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Abstract. Suppose that q is a prime power exceeding five. For ev-
ery integer N there exists a 3-connected GF(q)-representable matroid,
in particular, a free spike or a free swirl, that has at least N inequiva-
lent GF(q)-representations. In contrast to this, Geelen, Oxley, Vertigan
and Whittle have conjectured that, for any integer r > 2, there exists
an integer n(q, r) such that if M is a 3-connected GF(q)-representable
matroid and M has no rank-r free-swirl or rank-r free-spike minor, then
M has at most n(q, r) inequivalent GF(q)-representations. The main
result of this paper is a proof of this conjecture for Zaslavsky’s class of
bias matroids.

1. Introduction

Suppose that M is a matroid and that F is a field. If A is a matrix over
F, and the columns of A are bijectively labelled with the elements of M in
such a way that a set of column labels is independent in M if and only if the
corresponding set of columns is linearly independent, then A is an F-rep-

resentation of M . Two representations of M are equivalent if one can be
obtained from the other by a sequence of the following operations: elemen-
tary row operations; multiplying a column by a non-zero scalar; permuting
the columns, along with their labels; deleting or adjoining zero rows; and
applying an automorphism of F to every entry of the matrix. The matroid
M is uniquely representable over F if any two F-representations of M are
equivalent.

In 1988, while proving that 3-connected quaternary matroids are uniquely
representable over GF(4), Kahn [7] made the following conjecture:

Conjecture 1.1 (Kahn’s Conjecture). For every prime power q there is an

integer n(q) such that no 3-connected GF(q)-representable matroid has more

than n(q) inequivalent GF(q)-representations.

At the time, the conjecture was known to be true when q ∈ {2, 3, 4}.
Oxley, Vertigan and Whittle [12] showed that the conjecture is true if q =

This research was done in partial fulfilment of the requirements for a M.A. at Victoria
University of Wellington, and was partially supported by a V.U.W Postgraduate Schol-
arship. Current address: Mathematical Institute, St. Giles, Oxford, OX1 3LB, United
Kingdom.

1



2 DILLON MAYHEW

5, but provided counterexamples showing it is false for all prime powers
exceeding five.

The two families of matroids introduced as counterexamples are known
as the “free swirls” and the “free spikes”. For any integer r > 2, the rank-r
free swirl (denoted by ∆r) is isomorphic to the matroid obtained by freely
adding a point to each non-trivial line of the rank-r whirl, and then deleting
those points that lie on the intersection of two non-trivial lines; the rank-r
free spike (denoted by Λr) is produced by positioning r three-point lines as
freely as possible in r-space so that they are concurrent, and then deleting
the common point of intersection.

Let q be a prime power. We use the notation nq(M) to denote the number
of inequivalent representations of the matroid M over the field GF(q). If
q > 5, then either the entire family of free swirls or the entire family of free
spikes is GF(q)-representable. In the first case, nq(∆r) is a strictly increasing
function of r, and, in the second, nq(Λr) increases strictly with r.

No other counterexamples to Kahn’s conjecture have been forthcoming.
Geelen, Oxley, Vertigan and Whittle [6] have conjectured that free swirls
and free spikes are, in a sense, the only obstruction to Kahn’s conjecture.

Conjecture 1.2. [6, Conjecture 2.9] Let r be an integer exceeding two, and

let q be a prime power. There exists an integer n(q, r) such that if M is a

3-connected GF(q)-representable matroid, and M has no ∆r- or Λr-minor,

then nq(M) ≤ n(q, r).

Bias matroids were introduced by Zaslavsky [16, 17]. A “biased graph”
is a graph with a family of distinguished, “balanced”, cycles such that no
theta subgraph contains exactly two balanced cycles. A “bicycle” is a min-
imal connected graph containing exactly two independent cycles. The bias
matroid of a biased graph has the edge set of the graph as its ground set,
and its circuits are the balanced cycles and the unbalanced bicycles.

If the set of balanced cycles in a biased graph contains every cycle, then
the associated bias matroid is the polygon matroid of the graph. If the
set of balanced cycles is empty, then the associated bias matroid is the
“bicircular matroid” of the graph. Bicircular matroids were introduced by
Simões-Pereira [13, 14] and were further studied in [1, 8, 15].

Conjecture 1.2 is known to be true for the class of matroids that have no
U3,6-minor [5] and the class produced by applying the truncation operator
to bicircular matroids [9]. In this paper we prove that the conjecture holds
for bias matroids.

Theorem 1.3. Let r be an integer exceeding two, and let q be a prime

power. There exists an integer m(q, r) such that if M is a 3-connected

GF(q)-representable bias matroid, and M has no ∆r-minor, then nq(M) ≤
m(q, r).

To prove Theorem 1.3 we use “totally free matroids”, which were intro-
duced by Geelen, Oxley, Vertigan and Whittle in [6]. Let q be a prime power
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and let M be a family of GF(q)-representable matroids. If there exists an
integer N such that nq(M) ≤ N for every totally free matroid M ∈ M, then
nq(M

′) ≤ N for every 3-connected matroid M ′ ∈ M. Thus Theorem 1.3
follows from the following results:

Theorem 1.4. Let r be an integer exceeding two, and let q be a prime

power. There are only a finite number of GF(q)-representable bicircular

matroids that are totally free and have no ∆r-minor.

