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Abstract. It is easily proved that, if P is a class of graphs that is
closed under induced subgraphs, then the family of matroids whose basis
graphs belong to P is closed under minors. We give simple necessary and
sufficient conditions for a minor-closed class of matroids to be induced
in this way, and characterise when such a class of matroids contains
arbitrarily large connected matroids. We show that five, easily-defined
families of matroids can be induced by a class of graphs in this man-
ner: binary matroids; regular matroids; the polygon matroids of planar
graphs; those matroids for which every connected component is graphic
or cographic; and those matroids for which every connected component
is either binary or can be obtained from a binary matroid by a single
circuit-hyperplane relaxation. We give an excluded-minor characterisa-
tion of the penultimate class, and show that the last of these classes has
infinitely many excluded minors.

1. Introduction.

Let M be a matroid, and let B(M) be its set of bases. The basis graph
of M , denoted by BG(M), has B(M) as its set of vertices. Two bases are
adjacent in BG(M) if and only if the size of their symmetric difference is
two. The basis graph has been extensively studied in [1, 4, 5], and others.

Maurer [5] has proved that, if we let P be the class of graphs that have no
induced subgraph isomorphic to the octahedron, then M is a binary matroid
if and only if BG(M) ∈ P. We generalise this idea to other classes of graphs
that are closed under isomorphism and induced subgraphs. Such a class of
graphs will be known as an hereditary class.

Suppose that P is an hereditary class. Let M(P) be the class of matroids
such that M ∈ M(P) if and only if BG(M) ∈ P. We shall say that M(P)
is induced by P. If M is a class of matroids, and there exists an hereditary
class of graphs, P, such that M = M(P), then M is an induced class.

A basis graph does not determine a matroid uniquely. For instance,
adding a loop or coloop does not change the basis graph of a matroid.
However, Holzmann, Norton, and Tobey [1] showed that a basis graph does
uniquely determine a loopless and coloopless matroid up to a natural form
of equivalence, which we now describe.

Suppose that M = M1 ⊕ · · · ⊕ Mm and N = N1 ⊕ · · · ⊕ Nn are the
decompositions of two matroids into their connected components. If m = n,
and there exists a permutation, π ∈ Sm, such that either Mi

∼= Nπ(i) or
1
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Mi
∼= N∗

π(i) for all i ∈ {1 , . . . , m}, then we shall say that M and N are

generalised duals. In particular, if M is connected and N is a generalised
dual of M , then either N ∼= M or N ∼= M∗. It is easy to see that the relation
of being generalised duals is an equivalence relation.

Theorem 1.1. [1, Theorem 5.3] Two loopless and coloopless matroids have
isomorphic basis graphs if and only if they are generalised duals.

If M and N are two matroids of the same rank, then N is a rank-preserving
weak-map image of M if N is isomorphic to a matroid N ′, such that E(N ′) =

E(M), and B(N ′) ⊆ B(M). This relation is denoted by M
r.p.
→ N .

It is clear that, if P is an hereditary class, then M(P) is closed under
generalised duality and the addition of loops and coloops. Furthermore,
since, if N is a minor or a rank-preserving weak-map image of M , then
BG(N) is an induced subgraph of BG(M), it follows that M(P) is closed
under minors and rank-preserving weak maps. These necessary conditions
turn out to be sufficient also.

Theorem 1.2. Let M be a class of matroids that is closed under iso-
morphism and minors. Then M is an induced class if and only if it is
closed under generalised duality, the addition of loops and coloops, and rank-
preserving weak maps.

The motivation for studying these classes of matroids came from consider-
ing parameters of basis graphs, such as the clique number and the chromatic
number. It was natural to look at, for example, the class of matroids with
properly k-colourable basis graphs; in other words, the class M(Pk), where
Pk is the class of graphs with chromatic number at most k. The character-
isation of these classes for small values of k shows that they do not contain
large connected matroids [6]. The next result shows exactly when M(P)
does contain large connected matroids.

Theorem 1.3. Suppose that P is an hereditary class of graphs. Then M(P)
contains arbitrarily large connected matroids if and only if P contains arbi-
trarily large cliques.

Binary matroids, regular matroids, and the polygon matroids of planar
graphs are all induced classes. So too is the set of matroids that are gen-
eralised duals of graphic matroids. The excluded-minor characterisations of
the first three classes are well known. In Section 5 we provide an excluded-
minor characterisation of the last class, which shows that it has 21 non-
isomorphic excluded minors. In Section 6 we present an induced class that
has an infinite number of excluded minors.

Terminology and notation will follow Oxley [8]. When convenient to do
so, we shall make no distinction between the bases of a matroid and the
vertices of its basis graph.
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2. A characterisation of induced classes.

In this section we will prove Theorem 1.2. We require some preliminary
results. Suppose that v is a vertex of the graph G. The closed neighbourhood
of v is the subgraph of G induced by v and all its neighbours. It is denoted
by N̂G(v), or by N̂(v) when the context is clear. The neighbourhood of v is

obtained by deleting v from N̂G(v). It is denoted by NG(v) or N(v). If v′ is
a vertex in the same connected component of G as v, then dG(v, v′) denotes
the length of a shortest path in G that joins v to v′.

The next result is implied by [1, Lemma 3.2] and [4, Lemma 1.4].

Proposition 2.1. Suppose that v and v′ are vertices in a basis graph,
BG(M), and that dBG(M)(v, v′) = 2. There exist two non-adjacent ver-
tices in V (N(v)) ∩ V (N(v′)).

Suppose that G is isomorphic to the basis graph of a matroid, N . A proper
labelling of G is a bijection, σ : V (G) → B(M), where M is a matroid, and
where two vertices are adjacent in G if and only if the symmetric difference
of their labels has size two. Note that M and N need not be equal, nor,
indeed, isomorphic.

Proposition 2.2. [1, Corollary 3.2.1] Let σ : V (G) → B(M) be a proper
labelling of a basis graph, G. Suppose that v and v′ are vertices of G and
that dG(v, v′) = 2. Let x and y be two non-adjacent vertices in V (N(v)) ∩
V (N(v′)). Then

σ(v′) = (σ(x) ∩ σ(y)) ∪ (σ(x) − σ(v)) ∪ (σ(y) − σ(v)).

