}〉+ 1. Hence Z spans A ∪ C, so that |Z| = r + 1.

From the above argument and symmetry, we deduce that all sets of the
form described in the claim are circuits of M0. Assume that Z is a circuit of
M0 that meets C, D, and A. Then 〈V ∪{p}〉 ⊆ cl(Z) and 〈V ∪{q}〉 ⊆ cl(Z).
But 〈V ∪ {p, q}〉 ∩ A = ∅, and we deduce that Z is spanning. A similar
argument shows that Z is spanning if Z meets A, B and C. It follows that
the only other non-spanning circuit of M0 is C ∪D. The claim now follows
from the definition of relaxation. �

If x ∈ A then M / x = M0 / x, and is K-representable by Lemma 2.3.
Likewise, if y ∈ C then M \y = M0 \y, and so is K-representable.

2.4.3. If x ∈ A, then M\x is K-representable.

Proof of Claim. Consider the subset (E − {x}) ∪ {p, q} of P . Let V ′ =
〈A − {x}〉 ∩ 〈B〉. Note that r(V ′) = r(V ) − 1 = r − 3. Let VC and VD

be distinct rank-(r − 2) subspaces of P such that V ′ ⊆ VC ⊆ 〈B〉 and
V ′ ⊆ VD ⊆ 〈B〉. Such subspaces clearly exist. Let C ′ be a set of c points and
D′ be a set of r+1−c points such that (C ′, D′) is independently freely placed
in (〈VC∪{p}〉, 〈VD∪{q}〉) relative to E−{x}. Let M ′ = P |(A∪B∪C ′∪D′).
We prove that M ′ = M\x.

Observe that r(〈VC ∪ {p}〉 ∩ 〈VD ∪ {q}〉) = r − 3; so that r(〈VC ∪ {p}〉 ∪
〈VD ∪ {q}〉) = r + 1 = |C ′ ∪ D′|. As C ′ and D′ are freely placed in these
subspaces, we see that C ′ ∪ D′ is independent. We may now argue, just as
in 2.4.2, that a set Z is a non-spanning circuit of M ′ if and only if Z is an
r + 1-element subset of (A − {x}) ∪ C ′, (A − {x}) ∪ D′, B ∪ C ′ or B ∪ D′.
The claim follows from these observations. �

2.4.4. If y ∈ C, then M/y is K-representable.

Proof of Claim. Start with the representation E of N over K, but regard it
as a representation in the rank-r projective space PG(r − 1, K). As before,
let V = 〈A〉∩〈B〉. Let C ′ be a set of c−1 points and D′ be a set of r− c+1
points such that (C ′, D′) is independently freely placed in (V, PG(r− 1, K))
relative to E. In other words the elements of C ′ are freely placed in 〈A〉∩〈B〉
and the elements of D′ are freely placed in the projective space. Let M ′ =
PG(r − 1, q)|(A ∪ B ∪ C ′ ∪ D′). Evidently C ′ ∪ D′ is independent in M ′.
Moreover, a set Z is a non-spanning circuit of M ′ if and only if Z is an
r-element subset of either A ∪ C ′ or B ∪ C ′. Hence M ′ ∼= M/y. �

The theorem follows from 2.4.3 and 2.4.4. �
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Finally we observe that it is routine to adapt the techniques of this paper
to prove that if M is a matroid representable over a finite field F, then there
is an excluded minor for a finite extension field of F that has M as a minor.
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