Theorem 1.5. Every totally free bias matroid is a bicircular matroid.

Terminology and notation will follow that used by Oxley [10], with the
following exceptions. The simple and cosimple matroids canonically associ-
ated with the matroid M will be denoted by si(M) and co(M) respectively.
A triangle of a matroid is a 3-element circuit, and a triad is a 3-element
cocircuit.

Graphs may contain loops and parallel edges. A link is a non-loop edge. If
X is a set of edges of the graph G, then G[X] denotes the subgraph induced
by X. We shall frequently make no distinction between a set of edges and
the subgraph that it induces.

2. Totally Free Matroids

In this section we introduce totally free matroids and review some of the
main results of [6].

If e and e′ are elements of the matroid M , and the function that exchanges
e and e′ and acts as the identity on E(M) − {e, e′} is an automorphism of
M , then e and e′ are clones in M .

A cyclic flat of a matroid is a flat that is also a union of circuits.

Proposition 2.1. [6, Proposition 4.9] Two elements e and e′ are clones in

M if and only if the set of cyclic flats containing e is equal to the set of

cyclic flats containing e′.

It is easy to see that if two elements are clones in M , then they are clones
in M∗. It is also clear that the relation of being clones is an equivalence
relation on the elements of M . The equivalence classes of this relation are
known as clonal classes. A clonal pair (respectively clonal triple) is a pair
(respectively triple) of elements contained in a clonal class.

The property of being clones is preserved in minors.

Proposition 2.2. [6, Proposition 4.3] Suppose that e and e′ are clones in

M . If X and Y are disjoint subsets of E(M) − {e, e′}, then e and e′ are

clones in M/X\Y .

Let e be an element of a matroid M . If the matroid M ′ is obtained through
extending M by the single element e′ in such a way that e and e′ are clones in
M ′, then we say that M ′ is obtained from M by cloning e with e′. If {e, e′}
is independent in M ′, then we say that e has been independently cloned with
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e′. If e is an element of a matroid M , and e cannot be independently cloned,
then e is fixed in M . If e is fixed in M∗, then it is cofixed in M .

The next result can be deduced from the work of Duke [4, Corollary 3.5]

Proposition 2.3. Let e be an element of the matroid M . Then e is fixed in

M if and only if cl({e}) is in the modular cut generated by the cyclic flats

containing e.

Proposition 2.4. [6, Proposition 4.8] Let e and e′ be clones in M . If {e, e′}
is independent, then e is fixed in neither M nor M\e′.

A matroid M is totally free if:

(i) M is 3-connected;
(ii) |E(M)| ≥ 4; and,
(iii) for any e ∈ E(M), if e is fixed in M , then co(M\e) is not 3-con-

nected, and if e is cofixed in M , then si(M/e) is not 3-connected.

Note that the definition of a totally free matroid is self-dual, so that M
is totally free if and only if M∗ is totally free.

The usefulness of totally free matroids is shown by the following lemma.

Lemma 2.5. [6, Corollary 10.1] Let q be a prime power and let M be

a minor-closed class of GF(q)-representable matroids. Suppose that, for

some integer k, every totally free matroid in M has at most k inequivalent

GF(q)-representations. Then every 3-connected matroid in M has at most

k inequivalent GF(q)-representations. In particular, if M contains only a

finite number of totally free matroids, then, for some integer k′, every 3-con-

nected member of M has at most k′ inequivalent GF(q)-representations.

We will require several further properties of totally free matroids.

Proposition 2.6. [6, Lemma 8.8] Any triangle or triad of a totally free

matroid is a clonal triple.

Corollary 2.7. Let F and F ′ be two non-trivial lines of the totally free

matroid M . If F 6= F ′, then F ∩ F ′ = ∅.

The next two results show that totally free matroids cannot occur spo-
radically in a minor-closed class. They demonstrate that if M is totally free
and contains more than four elements, then a totally free minor of M can
be obtained by removing either one or two elements.

Proposition 2.8. [6, Proposition 8.9] Let e be an element of the totally free

matroid M . Then either M\e or M/e is 3-connected.

Lemma 2.9. [6, Theorem 8.12] Let M be a totally free matroid such that

|E(M)| ≥ 5. If e is an element of M such that either M\e or M/e is

3-connected but not totally free, then:

(i) e has a unique clone e′ in M ;

(ii) M\e/e′ = M/e\e′ is totally free; and,

(iii) both M\e and M/e are 3-connected.
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Proposition 2.10. Let M be a totally free matroid such that |E(M)| ≥ 5.
If e is fixed in M , then M/e is totally free.