Proposition 2.3. [1, Lemma 4.1] Suppose that v is a vertex in the basis
graph of a loopless and coloopless matroid, M . There exist partitions, π and
π′, of V (NBG(M)(v)) into non-empty sets, such that:

(i) If v1, v2 ∈ V (NBG(M)(v)), then v1 and v2 are adjacent if and only if

a member of π or π′ contains both v1 and v2.
(ii) If p ∈ π and q ∈ π′, then |p ∩ q| ≤ 1.

Proof. Suppose that v corresponds to the basis B = {x1 , . . . , xr} of M .
Suppose also that E(M) − B = {y1 , . . . , yn−r}, where r = r(M) and n =
|E(M)|. For 1 ≤ i ≤ r define pi to be the set {B′ ∈ B(M) | B′∩B = B−xi}.
For 1 ≤ i ≤ n − r let qi = {B′ ∈ B(M) | B′ − B = {yi}}. Define π(B, M)
to be the collection {p1 , . . . , pr} and π′(B, M) to be {q1 , . . . , qn−r}. Then
π(B, M) and π′(B, M) are partitions of V (N(v)) that satisfy the conditions
of the proposition. �

If π and π′ are partitions of V (N(v)) that satisfy the conditions of Propo-
sition 2.3, then they need not be the same as the natural partitions, π(B, M)
and π′(B, M). However, as we shall see, π and π′ must correspond to the
natural partitions of some matroid, in fact a generalised dual of M .

Suppose that M = M1 ⊕ · · · ⊕Mt and N = N1 ⊕ · · · ⊕Nt are generalised
duals. By relabelling we may assume that, for all i ∈ {1 , . . . , t}, Mi is
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isomorphic to either Ni or N∗

i . Therefore there is a bijection, ρ, between
E(M) and E(N), such that ρ restricted to E(Mi) is an isomorphism between
Mi and one of Ni or N∗

i . Define β to be the bijection between B(M) and
B(N), so that if B is a basis of M and i ∈ {1 , . . . , t}, then β(B)∩E(Ni) =
ρ(B ∩ E(Mi)) when Mi

∼= Ni, and β(B) ∩ E(Ni) = E(Ni) − ρ(B ∩ E(Mi))
when Mi

∼= N∗

i . It is easy to see that β is an isomorphism between BG(M)
and BG(N).

In the next result we will use the following, obvious, definitions: if
B′ ⊆ B(M) is a set of bases of M , then β(B′) = {β(B′) | B′ ∈
B′}; if τ = {B1 , . . . , Bn} is a collection of sets of bases, then β(τ) =
{β(B1) , . . . , β(Bn)}.

Proposition 2.4. [1, Lemma 4.1] Suppose that v is a vertex in BG(M),
where M is a loopless and coloopless matroid, and that v corresponds to
the basis B. If π and π′ are partitions of V (N(v)) that satisfy the condi-
tions of Proposition 2.3, then there is a generalised dual, N , of M , such
that β(π) = π(β(B), N) and β(π′) = π′(β(B), N), where β is the natural
bijection between B(M) and B(N).

The following proposition is easy to verify.

Proposition 2.5. Let M and N be matroids. If N is a minor, or a rank-
preserving weak-map image of M , then BG(N) is an induced subgraph of
BG(M).

A converse result also holds.

Lemma 2.6. Suppose that M is a matroid. If G is an induced subgraph
of BG(M), and G is itself isomorphic to a basis graph, then there exist

matroids, M1 and M2, such that M1 is a minor of M , and M1
r.p.
→ M2, and,

furthermore, BG(M2) ∼= G.

We remark here that, although this result seems not to appear in the
literature, it is almost certainly known.

Proof of Lemma 2.6. Let us suppose that σ : V (BG(M)) → B(M) is the
labelling that maps vertices of BG(M) to their corresponding bases of M .
Suppose also that v0 is a vertex of G, and that B = σ(v0) = {x1 , . . . , xr},
while E(M) − B = {y1 , . . . , yn−r}, where r = r(M) and n = |E(M)|.

The partitions, π(B, M) = {p1 , . . . , pr} and π′(B, M) = {q1 , . . . , qn−r},
of V (NBG(M)(v0)) were defined in the proof of Proposition 2.3. These parti-
tions naturally induce two partitions on the vertex set of NG(v0), although
some of the blocks of these induced partitions may be empty. Let us there-
fore introduce two sets of indices: I = {i | 1 ≤ i ≤ r, pi ∩ V (NG(v0)) 6= ∅}
and J = {j | 1 ≤ j ≤ n − r, qj ∩ V (NG(v0)) 6= ∅}. We may now define the
partitions π = {pi ∩ V (NG(v0)) | i ∈ I} and π′ = {qj ∩ V (NG(v0)) | j ∈ J}.
It is easy to see that π and π′ satisfy the conditions of Proposition 2.3.
It follows from Proposition 2.4 that there exists a loopless and coloopless
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matroid, L, such that BG(L) ∼= G, and, furthermore, if v0 corresponds to the
basis B′ of L, then π and π′ correspond to the natural partitions π(B′, L)
and π′(B′, L).

We now construct a proper labelling, τ , of G. Let X = {xi | i ∈ I} and
Y = {yj | j ∈ J}. The labelling, τ , will be from V (G) to subsets of X ∪ Y .
Let τ(v0) be X. If v ∈ NG(v0), then v is in exactly one member of π and
exactly one member of π′. If v ∈ pi ∩ qj, where i ∈ I and j ∈ J , then label
v with (X − xi) ∪ yj. The rest of the labelling is constructed recursively.
Suppose that v′ is a vertex of G such that dG(v0, v′) = i (where i > 1) and
all the vertices of G that are closer to v0 than v′ have already been labelled.
Let P be a path of length i from v0 to v′, and let v be the vertex in P such
that dG(v, v′) = 2. Suppose that x and y are two non-adjacent vertices in
V (NG(v)) ∩ V (NG(v′)). Since v, x, and y have already received labels, we
can use Proposition 2.2 to find τ(v′). Proposition 2.2 guarantees that τ is
indeed a proper labelling. In fact, if M2 is the matroid on the ground set
X ∪ Y that has τ(V (G)) as its set of bases, then M2

∼= L.
By using induction on distance from v0, and again applying Proposi-

tion 2.2, it is not difficult to see that the labellings τ and σ are essentially
the same.

