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Abstract. A linkage of order k of a graph G is a subgraph with k components,

each of which is a path. A linkage is vital if it spans all vertices, and no other
linkage connects the same pairs of end vertices. We give a characterization of

the graphs with a vital linkage of order 2: they are certain minors of a family

of highly structured graphs.

1. Introduction

Robertson and Seymour [4] defined a linkage in a graph G as a subgraph in which
each component is a path. The order of a linkage is the number of components. A
linkage L of order k is unique if no other collection of paths connects the same pairs
of vertices, it is spanning if V (L) = V (G), and it is vital if it is both unique and
spanning. Graphs with a vital linkage are well-behaved. For instance, Robertson
and Seymour proved the following:

Theorem 1.1 (Robertson and Seymour [4, Theorem 1.1]). There exists an integer
w, depending only on k, such that every graph with a vital linkage of order k has
tree width at most w.

Note that Robertson and Seymour use the term p-linkage to denote a linkage
with p terminals. Robertson and Seymour’s proof of this theorem is surprisingly
elaborate, and uses their structural description of graphs with no large clique-minor.
Recently Kawarabayashi and Wollan [2] proved a strengthening of this result. Their
shorter proof avoids using the structure theorem.

Our interest in linkages, in particular those of order 2, stems from quite a different
area of research: matroid theory. Truemper [5] studied a class of binary matroids
that he calls almost regular. His proofs lean heavily on a class of matroids that
are single-element extensions of the cycle matroids of graphs with a vital linkage of
order 2. These matroids turned up again in the excluded-minor characterization of
matroids that are either binary or ternary, by Mayhew et al. [3].

Truemper proves that an almost regular matroid can be built from one of two
specific matroids by certain ∆−Y operations. This is a deep result, but it does not
yield bounds on the branch width of these matroids. In a forthcoming paper the
authors of this paper, together with Chun, will give an explicit structural description
of the class of almost regular matroids [1]. The main result of this paper will be of
use in that project.
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Figure 1. The graph K2,4.

Figure 2. The graphs Ü4 and Ü5.

To state our main result we need a few more definitions. Fix a graph G and
a spanning linkage L of order k. A path edge is a member of E(L); an edge in
E(G) \ E(L) is called a chord if its endpoints lie in a single path, and a rung edge
otherwise. If L is vital, then G cannot have any chords.

A linkage minor of G with respect to a (chordless) linkage L is a minor H of G
such that all path edges in E(G) \ E(H) have been contracted, and all rung edges
in E(G) \ E(H) have been deleted. If the linkage L is clear from the context we
simply say that H is a linkage minor of G. Moreover, let G be a graph with a
chordless 2-linkage L. If G has a linkage minor isomorphic to K2,4, such that the
terminals of L are mapped to the degree-2 vertices of K2,4, we say that G has an
XX linkage minor (cf. Figure 1).

For each integer n, the graph Ün is the graph with V (Ün) = {v1, . . . , vn} ∪
{u1, . . . , un}, and

E(Ün) ={vivi+1 | i = 1, . . . , n− 1} ∪ {uiui+1 | i = 1, . . . , n− 1}∪
{uivi | i = 1, . . . , n} ∪ {uivn+1−i | i = 1, . . . , n}.(1)

We denote by Ln the linkage of Ün consisting of all edges vivi+1 and uiui+1 for

i = 1, . . . , n− 1. In Figure 2 the graphs Ü4 and Ü5 are depicted.
Finally, we say that G is a Truemper graph if G is a linkage minor of Ün for some

n. The main result of this paper is the following:

Theorem 1.2. Let G be a graph. The following statements are equivalent:

(1) G has a vital linkage of order 2;
(2) G has a chordless spanning linkage of order 2 with no XX linkage minor;
(3) G is a Truemper graph.

Robertson and Seymour [4] commented, without proof, that graphs with a vital
linkage with k ≤ 5 terminal vertices have path width at most k. A weaker claim is
the following:

Corollary 1.3. Let G be a graph with a vital linkage of order 2. Then G has path
width at most 4.

Another consequence of our result is that graphs with a vital linkage of order 2
embed in the projective plane:

Corollary 1.4. Let G be a graph with a vital linkage of order 2. Then G can be
embedded on a Möbius strip.
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Figure 3. The graph Ü6. The linkage is formed by the two diag-
onally drawn paths.
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Figure 4. Detail of the proof of Lemma 2.2.

Both corollaries can be seen to be true by considering an alternative depiction
of Ü2n, analogous to Figure 3.

2. Proof of Theorem 1.2

We start with a few more definitions. Suppose L is a linkage of order 2 with
components P1 and P2, such that the terminal vertices of P1 are s1 and t1, and
those of P2 are s2 and t2. We order the vertices on the paths in a natural way, as
follows. If v and w are vertices of Pi, then we say that v is (strictly) to the left of
w if the graph distance from si to v in the subgraph Pi is (strictly) smaller than
the graph distance from si to w. The notion to the right is defined analogously.

We will frequently use the following elementary observation, whose proof we
omit.

Lemma 2.1. Let G be a graph with a chordless spanning linkage L of order 2. Let
P1 and P2 be the components of L, with terminal vertices respectively s1, t1 and
s2, t2. Let H be a linkage minor of G. If v and w are on Pi, and v is to the left of
w, then the vertex corresponding to v in H is to the left of the vertex corresponding
to w in H.