Proof. Since e is fixed M\e cannot be 3-connected, for co(M\e) is not 3-con-
nected. Therefore M/e must be 3-connected by Proposition 2.8. If M/e is
not totally free, then e has a unique clone, e′, in M by Lemma 2.9. In that
case {e, e′} is certainly independent in M , as M is 3-connected. But then
Proposition 2.4 implies that e is not fixed in M . �

Proposition 2.11. Suppose that C and C ′ are circuits of a totally free

matroid M . Suppose also that |C| = |C ′| = 4 and r(C ∪ C ′) = 4. If C and

C ′ meet in exactly two elements, e and e′, then e and e′ are clones.

Proof. Assume that e and e′ are not clones. By Proposition 2.1 we may
assume, without loss of generality, that there is a cyclic flat, F , that contains
e but not e′. Note that cl(C) and cl(C ′) are cyclic flats and that cl(C) ∩
cl(C ′) = cl({e, e′}). Since r(cl(C) ∪ cl(C ′)) = r(C ∪ C ′) = 4, it follows that
(cl(C), cl(C ′)) is a modular pair. Therefore cl({e, e′}) is in the modular
cut generated by the cyclic flats containing e. It is easy to check that
(cl({e, e′}), F ) is a modular pair, so cl({e, e′}) ∩ F = {e} is in the same
modular cut. Hence e is fixed by Proposition 2.3. Proposition 2.10 implies
that M/e is totally free. Therefore all distinct non-trivial lines of M/e are
disjoint by Corollary 2.7. But C − e and C ′ − e span distinct non-trivial
lines of M/e that meet in e′. This contradiction completes the proof. �

We conclude this section by discussing free swirls and free spikes. Let r be
an integer exceeding two, and let Er be the set {a1, b1 , . . . , ar, br}. For any
integer i ∈ {1 , . . . , r} we will let zi denote either ai or bi. Both the rank-r
free swirl (∆r) and the rank-r free spike (Λr) have Er as their ground set.
Both ∆3 and Λ3 are isomorphic to U3,6. For r > 3 the non-spanning circuits
of ∆r are the sets {ai, bi, zi+1 , . . . , zi+j−1, ai+j , bi+j} where 1 ≤ i ≤ r
and 1 ≤ j ≤ r − 3. (Subscripts are to be read modulo r.) The non-
spanning circuits of Λr for r > 3 are sets of the form {ai, bi, aj, bj} where
1 ≤ i < j ≤ r. It is straightforward to verify that every free swirl and every
free spike is totally free.

3. Bicircular Matroids

If a graph can be obtained from one of the graphs illustrated in Figure 1
by subdividing edges, then it is a bicycle.

(i) (ii) (iii)

Figure 1
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A bicycle that is obtained from graph (i) (respectively (ii)) is known as a
tight (respectively loose) handcuff. A bicycle obtained from graph (iii) is a
theta graph.

Let G be a graph. A bicycle of G is a set E′ of edges such that G[E′] is
a bicycle. The bicircular matroid of G, denoted by B(G), has E(G) as its
ground set. The circuits of B(G) are the bicycles of G. A matroid M is a
bicircular matroid if there exists a graph G such that M ∼= B(G).

The following proposition can be derived from [17, Theorem 2.5].

Proposition 3.1. Let e be an edge of the graph G. Then B(G)\e = B(G\e).
Furthermore, if e is a link of G, then B(G)/e = B(G/e).

Corollary 3.2. Let G be a graph. If G′ is a graph minor of G, then B(G′)
is a matroid minor of B(G).

The next result is from Wagner [15], and was also proved by Matthews [8].
We restate it here as a consequence of [1, Proposition 3.1].

Proposition 3.3. Let G be a graph such that G has no isolated vertices and

|V (G)| ≥ 3. The matroid B(G) is 3-connected if and only if:

(i) G is 2-connected;

(ii) the minimum degree of G is at least three; and,

(iii) no vertex of G is incident with more than one loop.

Let stG(v) denote the set of edges in the graph G that are incident with
the vertex v.

Proposition 3.4. Suppose that v is a vertex of the 2-connected graph G. Let

X be a non-empty subset of stG(v) that contains no loops. If n = |X| ≥ 2,
then B(G) has a U2,n-minor on the set X.

Suppose that G is a simple graph and that n is a positive integer. Let
nG denote the graph which is obtained by replacing every edge of G with
a parallel class of size n. We will let G◦ denote the graph obtained by
adjoining a loop to every vertex of G.

Let Cr denote the cycle of length r, where r > 2. The rank-r whirl is
denoted by Wr. The next proposition can be verified using the description
of free swirls and whirls via their non-spanning circuits.

Proposition 3.5. Let r be an integer exceeding two. Then B(2Cr) ∼= ∆r

and B(C◦

r ) ∼= Wr.

We will use the following result from extremal graph theory (see, for
example [11, Proposition 3.2]).

Lemma 3.6. For every positive integer t there is an integer M(t) such that

if G is a 2-connected graph and |V (G)| > M(t), then G contains either a

vertex incident with t non-loop edges or a cycle of length at least t.

The goal of this section is to prove Theorem 1.4, which we restate here.
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Theorem 3.7. Let r be an integer exceeding two, and let q be a prime

power. There are only a finite number of GF(q)-representable bicircular

matroids that are totally free and have no ∆r-minor.

Theorem 3.7 will follow immediately from the next result.