2.6.1. If v ∈ V (G), then σ(v) = τ(v) ∪ (B − X).

Let M1 be the matroid M/(B − X)\(E(M) − (X ∪ Y ∪ B)). It follows

easily from Statement 2.6.1 that M1
r.p.
→ M2. This completes the proof of

Lemma 2.6. �

We may now prove Theorem 1.2. It will follow immediately from the next
result.

Theorem 2.7. Suppose that M is a family of matroids that is closed under
isomorphism and minors. Let EX(M) be the set of excluded minors for M.
The following conditions are equivalent:

(i) The family M is closed under generalised duality, the addition of
loops and coloops, and rank-preserving weak maps.

(ii) Every member of EX(M) is loopless and coloopless, and EX(M) is
closed under generalised duality. Furthermore, if N ∈ EX(M), and

N ′
r.p.
→ N , then N ′ /∈ M.

(iii) There exists an hereditary class of graphs, P, such that M = M(P).

Proof. It is not difficult to confirm that (iii) implies (i). To show that
(i) implies (ii) let us assume that M is closed under generalised duality,
rank-preserving weak maps, and the addition of loops and coloops. It
is clear that the excluded minors for M must be loopless and coloopless,
and that EX(M) must be closed under generalised duality. Suppose that

N ∈ EX(M), and that N ′
r.p.
→ N . It cannot be that N ′ ∈ M, for then N ,

too, would be a member of M.
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To complete the proof we show that (ii) implies (iii). Suppose that (ii)
holds. Let BG be the set {BG(N) | N ∈ EX(M)}. Define the graph
property, P, so that G ∈ P if and only if no induced subgraph of G is
isomorphic to a member of BG. We wish to show that M = M(P). First
suppose that M /∈ M. Then there must exist a matroid, N ∈ EX(M),
such that M has an N -minor. Therefore BG(M) has an induced subgraph
isomorphic to BG(N). Hence BG(M) /∈ P and M /∈ M(P). From this we
conclude that M(P) ⊆ M.

Now suppose that M /∈ M(P). Then there must exist a graph, G ∈ BG,
such that BG(M) contains an induced subgraph isomorphic to G. Let N be
a member of EX(M) such that BG(N) ∼= G. Lemma 2.6 implies that there

exist matroids, M1 and M2, such that M1 is a minor of M and M1
r.p.
→ M2,

while BG(M2) ∼= BG(N) ∼= G. We may assume that E(M1) = E(M2), and
that B(M2) ⊆ B(M1). Let L be the set of loops of M2, and L∗ the set of

coloops. It is not difficult to see that M1/L
∗\L

r.p.
→ M2/L

∗\L. Furthermore,
BG(M2/L

∗\L) ∼= BG(M2) ∼= BG(N). Since both M2/L
∗\L and N are

loopless and coloopless, Theorem 1.1 implies that M2/L
∗\L is a generalised

dual of N , and must therefore be an excluded minor for M. As M1/L
∗\L

r.p.
→

M2/L
∗\L, it follows that M1/L

∗\L, and therefore M , is not a member of
M. Hence M ⊆ M(P), and the proof is complete. �

3. Connected matroids in induced classes.

In this section we prove Theorem 1.3, which we restate more formally
here.

Theorem 3.1. Let P be an hereditary class of graphs. The induced class
M(P) contains a connected matroid of size m, for every positive integer m,
if and only if P contains Kn for every positive integer n.

Before proving this we will need to establish some preliminary results. Let
{B1 , . . . , Bt} be a collection of bases of the matroid M . Let X = ∩t

i=1Bi.
We shall say that {B1 , . . . , Bt} has property I in M if |X| = r(M) − 1,
and there exists a set Y = {y1 , . . . , yt} such that Bi = X ∪ yi for all
i ∈ {1 , . . . , t}. We shall say that {B1 , . . . , Bt} has property II in M if
|X| = r(M) − t + 1, and there exists a set Y = {y1 , . . . , yt} such that
Bi = (X ∪ Y ) − yi for all i ∈ {1 , . . . , t}. It is easy to see that a set
of bases, B, has property I in M , if and only if the corresponding set of
cobases, B∗ = {E(M) − B | B ∈ B}, has property II in M∗. Similarly, B
has property II in M if and only if B∗ has property I in M∗.

It is obvious that a set of bases with property I or II forms a clique in the
basis graph. The converse also holds.

Lemma 3.2. Let {B1 , . . . , Bt} (where t ≥ 2) be a set of distinct bases of
M that forms a clique in BG(M). Then {B1 , . . . , Bt} has either property I
or II.



FAMILIES OF MATROIDS INDUCED BY CLASSES OF GRAPHS. 7

Proof. The proof will be by induction on t. If t = 2, then |X| = |B1 ∩B2| =
r(M) − 1, since B1 and B2 are adjacent in BG(M). Let y1 be the single
element in B1 − B2 and y2 the element in B2 − B1. It is now clear that
{B1, B2} has property I.

Let us suppose that t ≥ 3, and that the lemma holds for all collec-
tions of t − 1 pairwise adjacent bases. We shall consider the collection
{B1 , . . . , Bt−1}. Suppose that {B1 , . . . , Bt−1} has property I. Then X ′ =
⋂t−1

i=1 Bi has cardinality r(M)−1, and there exists a set Y ′ = {y′1 , . . . , y′t−1}
such that Bi = X ′ ∪ y′i for all i ∈ {1 , . . . , t− 1}. Since Bt is adjacent to B1,
there exist elements, x ∈ B1−Bt and y ∈ Bt−B1, such that Bt = (B1−x)∪y.
First assume that x ∈ X ′. Then y′1 ∈ Bt, but y′1 /∈ B2. Since Bt is adjacent
to B2, it follows that |Bt −B2| = 1, so Bt −B2 = {y′1}. Since y ∈ Bt −B1 it
follows that y 6= y′1. Therefore y ∈ B2, but y /∈ B1. Since B2 − B1 = {y′2},
this implies that y = y′2. It follows that t = 3, for, if t > 3, then Bt 6= B3,
and since Bt − B3 contains both y′1 and y′2, the bases Bt and B3 cannot be
adjacent. Make the following definitions: y1 = y′2; y2 = y′1; and y3 = x.