Without further ado we dive into the proof, which will consist of a sequence
of lemmas. The first deals with the equivalence of the first two statements in the
theorem.

Lemma 2.2. Let G be a graph with a chordless spanning linkage L of order 2.
Then L is vital if and only if G has no XX linkage minor with respect to L.

Proof. First we suppose that there exists a graph G with a non-vital chordless
spanning linkage L of order 2 such that G has no XX linkage minor. Let P1, P2 be
the paths of L, where P1 runs from s1 to t1, and P2 runs from s2 to t2. Let P ′1, P ′2
be different paths connecting the same pairs of vertices. Without loss of generality,
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P ′1 6= P1. But then P ′1 must meet P2, so P ′2 6= P2. Let e = v1v2 be an edge of P ′1
such that the subpath s1 − v1 of P ′1 is also a subpath of P1, but e is not an edge
of P1. Let f = u2u1 be an edge of P ′1 such that the subpath u1 − t1 of P ′1 is also a
subpath of P2, but f is not an edge of P2. Similarly, let e′ = v′2v

′
1 be an edge of P ′2

such that the subpath s2 − v′2 of P ′2 is also a subpath of P2, but e′ is not an edge
of P2. Let f ′ = u′1u

′
2 be an edge of P ′2 such that the subpath u′2 − t2 of P ′2 is also a

subpath of P2, but f ′ is not on P2. See Figure 4.
Since P ′1 and P ′2 are vertex-disjoint, v′2 must be strictly to the left of v2 and u2.

For the same reason, v′1 must be strictly between v1 and u1. Likewise, u′2 must be
strictly to the right of v2 and u2, and u′1 must be strictly between v1 and u1. Now
construct a linkage minor H of G, as follows. Contract all edges on the subpaths
s1−v1, v′1−u′1, and u1−t1 of P1, contract all edges on the subpaths s2−v′2, v2−u2,
and u′2 − t2 of P2, delete all rung edges but {e, f, e′, f ′}, and contract all but one
of the edges of each series class in the resulting graph. Clearly H is isomorphic to
XX , a contradiction.

Conversely, suppose that G has an XX linkage minor, but that L is unique.
Clearly having a vital linkage is preserved under taking linkage minors. But XX
has two linkages, a contradiction. �

Next we show that the third statement of Theorem 1.2 implies the second.

Lemma 2.3. For all n, Ün has no XX linkage minor with respect to Ln.

Proof. The result holds for n ≤ 2, because then |V (Ün)| < |V (XX )|. Suppose the
lemma fails for some n ≥ 3, but is valid for all smaller n. Every edge of XX is
incident with exactly one of the four end vertices of the paths. Hence all rung edges
incident with at least two of the four end vertices are not in any XX linkage minor.
But after deleting those edges from Ün the end vertices have degree one, and hence
the edges incident with them will not be in any XX linkage minor. Contracting
these four edges produces Ün−2, a contradiction. �

Reversing a path Pi means exchanging the labels of vertices si and ti, thereby
reversing the order on the vertices of the path.

Lemma 2.4. Let G be a graph, and L a chordless spanning linkage of order 2 of
G consisting of paths P1, running from s1 to t1, and P2, running from s2 to t2. If
G has no XX linkage minor, then G is a linkage minor of Ün with respect to Ln

for some integer n, such that L is a contraction of Ln.

Proof. Suppose the statement is false. Let G be a counterexample with as few edges
as possible. If some end vertex of a path, say s1, has degree one (with e = s1v the

only edge), then we can embed G/e in Ün for some n. Let G′ be obtained from Ün by
adding four vertices s′1, t

′
1, s
′
2, t
′
2, and edges s′1v1, s

′
1s
′
2, s
′
1t
′
2, s
′
2u1, s

′
2t
′
1, vnt

′
1, unt

′
2, t
′
1t
′
2.

Then G′ is isomorphic to Ün+2, and G′ certainly has G as linkage minor.
Hence we may assume that each end vertex of P1 and P2 has degree at least two.

Suppose no rung edge runs between two of these end vertices. Then it is not hard
to see that G has an XX minor, a contradiction. Therefore some two end vertices
must be connected. By reversing paths as necessary, we may assume there is an
edge e = s1s2.

By our assumption, G\e can be embedded in Ün for some n. Again, let G′ be

obtained from Ün by adding four vertices s′1, t
′
1, s
′
2, t
′
2, and edges s′1v1, s′1s

′
2, s′1t

′
2,
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s′2u1, s′2t
′
1, vnt

′
1, unt

′
2, t′1t

′
2. Then G′ is isomorphic to Ün+2, and G′ certainly has

G as linkage minor, a contradiction. �

As an aside, it is possible to prove a stronger version of the previous lemma.
We say a partition (A,B) of the rung edges is valid if the edges in A are pairwise
non-crossing, and the edges in B are pairwise non-crossing after reversing one of
the paths. One can show:

• Each Truemper graph has a valid partition.
• For every valid partition (A,B) of a Truemper graph G, some Ün has G as

linkage minor in such a way that (A,B) extends to a valid partition of Ün.

Now we have all ingredients of our main result.

Proof of Theorem 1.2. From Lemma 2.2 we learn that (1)⇔(2). From Lemma 2.3
we learn that (3)⇒(2), and from Lemma 2.4 we conclude that (2)⇒(3). �
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