Lemma 3.8. Let r be an integer exceeding two, and let q be a prime power.

There exists an integer N(q, r) such that if G is a graph with the following

properties:

• G has no isolated vertices;

• |V (G)| > N(q, r); and,

• B(G) is a 3-connected GF(q)-representable matroid,

then either B(G) has a ∆r-minor or a Wr-minor. Furthermore, if B(G) is

totally free, then B(G) has a ∆r-minor.

We first show that Theorem 3.7 follows from Lemma 3.8. Suppose that
M is a GF(q)-representable bicircular matroid that is totally free and has
no ∆r-minor. It is easy to see that Lemma 3.8 implies that r(M) ≤ N(q, r).
Since M is simple and GF(q)-representable, it follows that

|E(M)| ≤
qN(q, r) − 1

q − 1
.

Therefore there can be only a finite number of such matroids.

Proof of Lemma 3.8. Let G be a graph with no isolated vertices such that
B(G) is 3-connected. It follows from Proposition 3.3 that G is 2-connected.
Let t = 3(q+2)(r−1)+2 and let N(q, r) = M(t), where M(t) is the integer
supplied by Lemma 3.6. Suppose that |V (G)| > N(q, r). Now t > q+2, so if
a vertex of G is incident with at least t links, then B(G) has a U2,q+2-minor
by Proposition 3.4. In this case B(G) is not GF(q)-representable. Thus we
may assume that G contains a cycle, C, of length at least t.

Let W be the set of vertices in C that are not incident with a loop.
The proof will be structured as follows. We first show that if B(G) has no
Wr-minor, or if B(G) is totally free, then |W | ≥ (q+2)(r−1). We complete
the proof by showing that this implies that either B(G) has a ∆r-minor, or
B(G) is not GF(q)-representable.

Let m be the number of vertices in C that are incident with loops, and
suppose that m ≥ r. We may delete every edge in E(G)−C that is not a loop
incident with a vertex of C, and then contract edges to obtain a C◦

r -minor
of G. Therefore B(G) has a Wr-minor by Corollary 3.2 and Proposition 3.5.
Thus, if B(G) has no Wr-minor, it follows that m < r, and hence

|W | ≥ 3(q + 2)(r − 1) + 2 − (r − 1) > (q + 2)(r − 1).

We now assume that B(G) is totally free. Suppose that v1, v2 and v3

are consecutive vertices in C and that, for all i ∈ {1, 2, 3}, the vertex vi

is incident with the loop li. The set containing l1, l2 and the edge v1v2 is
a loose handcuff of G, and hence a triangle of B(G). Therefore it spans a
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non-trivial line of B(G). Similarly, the set containing l2, l3 and the edge v2v3

spans a non-trivial line of B(G). These lines are distinct, but not disjoint,
and this contradicts Corollary 2.7. Thus, if v ∈ C is incident with a loop,
at most one of the neighbours of v in C is incident with a loop.

Suppose that v1 , . . . , vp is the vertex sequence of C, where p ≥ 3(q +
2)(r − 1) + 2. Let p′ be the greatest multiple of three that does not exceed
p. The vertices v1 , . . . , vp′ can be partitioned into subsets, each consisting
of three consecutive vertices. By the discussion in the previous paragraph
at least one vertex from each of these 3-element subsets is not incident with
a loop. Thus |W | ≥ 1

3p′ ≥ (q + 2)(r − 1).
Let W = {w1 , . . . , wn}. By Proposition 3.3 every vertex in G is incident

with at least three edges. Thus every vertex wi ∈ W is incident with a link,
ei, that is not in C. If ei joins wi to another vertex of C, then let the path Pi

consist of the edge ei. Otherwise ei joins wi to a vertex ui not in C. Select
an arbitrary vertex v 6= wi in C. Since G is 2-connected, there is a path
P joining ui to v that does not pass through the vertex wi. Let Pi be the
path formed by adjoining the edge ei to P . Thus for every vertex wi ∈ W
we have a path Pi, not contained in C, joining wi to another vertex of C.

We produce the minor G0 by deleting every edge of E(G)−C that is not
in a path Pi. For i ∈ {1 , . . . , n} we inductively describe Gi. In Gi−1, Pi

is a path from wi to a vertex of C. Suppose that v is the first vertex in Pi

(other than wi) that is in C. Contract all but one of the edges of Pi that lie
between wi and v. Of the edges of Pi that lie after v, delete all those that
are not in C and not in another path Pj where j > i.

Note that C is a cycle in Gn. Furthermore, in Gn every vertex in W is
joined to another vertex of C by a single edge that is not in C. Let the set
of these edges be E′. Then |E′| ≥ 1

2 |W | ≥ 1
2(q + 2)(r − 1).

We derive a minor, G′

n, of Gn by contracting, in turn, all those edges that
are in C and that have no parallel edge, until no such edge remains. If G′

n

contains at least r vertices then, since every edge of C that is in G′

n has a
parallel edge, we can obtain a 2Cr-minor. In this case B(G) has a ∆r-minor
by Proposition 3.5. We now assume that G′

n has at most r−1 vertices. The
edge set of G′

n contains all the edges of E′. Therefore the average degree of
the vertices in G′

n is at least

2|E′|

(r − 1)
≥

(q + 2)(r − 1)

(r − 1)
= q + 2.