Also, let Y = {y1, y2, y3}, and let X be X ′ − x =
⋂3

i=1 Bi. We may now
observe that {B1, B2, B3} has property II.

We will now assume that x /∈ X ′. It follows that x = y′1. Clearly,
y /∈ {y′1 , . . . , y′t−1}. Therefore we may set yi = y′i for all i ∈ {1 , . . . , t − 1}
and yt = y. Then {B1 , . . . , Bt} has property I.

Let us assume that {B1 , . . . , Bt−1} has property II. Therefore {(E(M)−
B1) , . . . , (E(M)−Bt−1)} has property I in M∗. We may use the techniques
of the last paragraph to show that {(E(M) − B1) , . . . , (E(M) − Bt)} has
either property I or II in M∗, and hence {B1 , . . . , Bt} has property I or II
in M . �

If B is a basis of M , and e /∈ B, then B∪e contains a unique circuit of M ,
denoted by C(e, B), which contains e. Dually, if e ∈ B, then (E(M)−B)∪e
contains a unique cocircuit, denoted by C∗(e, E(M)−B), which contains e.

Proposition 3.3. Let M be a matroid on the ground set E, and let
{B1 , . . . , Bt} be the vertex set of a maximal clique in BG(M). Either
there exists a basis, B, and an element e ∈ B, such that C∗(e, E − B) =
{e1 , . . . , et}, and Bi = (B − e) ∪ ei for all i ∈ {1 , . . . , t}; or, there exists
a basis, B, and an element e /∈ B, such that C(e, B) = {e1 , . . . , et}, and
Bi = (B ∪ e) − ei for all i ∈ {1 , . . . , t}.

Proof. We will first suppose that {B1 , . . . , Bt} has property I, so that X =
⋂t

i=1 Bi has cardinality r(M) − 1, and there exists a set Y = {y1 , . . . , yt}
such that Bi = X ∪ yi for all i ∈ {1 , . . . , t}. Clearly cl(X) is a hyperplane,
and Y ⊆ E − cl(X). Assume that Y is not equal to E − cl(X) and let y be
an element in E − (cl(X) ∪ Y ). Then X ∪ y is a basis, distinct from, and
adjacent to, the bases B1 , . . . , Bt. This contradicts the maximality of the
clique. Therefore Y = E − cl(X). If we take an arbitrary element e ∈ Y ,
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then B = X∪e is the desired basis, and C∗(e, E−(X∪e)) = E−cl(X) = Y
is the desired cocircuit.

The case when {B1 , . . . , Bt} has property II is similar. �

The clique number of a graph, G, is denoted by ω(G). If M is a matroid,
then let c(M) denote the size of the largest circuit of M , and let c∗(M)
equal c(M∗). The next result follows easily from Proposition 3.3. Again,
this result seems not to be in the literature, although it is presumably already
known.

Theorem 3.4. Let M be a matroid. Then ω(BG(M)) =
max{c(M), c∗(M)}.

There has been much attention paid to the problem of how large a con-
nected matroid may be if it has upper bounds on c(M) and c∗(M). The
best possible result of this sort is due to Lemos and Oxley [2]. The proof of
Theorem 3.1 will follow from this result and from Theorem 3.4.

Theorem 3.5. [2, Theorem 1.4] Let M be a connected matroid with at least
two elements. Then |E(M)| ≤ ⌊1

2c(M)c∗(M)⌋.

Proof of Theorem 3.1. Suppose that P contains Kn for all integers n ≥ 1.
Then, since BG(Un−1,n) ∼= Kn, the induced class M(P) contains Un−1,n for
all n ≥ 1. Hence M(P) contains a connected matroid of size m for every
positive integer m.

We will now assume that P does not contain every clique. Let t be the
greatest integer such that Kt ∈ P. Let M be a connected member of M(P).
Clearly ω(BG(M)) ≤ t. It follows from Theorem 3.4 that c(M), c∗(M) ≤ t,
and hence |E(M)| ≤ ⌊1

2t2⌋. �

4. Well-known induced classes.

Certain natural families of matroid are induced classes.

Proposition 4.1. The families of binary matroids, regular matroids, and
the polygon matroids of planar graphs are induced classes.

Proof. Maurer [5] has noted that the binary matroids are exactly those
which have no induced subgraph isomorphic to the octahedron in their ba-
sis graphs. In any case, it is easy to see that these three classes are closed
under minors, the addition of loops or coloops, and generalised duality. Lu-
cas has proved that they are closed under rank-preserving weak maps [3,
Theorem 6.5 and Proposition 6.13]. Hence they are induced classes by The-
orem 2.7. �

It is worth remarking here that if F is a field of size greater than two,
then the set of F-representable matroids is not an induced class. If H is
a circuit-hyperplane of the matroid M , then the set B(M) ∪ {H} is the
collection of bases of a matroid on the set E(M). This matroid is said to be
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produced from M by relaxing the circuit-hyperplane H. Let us consider the
following matroids: F7, the Fano plane; F−

7 , which is obtained by relaxing
a circuit-hyperplane of F7; and F=

7 , which is obtained by relaxing a circuit-
hyperplane of F−

7 . We may also obtain F=
7 by adding a point freely to a

2-point line of M(K4).
If F has characteristic two, and is not equal to GF(2), then it is an easy

exercise to show that F=
7 is representable over F, but F−

7 is not. Since

F=
7

r.p.
→ F−

7 , it follows that the set of F-representable matroids is not closed
under rank-preserving weak maps, and is therefore not an induced class.

Similarly, if the characteristic of F is not two, then F−

7 is F-representable,

but F7 is not [3]. Since F−

7
r.p.
→ F7, it again follows that the set of F-repre-

sentable matroids is not an induced class.
We now consider a lesser-known class of matroids. We shall say that

a matroid is near-graphic if it is a generalised dual of a graphic matroid.
Equivalently, a matroid is near-graphic if and only if every connected com-
ponent is either graphic or cographic.

Proposition 4.2. The family of near-graphic matroids is an induced class.

Proof. Obviously the class of near-graphic matroids is closed under minors
and the addition of loops or coloops. It is closed under generalised duality
by construction.

It remains to show that the class of near-graphic matroids is closed under
rank-preserving weak maps. We first note that the class of graphic matroids
is closed under rank-preserving weak maps [3, Proposition 6.13]. It is easy

to see that if M
r.p.
→ N , then M∗

r.p.
→ N∗. It follows that the class of cographic

matroids is also closed under rank-preserving weak maps.

Suppose that M is a near-graphic matroid, and that M
r.p.
→ N . Let N ′

be a connected component of N . Then N ′ is contained in a connected
component, M ′, of M [3, Proposition 5.2]. There exists a minor, M ′′, of M ′,

such that M ′′
r.p.
→ N ′ [3, Theorem 5.8]. By definition, M ′, and therefore M ′′,

is either graphic or cographic. Hence N ′ is either graphic or cographic, and
thus N is near-graphic. �

The induced classes that we have discussed in this section all consist of
binary matroids. Not all induced classes need be contained in the set of
binary matroids, as may be observed by noting that the set of matroids
which have no U3,6-minors is an induced class.

5. A characterisation of near-graphic matroids.

The excluded-minor characterisations of binary matroids, regular ma-
troids and the polygon matroids of planar graphs are classical results of
Tutte’s [10, 11]. However the near-graphic matroids have not been charac-
terised via their excluded minors. We give such a characterisation in this
section.
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We first require some preliminary material. If M is a matroid, and (X, Y )
is a partition of E(M) such that r(X) + r(Y ) ≤ r(M) + k − 1, then (X, Y )
is a k-separation of M . If equality holds then the separation is said to be
exact. We say that M is n-connected if M has no k-separation where k < n.

Let M1 and M2 be two matroids such that E(M1) ∩ E(M2) = {p}. The
2-sum of M1 and M2 along the basepoint p, denoted by M1 ⊕2 M2, is a
matroid on the ground set (E(M1) ∪ E(M2)) − p. The collection of circuits
of M1 ⊕2 M2 is

C(M1\p) ∪ C(M2\p) ∪ {(C ∪ C ′) − p | C ∈ C(M1), C ′ ∈ C(M2), p ∈ C ∩ C ′}.

It is well known that (X, Y ) is a 1-separation of M if and only if M =
(M | X) ⊕ (M | Y ). Similarly, (X, Y ) is an exact 2-separation of M if
and only if there exist matroids, M1 and M2, on the sets X ∪ p and Y ∪ p
respectively (where p /∈ E(M)), such that M is equal to the 2-sum of M1

and M2 along p [9, (2.6)].
The next fact is well known, and follows easily from [8, Proposition 7.1.15].

Proposition 5.1. Suppose that M1 and M2 are two matroids, and that
E(M1)∩E(M2) = {p}. If e ∈ E(M1)− p, then (M1 ⊕2 M2)\e = (M1\e)⊕2

M2, and (M1 ⊕2 M2)/e = (M1/e) ⊕2 M2.

Suppose that M1 and M2 are two binary matroids and that E(M1) ∩
E(M2) = T , where M1 | T = M2 | T ∼= U2,3. Seymour [9] defined the
3-sum of M1 and M2, denoted by M1⊕3 M2, to be the matroid on (E(M1)∪
E(M2))− T , the circuits of which are the minimal non-empty sets that can
be expressed as the symmetric difference of a disjoint union of circuits of
M1, and a disjoint union of circuits of M2.

The next result follows from [8, Proposition 12.4.19].

Proposition 5.2. Suppose that M1 and M2 are binary matroids, and that
E(M1) ∩ E(M2) = T . Suppose also that M1 | T = M2 | T ∼= U2,3. If e ∈
E(M1)−T , then (M1⊕3M2)\e = (M1\e)⊕3M2, and if e ∈ E(M1)−clM1

(T ),
then (M1 ⊕3 M2)/e = (M1/e) ⊕3 M2

The matroids R10 and R12 are binary self-dual matroids of rank five and
six respectively. The matrices in Figures 1 and 2 represent R10 and R12 over
GF(2).

1 0 0 0 0

0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1 1

1

1

0

0 0

0 0

0

00

00

Figure 1. A GF(2)-representation of R10.



FAMILIES OF MATROIDS INDUCED BY CLASSES OF GRAPHS. 11

1 0 0 0 0

0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

1

1

0 0 0 0 0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

0

0

0

0 0

0 0 0

0

0

00

0 0 0

0 0 0

0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2. A GF(2)-representation of R12.

The matroid R12 can also be expressed as the 3-sum of M∗(K3,3) and
M(K5)\e, where e is any element of M(K5). Figure 3 shows representations
of M∗(K3,3) and M(K5)\e, while Figure 4 shows a representation of their
3-sum, R12. In this diagram, the elements of R12 are labelled with the
corresponding columns of the matrix in Figure 2.

M∗(K3,3) M(K5)\e

Figure 3. M∗(K3,3) and M(K5)\e.

9

5

1

2

6

10
3

4
8

7

11

12

Figure 4. A representation of R12.
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The matroids R10 and R12 play a central role in Seymour’s decomposition
theorem for regular matroids. The next result will be crucially important
for our characterisation of near-graphic matroids.

Proposition 5.3. [9, (14.2)] Let M be a 3-connected regular matroid. Then
M is either graphic or cographic, or has a minor isomorphic to one of R10

or R12.

We can now state and prove our excluded minor characterisation of near-
graphic matroids.