Thus there is a vertex of G′

n with degree at least q + 2. Furthermore, C
is a Hamiltonian cycle of G′

n, hence G′

n is 2-connected. Also, G′

n has no
loops by construction. It follows from Proposition 3.4 that B(G) is not
GF(q)-representable. This completes the proof. �
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4. Bias Matroids

Suppose that G is a graph and that A is a class of cycles of G. If no
theta subgraph of G contains exactly two members of A, then A is a linear

class. Equivalently, A is a linear class if, whenever C and C ′ are two distinct
members of A and e is an edge in C ∩ C ′, then (C ∪ C ′)− e contains either
a member of A, or a bicycle. A biased graph is a pair, (G, A), where G is
a graph and A is a linear class of cycles. If (G, A) is a biased graph and
C ∈ A, then C is a balanced cycle of (G, A).

Let (G, A) be a biased graph. The bias matroid of (G, A), denoted by
M(G, A), has E(G) as its ground set. The circuits of M(G, A) are the
members of A and the bicycles of G that contain no balanced cycle. Thus,
for any graph G, M(G, ∅) = B(G), and if C is the family of cycles of G,
then M(G, C) = M(G). A matroid M is a bias matroid if there exists a
biased graph (G, A) such that M ∼= M(G, A).

Zaslavsky [18] characterised bias matroids as follows: M is a bias matroid
if and only if there exists a matroid, M ′, on the ground set E(M)∪B, where
E(M) ∩ B = ∅, such that M ′|E(M) = M , and B is a basis of M ′ having
the property that for any element e ∈ E(M), the unique circuit of M ′ that
is contained in B ∪ e contains at most three elements.

Dowling geometries [3] can be described via bias matroids. Let H be a
non-trivial group, and consider the graph G = (|H|Kn)◦. Assign directions
to the links of G in such a way that parallel edges have the same direction.
Now bijectively label each parallel class of G with the elements of H. We
will define a linear class, A, of cycles. To determine whether a cycle belongs
to A, traverse the edges in cyclic order, and take the product of the edge
labels in that order, except that if the direction on an edge is contrary to the
cyclic order, use the inverse of the edge label in the product instead. The
cycle belongs to A if and only if the product thus produced is the identity of
H. The corresponding bias matroid, M(G, A), is isomorphic to the rank-n
Dowling geometry on the group H. A proof of this equivalence appears
in [2].

Let e be an edge of the biased graph (G, A). Define A\e to be {C ∈ A |
e /∈ C} and A/e to be {C − e | C ∈ A and C − e is a cycle of G/e}.

The following proposition generalises Proposition 3.1.

Proposition 4.1. [17, Theorem 2.5] Let (G, A) be a biased graph and sup-

pose that e is an edge of G. Then M(G, A)\e = M(G\e, A\e). If e is a

link, then M(G, A)/e = M(G/e, A/e), Furthermore, every minor of a bias

matroid is itself a bias matroid.

The next two results can be derived from parts (i) and (j) of [17, Theo-
rem 2.1]

Proposition 4.2. Suppose that (G, A) is a biased graph and that v is a

vertex of G. If stG(v) is non-empty, then stG(v) contains a cocircuit of

M(G, A).
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Proposition 4.3. Suppose that (G, A) is a biased graph such that G is

connected. If A contains every cycle of G, then r(M(G, A)) = |V (G)| − 1.
Otherwise r(M(G, A)) = |V (G)|.

Lemma 4.4. Let (G, A) be a biased graph, and suppose that C ∈ A. If an

edge e /∈ C is in the closure of C in M(G, A), then C ∪ e is a bicycle and

every cycle in C ∪ e is balanced. Furthermore, e is fixed in M(G,A).

Proof. It is easy to verify that if e ∈ cl(C), then C ∪ e is a bicycle and every
cycle of C ∪ e is balanced. It remains to show that e is fixed in M(G, A).
If e is a loop of G, then the cycle consisting only of e is in A, and so e is a
loop of M(G, A). In this case e is certainly fixed. Thus we assume that e
is a link.

Let C1 and C2 be the two cycles of C∪e that contain e. For any i ∈ {1, 2}
let ni be the size of Ci and let C ′

i be the closure of Ci in M(G, A). Since Ci

is a balanced cycle, the rank of C ′

i is ni − 1.
Suppose that e′ ∈ (C ′

1 ∩ C ′

2) − e. Since e′ ∈ cl(C1) the first part of the
lemma implies that every cycle in C1 ∪ e′ is balanced. In particular, if e′ is
a loop of G, then e′ is a loop of M(G, A). Assume that e′ is a link. Then
e′ must join two vertices that are in both C1 and C2. The only vertices C1

and C2 have in common are the end vertices of e, so e′ is parallel to e. In
this case the cycle consisting of e and e′ is balanced, so e′ ∈ cl({e}). We
have shown that r(C ′

1 ∩ C ′

2) = 1. Also,

r(C ′

1 ∪ C ′

2) = r(C1 ∪ C2) = r(C ∪ e) = |C| − 1 = n1 + n2 − 3.