Theorem 5.4. The excluded minors for the class of near-graphic matroids
are: U2,4; the Fano plane, F7, and its dual, F ∗

7 ; R10; R12; and those matroids
that are formed by taking the 2-sum of the polygon matroid of one of the
graphs in Figure 5 with the bond matroid of one of the same graphs, using
the element marked p as the basepoint.

p

p

p

(a) (b) (c) (d)

p

Figure 5

Proof. Let us first note that the class of near-graphic matroids is closed
under direct sums, so all the excluded minors for this class are connected.
The excluded minors for graphic matroids are U2,4, F7, F ∗

7 , M∗(K5), and
M∗(K3,3), while the excluded minors for cographic matroids are U2,4, F7,
F ∗

7 , M(K5), and M(K3,3) [11]. Since U2,4, F7, and F ∗

7 are excluded minors
for both graphic matroids and cographic matroids, and are connected, it
follows that they are also excluded minors for near-graphic matroids.

It is known [9] that if e is any element of R10, then R10\e ∼= M(K3,3),
and that R10/e ∼= M∗(K3,3). Therefore R10 is neither graphic nor cographic.
However, if we remove any element we clearly obtain a matroid that is either
graphic or cographic. Since R10 is connected, it is therefore an excluded
minor for near-graphic matroids.

The next result is slightly more difficult.

5.4.1. R12 is an excluded minor for near-graphic matroids.

Proof. It is known that R12 is neither graphic nor cographic [8, page 519]
(in fact, it is easy to see that R12 has both an M∗(K3,3)-minor, and an
M(K3,3)-minor). Let us assume that R12 is labelled as in Figure 4. Since
R12 can be expressed as the 3-sum of M∗(K3,3) and M(K5)\e, and M∗(K3,3)
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is an excluded minor for graphic matroids, Proposition 5.2 implies that if
we remove one of the elements in {1, 2, 5, 6, 9, 10} from R12, the resulting
matroid can be obtained by taking the 3-sum of two graphic matroids. It
follows from [8, Proposition 12.4.19] that the class of graphic matroids is
closed under 3-sums. Therefore removing one of these elements from R12

produces a graphic matroid.
Let us now consider the matroids produced by removing an element in

{3, 4, 7, 8, 11, 12} from R12. The class of cographic matroids is not closed
under 3-sums, so we must do a more detailed analysis. It is clear that up
to isomorphism there are only two matroids that we can obtain. These are
shown in Figures 6 and 7, along with labelled graphs which show that both
matroids are cographic.

9

5

1

2

6

10
3

4
8

7

11 10

96

5

3

2 7

4
8

11
1

Figure 6. R12\{12} is cographic.

9

5

1

2

6

10
3 7

11
4

8
6

10

9

5

4

3

7

82

11 1

Figure 7. R12/{12} is cographic.

Since R12 is connected and neither graphic nor cographic, but all of its
proper minors are graphic or cographic, it is an excluded minor for the class
of near-graphic matroids. �

Let G be the set of graphs shown in Figure 5.

5.4.2. If G and H are two, not necessarily distinct, graphs from G, then the
2-sum of M(G) and M∗(H) along the basepoint p is an excluded minor for
near-graphic matroids.
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Proof. Both M(G) and M∗(H) are minors of M(G) ⊕2 M∗(H). Therefore
M(G) ⊕2 M∗(H) is neither graphic nor cographic, as M(G) has either an
M(K5)-minor, or an M(K3,3)-minor, and M∗(H) has either an M∗(K5)-mi-
nor, or an M∗(K3,3)-minor.

It is not difficult to show that deleting or contracting an edge other than
p from a graph in G produces a planar graph. Therefore, removing an
element other than p from M(G) produces a matroid that is both graphic
and cographic. Proposition 5.1 then implies that if e ∈ E(M(G)) − p,
both (M(G) ⊕2 M∗(H))\e and (M(G) ⊕2 M∗(H))/e can be expressed as
the 2-sum of two cographic matroids. The classes of graphic and cographic
matroids are preserved under 2-sums ([8, Corollary 7.1.23]), so (M(G) ⊕2

M∗(H))\e and (M(G) ⊕2 M∗(H))/e are both cographic. Similarly, if e ∈
E(M∗(H))− p, then M∗(H)\e and M∗(H)/e are graphic and cographic, so
(M(G) ⊕2 M∗(H))\e and (M(G) ⊕2 M∗(H))/e are both graphic. �

We may now complete the proof of Theorem 5.4. Let M be an excluded
minor for near-graphic matroids, and suppose that M has no minor isomor-
phic to U2,4, F7, F ∗

7 , R10, or R12. This implies that M is regular [10]. It
follows immediately from Proposition 5.3 that M is not 3-connected.

Since M is not 3-connected, but is connected, there exist matroids, M1

and M2, such that E(M1) ∩ E(M2) = {p} and M = M1 ⊕2 M2. Both M1

and M2 must be connected, for otherwise M is not connected. Since M1

and M2 are proper minors of M , they must be either graphic or cographic.
If both were graphic or cographic, then M would be graphic or cographic.
Therefore, we will assume that M1 is graphic, but not cographic, and that
M2 is cographic but not graphic.

It follows that M1 must have an M(K5)- or an M(K3,3)-minor. Let N
be a minor of M1 such that N is isomorphic to either M(K5) or M(K3,3).
Suppose that e ∈ E(M1) − p. We wish to show that M1\e does not have
an N -minor. Suppose that it does. Then M\e has an N -minor, and an
M2-minor, and therefore is neither graphic nor cographic. Since M\e is
near-graphic, it follows that M\e is not connected. As M\e is the 2-sum of
M1\e and M2, it must be the case that M1\e is not connected. Let M ′ be a
connected component of M1\e that has an N -minor. It cannot be the case
that e ∈ clM1

(E(M ′)), for in that case M1 is not connected. Therefore e is a
coloop in M1 | (E(M ′)∪e), and hence, if we contract e from M1 | (E(M ′)∪e),
we obtain a matroid that has an N -minor. Thus M1/e has an N -minor.
Because M\e is not connected, M/e must be connected. However, M1/e is
a minor of M/e, and hence M/e has an N -minor. Since M/e also has an
M2-minor, it follows that M/e is neither graphic nor cographic. This is a
contradiction, as M/e is connected. We conclude that M1\e does not have
an N -minor.

Using duality, we may also show that, if e ∈ E(M1) − p, then M1/e does
not have an N -minor. Hence, either M1 is isomorphic to M(K5) or M(K3,3),
or M1 is isomorphic to a matroid obtained by extending or coextending
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M(K5) or M(K3,3) by a single element, p. Similarly, M2 is either isomorphic
to M∗(K5) or M∗(K3,3), or can be obtained from one of these matroids by
extending or coextending by p.

Let us suppose that M1 is a single-element extension or coextension of
M(K5) or M(K3,3). Recall that M1 is graphic. Since M1 is connected, p
cannot be a loop or a coloop of M1. If p is a member of a parallel or series pair
of M1, then it is easy to see that M1 ⊕2 M2 has a proper minor isomorphic
to either M(K5) ⊕2 M2 or M(K3,3) ⊕2 M2. Neither of these matroids is
near-graphic, so we have a contradiction. Given these restrictions, it follows
that M1 must be either the single-element coextension of M(K5) that is the
polygon matroid of the graph (c) in Figure 5, or the single-element extension
of M(K3,3) that is the polygon matroid of graph (d). By similar reasoning,
M2 must be the bond matroid of one of the graphs in G. This completes the
proof. �

6. An induced class with infinitely many excluded minors.

The classes of binary matroids, regular matroids, and the polygon ma-
troids of planar graphs are known to have 1, 3, and 7 non-isomorphic ex-
cluded minors respectively. In the previous section we have shown that the
class of near-graphic matroids has exactly 21 non-isomorphic excluded mi-
nors. It is natural to ask whether there exists an induced class of matroids
that has infinitely many excluded minors. In this section we will show that
such a class exists. The example we consider was suggested by a referee of
this paper.

If H is a circuit-hyperplane of M , and M ′ is produced by relaxing H in
M , then, for every element e ∈ E(M) − H, the set H ∪ e is a circuit of
M ′. If B is any basis of a matroid, and, for every element, e /∈ B, the set
B ∪ e is a circuit, then we shall say that B is a loose basis. If B is a loose
basis of M , then the set B(M) − {B} is the family of bases of a matroid
on E(M) [7, (1.5)]. This matroid will be said to be produced from M by
tightening the loose basis B. Clearly this operation is the inverse of relaxing
a circuit-hyperplane.

We now define the class N of matroids, so that M ∈ N if and only if
every connected component of M is either binary, or can be obtained from
a binary matroid by relaxing a single circuit-hyperplane.

Theorem 6.1. The class N is an induced class.

We defer the proof of Theorem 6.1. Proving that N is closed under
generalised duality and taking minors is relatively simple, but the proof
that it is closed under rank-preserving weak maps is more difficult.

We will note here that N has an infinite number of excluded minors: let
Jn denote the n×n matrix of ones. For n ≥ 1, let Mr be the binary matroid
that is represented over GF(2) by Ar = [In | Jn − In]. Let the columns of
Ar be labelled a1 , . . . , ar, b1 , . . . , br. We will take the ground set of Mr to
be the set of column labels. If r is even, then H1 = {a1, b2 , . . . , br} and
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H2 = {a2 , . . . , ar, b1} are both circuit-hyperplanes of Mr. Let Nr be the
matroid obtained by relaxing both of these circuit-hyperplanes.

Proposition 6.2. If r ≥ 4, and r is even, then Nr is an excluded minor for
N .

Proof. If B is a loose basis of a binary matroid, M , and e and f are two
elements of E(M) − B, then both B ∪ e and B ∪ f are circuits of M . Since
the symmetric difference of two circuits in a binary matroid is itself a union
of circuits, it follows that {e, f} must be a circuit of M . Note that H1 is
a loose basis of Nr. Since r ≥ 4, it follows that {a2, b1} is an independent
pair of elements contained in E(Nr) − H1. Therefore Nr cannot be binary.
Furthermore, we can show that H1 and H2 are the only loose bases of Nr.
Let N ′

r be the matroid obtained by tightening H1. Then H2 is a loose basis
in N ′

r, and a1 and b2 are both contained in E(Nr) − H2. Since r ≥ 4, it
is not the case that a1 and b2 are parallel, so N ′

r is not binary. Using the
same argument, we may show that tightening H2 in Nr does not produce a
binary matroid. Therefore Nr /∈ N .

However, it is easy to see that removing a single element from Nr produces
a matroid that has exactly one loose basis, and tightening this basis produces
a binary matroid. �

Proposition 6.3. The class N is closed under generalised duality.

Proof. Suppose that M is in N , and that M1 is a connected component
of M . If M1 is binary, then so is M∗

1 , so we need only show that, if M1

is obtained from a binary matroid by relaxing a circuit-hyperplane, then
M∗

1 can be obtained from a binary matroid in the same way. This follows
immediately from [8, Proposition 2.1.7]. �

The next result follows without difficulty from [8, Proposition 3.3.9].

Proposition 6.4. The class N is closed under taking minors.

Let (M1, M2, M3, M4) be a sequence of matroids, such that, for 1 ≤ i ≤ 4,
the matroid Mi contains at least two elements, and is either uniform of rank
one, or uniform of corank one. For 1 ≤ i ≤ 4, let ei be an element of
E(Mi). Let N be isomorphic to U2,4, and suppose that the ground set of
N is {e1 , . . . , e4}. We will use the notation M(M1, M2, M3, M4) to denote
the matroid

(((N ⊕2 M1) ⊕2 M2) ⊕2 M3) ⊕2 M4,

where the 2-sum that involves Mi uses the element ei as its basepoint. Note
that M(M1, M2, M3, M4) is obtained from U2,4 by a sequence of up to four
parallel or series extensions.

We will need the following result, which can easily be deduced from a
theorem of Oxley’s.

Theorem 6.5. [7, Theorem 1.2] Let M be a non-binary matroid, such that,
for every element e ∈ E(M), either M\e or M/e is binary. Then, either:



FAMILIES OF MATROIDS INDUCED BY CLASSES OF GRAPHS. 17

(i) M ∈ N ;
(ii) the rank or the corank of M is equal to two; or,
(iii) there exists a sequence, (M1, M2, M3, M4), such that M ∼=

M(M1, M2, M3, M4).

Lemma 6.6. The class N is closed under rank-preserving weak maps.