It follows that r(C ′

1)+ r(C ′

2) = n1 +n2 − 2 = r(C ′

1 ∪C ′

2)+ r(C ′

1 ∩C ′

2). Since
C ′

1 and C ′

2 are cyclic flats and C ′

1 ∩ C ′

2 = cl({e}), the element e is fixed in
M(G, A) by Proposition 2.3. �

Suppose that two matroids, M and M ′, have identical ground sets. If
every independent set in M is independent in M ′ we shall say that M ′ is

freer than M ′, and we shall indicate this with the notation M ′ ≥ M .
The next two propositions are easily proved.

Proposition 4.5. Let (G, A′) and (G, A) be two biased graphs.

M(G, A′) ≥ M(G, A) if and only if A′ ⊆ A.

Proposition 4.6. Suppose that M and N are two matroids on the same

ground set such that M ≥ N and r(M) = r(N). If N is n-connected, then

M is n-connected.

If M ′ is obtained from M by relaxing a circuit-hyperplane, then clearly
M ′ ≥ M .

Proposition 4.7. Let C be a circuit-hyperplane of the matroid M . Let M ′

be produced by relaxing C. If M ′ is n-connected, and (X, Y ) is a k-separa-

tion of M where k < n, then either C = X or C = Y .
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Proposition 4.8. Let (G, A) be a biased graph such that G is connected

and A does not contain every cycle of G. If C ∈ A is a circuit-hyperplane

of M(G, A), then the matroid obtained from M(G, A) by relaxing C is

M(G, A− {C}).

Proof. Under the hypotheses, the rank of M(G, A) is |V (G)|, so C must be
a Hamiltonian cycle. Suppose that A − {C} is not a linear class of cycles.
There must exist a theta subgraph G′ of G such that C ⊆ G′ and every
cycle of G′ is in A. Because C is a Hamiltonian cycle of G, there can be
only one edge of G′ not in C. This edge is in the closure of C in M(G, A),
contradicting the hypothesis that C is a flat. Thus (G, A−{C}) is a biased
graph, and the result follows easily. �

The next proposition follows from [17, Theorem 2].

Proposition 4.9. U3,7 is not a bias matroid.

We have now assembled enough machinery to prove Theorem 1.5, which
we restate here.

Theorem 4.10. Every totally free bias matroid is a bicircular matroid.

This will follow in a straightforward manner from the following result.

Lemma 4.11. Suppose that (G, A) is a biased graph such that G has no

isolated vertices and |V (G)| ≥ 4. If M(G, A) is totally free, then A = ∅.

Proof. Let M = M(G, A) be a counterexample with |E(G)| minimal. By
[6, Corollary 8.6], every totally free matroid is non-binary and hence non-
graphic. Thus A does not contain every cycle of G. Clearly G is connected.
Therefore r(M) = |V (G)| = r(B(G)). Now B(G) ≥ M , and hence B(G)
is 3-connected by Proposition 4.6. Thus by Proposition 3.3 we have the
following sublemma.

4.11.1. G is 2-connected and has minimum degree at least three. Further-

more, no vertex of G is incident with more than one loop.

Let C be a balanced cycle of (G, A). We prove that C is a Hamiltonian
cycle of G.

4.11.2. Any link of G joins two vertices of C.

Proof. Suppose otherwise, and let e be a link incident with at most one
vertex of C. First assume that |V (G)| > 4. If either M/e = M(G/e, A/e)
or M\e = M(G\e, A\e) is totally free then, since C is in both A/e and
A\e, the minimality of our counterexample is contradicted. Therefore we
suppose that neither M/e nor M\e is totally free. The fact that r(M) > 4
implies that |E(M)| ≥ 5. By Proposition 2.8 and Lemma 2.9 there is a
unique clone e′ of e in M , and M/e\e′ is totally free. If e′ is in C, then the
cyclic flat spanned by C contains e′ but not e. Therefore e′ /∈ C, so C is
a member of (A/e)\e′. Again we have a contradiction to the minimality of
our counterexample.
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We must suppose that |V (G)| = 4. Now C does not meet every vertex of
G, and since M contains no circuit with fewer than three elements, it follows
that the length of C is three. Hence C is a triangle of M . Let any cyclic flat
of M that has a non-empty intersection with C, but does not contain C, be
known as a “bad” cyclic flat. C is a clonal triple of M by Proposition 2.6,
and so M contains no bad cyclic flats. Suppose that the vertices and edges
of C are labelled in order v1, e1, v2, e2, v3, e3. Let u be the vertex incident
with e that is not in C. Since G is 2-connected u must be adjacent to at
least two vertices of C. Without loss of generality suppose that u is joined
to v1 by the edge f1, and to v2 by the edge f2. The cycle {e1, f1, f2} cannot
be balanced, for then it would span a bad cyclic flat. The vertex u is not
incident with a loop, for that loop and the edges e1, f1, f2 would form a
bicycle that spanned a bad cyclic flat. Similarly there are no edges parallel
to f1 or f2. Since u has degree at least three, it is adjacent to v3. It is easy
to show that u and v3 are joined by exactly one edge. A loop incident with
a vertex of C, or an edge parallel to an edge of C, would create a bicycle
that spans a bad cyclic flat. Thus G is isomorphic to K4. Furthermore, we
can show that C must be the only balanced cycle. Now it is easily seen that
M = M(G, A) is not 3-connected. This contradiction completes the proof
of the sublemma and shows that C meets every vertex of G. �

Since C was chosen arbitrarily from the balanced cycles of (G, A), we
have in fact proved the following result.

4.11.3. Every balanced cycle of (G, A) is a Hamiltonian cycle.

4.11.4. C is a circuit-hyperplane of M .

Proof. C is certainly a circuit of rank |V (G)| − 1 = r(M)− 1. Suppose that
e is an edge of G not in C and that e ∈ clM (C). Lemma 4.4 implies that
C∪e is a bicycle and that every cycle in C∪e is balanced. We first consider
the case where |V (G)| = 4. Since M contains no circuits of size less than
three, it follows that e must be a link, and that e must join two diagonally
opposite vertices of C. But then e lies in the intersection of two balanced
cycles of G that are of length three, and hence e is in the intersection of
two distinct non-trivial lines of M . This is a contradiction by Corollary 2.7.
Therefore we may assume that |V (G)| > 4.

Lemma 4.4 implies that e is fixed in M . Therefore M/e is totally free by
Proposition 2.10. Let C ′ be one of the cycles of G[C ∪ e] that contain e.
The number of edges in C ′ is greater than one, for otherwise e is a loop of
M . Thus C ′− e is a balanced cycle of (G/e, A/e), and, since |V (G/e)| ≥ 4,
the minimality of our counterexample is contradicted. �

Since C was chosen arbitrarily, we have again proved a more general
result.

4.11.5. Every balanced cycle of (G, A) is a circuit-hyperplane.

4.11.6. Every vertex of G is incident with at least four edges.
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Proof. Suppose that v is incident with exactly three edges. Proposition 4.2
implies that stG(v) contains a cocircuit. Since M is 3-connected, stG(v) must
be a triad of M . Therefore stG(v) is a clonal triple of M by Proposition 2.6.
But C is a cyclic flat of M that meets exactly two edges in stG(v), so
Proposition 2.1 implies that stG(v) cannot be a clonal triple. �

4.11.7. |V (G)| > 4.

Proof. Suppose that G has exactly four vertices and that the vertices and
edges of C are labelled in order v1, e1 , . . . , v4, e4. Note that 4.11.3 implies
that every cycle of length at most three is unbalanced.

First suppose that some edge in C has two distinct parallel edges. This
set of three parallel edges is a triangle of M , and therefore a clonal triple
by Proposition 2.6. However, C is a cyclic flat that meets this triangle in
exactly one edge. This contradiction shows that every edge in C has at most
one parallel edge.

Let us suppose that there is an edge, e, joining v1 to v3, and an edge, e′,
joining v2 to v4. We will show that, in this case, none of the edges in C has
a parallel edge. Suppose, without loss of generality, that e1 is parallel to
another edge, e′1. Both {e1, e′1, e2, e} and {e1, e′1, e4, e′} are circuits of M ,
so Proposition 2.11 implies that e1 and e′1 are clones. However C is a cyclic
flat that contains e1 and not e′1. Therefore no edge in C has a parallel edge.

Assume that G contains a loop. Without loss of generality v1 is incident
with a loop, l. Both {e1, e2, e, l} and {e3, e4, e, l} are circuits. Again we can
use Proposition 2.11 to show that e and l must be clones. But {e1, e4, e′, l}
is a circuit, and the closure of this circuit contains l but not e. Therefore G
contains no loops.

Since the minimum degree of G is at least four, it follows that both e and
e′ must have at least one parallel edge. Let f be a parallel edge of e. Observe
that {e1, e2, e, f} is a circuit. Since C meets this circuit in {e1, e2}, e1 and
e2 must be clones. But if we let f ′ be a parallel edge of e′, we see that
{e1, e4, e′, f ′} is a circuit, and the closure of this circuit contains e1 but not
e2.

Our assumption that there were edges joining v1 to v3, and v2 to v4 has
lead to a contradiction. Therefore we will assume that v1 and v3 are not
adjacent.

Suppose that v1 is incident with a loop, l. There are at least four edges
incident with v1, and there can be at most one loop incident with v1 by
4.11.1 so either e1 or e4 has a parallel edge. We will assume the former. Let
e′1 be a parallel edge of e1. The set {e1, e′1, l} is a triangle of M and hence
a clonal triple by Proposition 2.6. But C is a cyclic flat of M that contains
e1 but not e′1. Therefore v1 is incident with no loops.