Proof. Let us suppose that the lemma does not hold. Then there exists a

matroid, M , such that M1
r.p.
→ M , where M1 ∈ N , but M /∈ N . Among such

counterexamples let M be chosen to be as small as possible, so that if M ′ is a
rank-preserving weak-map image of a matroid in N , and |E(M ′)| < |E(M)|,
then M ′ itself is in N .

6.6.1. The matroid M is an excluded minor for the class N .

Proof. Suppose that M ′ is a proper minor of M . There exists a minor, M ′

1,

of M1 such that M ′

1
r.p.
→ M ′ [3, Theorem 5.8]. Since M ′

1 ∈ N , it follows that
M ′ is in N . �

Since N is, by construction, closed under direct sums, it follows that M
is connected.

6.6.2. The matroid M1 is not binary.

Proof. It has already been noted, and is easy to prove directly, that a rank-
preserving weak-map image of a binary matroid is itself binary. Hence, if
M1 were binary, then M would be binary, and would therefore belong to
N . �

We conclude that M1 can be obtained from a binary matroid, M2, by
relaxing a circuit-hyperplane, H.

6.6.3. r(M) > 2.

Proof. Suppose otherwise. Since every matroid of rank at most one belongs
to N , the rank of M , and therefore M1, must be two. Since M1 is not
binary, but can be obtained from a binary matroid by relaxing a circuit-
hyperplane, it follows that M1 must contain exactly four parallel classes.
Any connected rank-preserving weak-map image of M1 that is not isomor-
phic to M1 contains at most three parallel classes, and is therefore binary.
From this contradiction we conclude that r(M) > 2. �

Since N is closed under duality, M∗ is also a minimal counterexample
to Lemma 6.6. By applying the arguments above, we may conclude that
r(M∗) > 2.

6.6.4. If e ∈ H, then M\e is binary, and if e /∈ H, then M/e is binary.

Proof. Let e be an element of E(M). It is not the case that e is a coloop
of M1 or M , for M is connected, and if e were a coloop of M1 it would be

a coloop of M . Therefore M1\e
r.p.
→ M\e. Suppose that e ∈ H. Then [8,
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Proposition 3.3.9] implies that M1\e = M2\e. Therefore M1\e is binary.
Since M\e is the rank-preserving weak-map image of a binary matroid, it is
also binary.

Similarly, e is not a loop in M1 or in M . Therefore M1/e
r.p.
→ M/e. Also,

if e /∈ H, then M1/e = M2/e. It follows that M/e is binary. �

From Theorem 6.5, and our assumption on the rank and corank of M , we
conclude that there exists a sequence, (M1, M2, M3, M4), such that M ∼=
M(M1, M2, M3, M4).

If, for some i ∈ {1 , . . . , 4}, the matroid Mi is isomorphic to U1,2, we will
say that Mi is trivial. Note that M ⊕2 U1,2

∼= M , for any matroid M .

6.6.5. No more than two of the non-trivial matroids in (M1, M2, M3, M4)
are cocircuits, and no more than two are circuits.

Proof. It is easy to see that

(M(M1, M2, M3, M4))
∗ = M(M∗

1 , M∗

2 , M∗

3 , M∗

4 ).

Furthermore, the order of the matroids in (M1, M2, M3, M4) is insignifi-
cant. Therefore, if the claim in 6.6.5 is false, then, by duality and relabelling,
we may assume that Mi

∼= U1, ni
, where ni > 2, for all i ∈ {1, 2, 3}. It fol-

lows that M4 is a circuit of size at least three, for otherwise r(M) = 2. By
deleting all but two elements from E(Mi)−ei, for 1 ≤ i ≤ 3, and contracting
all but one element from E(M4)−e4, we see that M has a minor isomorphic
to M ′ = M(U1,3, U1,3, U1,3, U1,2). This is the rank-2 matroid that has three
parallel classes of size two, and one parallel class of size one. It is not diffi-
cult to show that M ′ is an excluded minor for N , so M must be isomorphic
to M ′. But this contradicts our assumption that r(M) > 2. �

6.6.6. There are no trivial matroids in (M1, M2, M3, M4).

Proof. If the claim is false, then we may assume that M1
∼= U1,2. It cannot

be the case that every matroid in (M1, M2, M3, M4) is trivial, for then M
would have rank two. By referring to 6.6.5, and using duality and relabelling,
we may assume that M2 is a circuit of size at least three, and that M3 and
M4 are cocircuits. Then the rank of M is |E(M2)|, and it is easy to see that
(E(M1) ∪ E(M2)) − {e1, e2} is a loose basis of M .

The only non-spanning circuits in the matroid obtained by tightening this
basis are: (E(M1)∪E(M2))−{e1, e2}; any pair of elements in E(M3)− e3;
any pair of elements in E(M4) − e4; and, any triple of elements containing
the single element of E(M1) − e1, an element from E(M3) − e3, and an
element from E(M4) − e4. It is easy to see that this matroid is isomorphic
to the 2-sum of two binary matroids, and is therefore binary. This implies
that M is a member of N . �

We may now assume that |E(Mi)| > 2 for all i ∈ {1 , . . . , 4}. Fur-
thermore, from 6.6.5, and by relabelling if necessary, we will assume that
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M1 and M2 are cocircuits, while M3 and M4 are circuits. It is eas-
ily demonstrated that the rank of M is |E(M3)| + |E(M4)| − 2, and
that (E(M3) ∪ E(M4)) − {e3, e4} is a loose basis of M . The only non-
spanning circuits in the matroid obtained by tightening this basis are:
(E(M3) ∪ E(M4)) − {e3, e4}; any pair of elements in E(M1) − e1; any pair
of elements in E(M2) − e2; the union of E(M3) − e3 with an element from
E(M1)− e1 and an element from E(M2)− e2; and, the union of E(M4)− e4

with an element from E(M1) − e1 and an element from E(M2) − e2. It is
not difficult to see that this matroid is binary, and that M is therefore in
N . This contradiction completes the proof of the lemma. �

Proof of Theorem 6.1. The proof follows from Theorem 2.7, Proposition 6.3,
Proposition 6.4, Lemma 6.6, and the obvious observation that N is closed
under the addition of loops and coloops. �
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