Since v1 is incident with no loops, it follows that e1 and e4 must both
have exactly one parallel edge. By applying the arguments of the last two
paragraphs to v3 we can show that e2 and e3 must also have exactly one
parallel edge each.
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For 1 ≤ i ≤ 3 let e′i be the parallel edge of ei. The sets {e1, e′1, e2, e′2}
and {e2, e′2, e3, e′3} are both circuits of M , so we may again apply Propo-
sition 2.11 to show that e2 and e′2 are clones. This is a contradiction, as C
contains e2 but not e′2. �

4.11.8. If e ∈ C, then e has a unique clone in M .

Proof. First suppose that there exists a balanced cycle C ′ 6= C of (G, A)
such that e /∈ C ′. Now C ′ is a member of A\e, and C−e is a member of A/e.
Since G has more than four vertices, if either M\e = M(G\e, A\e) or M/e =
M(G/e, A/e) is totally free, then we have a contradiction to the minimality
of our counterexample. Hence, by Proposition 2.8 and Lemma 2.9, there
must be some unique clone e′ of e in M .

Therefore we assume that e is in every balanced cycle of (G, A). Let A =
{C1 , . . . , Cn}. By 4.11.3 and 4.11.5 every balanced cycle is Hamiltonian
and a circuit-hyperplane of M .

We wish to show that M/e is 3-connected. We begin by demonstrating
that B(G/e) is 3-connected. Firstly, G/e is 2-connected for it contains a
Hamiltonian cycle. Furthermore, no vertex of G/e is incident with more
than one loop, for in that case one of the following situations must occur in
G:

(i) there are two edges parallel to e.
(ii) there is one edge parallel to e, and a loop incident with an end vertex

of e; or,
(iii) each end vertex of e is incident with a loop.

In any of these cases we can find a triangle of M that meets the cyclic flat C
in exactly one edge. This is a contradiction by Proposition 2.6. Since G has
minimum degree at least four, it follows that the minimum degree of G/e is
at least four. Thus it follows by Proposition 3.3 that B(G/e) is 3-connected.

The only balanced cycles of (G/e, A/e) are the cycles {C1 − e , . . . , Cn −
e} and each of these is a circuit-hyperplane of M/e. The rank of M/e is
r(M) − 1 = |V (G)| − 1 = |V (G/e)|, so A/e cannot contain every cycle of
G/e. Thus, by Proposition 4.8, we can obtain B(G/e) by relaxing in turn
each of the n circuit-hyperplanes {C1 − e , . . . , Cn − e}. Let M0 = M/e and
for i ∈ {1 , . . . , n} let Mi be the matroid obtained by relaxing Ci − e in
Mi−1. Then Mn = B(G/e). If M/e is not 3-connected, then there must be
some integer j such that Mj−1 is not 3-connected, but Mj is. Let (X, Y )
be a k-separation of Mj−1 where k < 3. Then, without loss of generality,
X = Cj − e by Proposition 4.7.

Since every vertex of G/e is incident with at least four edges, every vertex
of G/e is incident with at least two edges not in Cj − e. If G/e\(Cj − e) is
connected, then let D be a spanning tree. Otherwise, since every vertex has
degree at least two in G/e\(Cj − e), for each connected component we can
find a spanning set that contains exactly one cycle. In this case let D be the
union of such spanning sets. In either case D is independent in Mj−1, for the
only balanced cycles of Mj−1 are Hamiltonian cycles, and D contains no such
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cycle and no bicycles. Therefore the rank of D is at least |V (G/e)| − 1 ≥ 3.
But D ⊆ Y , so r(Y ) ≥ 3. Now r(X)+r(Y ) = r(Cj−e)+r(Y ) ≥ r(Mj−1)+2,
contradicting the fact that (X, Y ) is a k-separation of Mj−1 where k < 3.
Thus we must assume that M/e is 3-connected.

If M/e = M(G/e, A/e) is totally free, then we have a contradiction to
our assumption of minimality, for C−e is a member of A/e. Therefore M/e
is 3-connected and not totally free. Hence e has a unique clone in M by
Lemma 2.9. �

Suppose that e is an edge of C. Since C is a cyclic flat that contains e,
the unique clone of e must also be in C.

Let e and e′ be a clonal pair contained in C. Let P be one of the paths
contained in C that has e and e′ as its end edges. Furthermore, assume that
e and e′ have been chosen from the clonal pairs in C so that P is as short
as possible. Let the internal vertices of P be u1 , . . . , us. Let R be the path
obtained by deleting P from C, and let the vertices of R be v1 , . . . , vt (so
e joins u1 to v1, and e′ joins us to vt). Note that our assumption about the
length of P means that t ≥ s.

The remainder of the proof of Lemma 4.11 will consist of finding a bicycle
that spans a cyclic flat containing exactly one of e and e′. For the sake of
brevity we will refer to such a bicycle as a bad bicycle. Since e and e′ are
clones, showing that a bad bicycle must exist will lead to a contradiction
and complete the proof of the lemma. Throughout the rest of the proof
we will be making use of the fact that any non-Hamiltonian cycle must be
unbalanced.

First, suppose that u1 is incident with a loop, l. Since u1 is incident with
at least four edges, at most one of which is a loop, u1 is incident with a link,
f /∈ C.

Assume that f joins ui to another vertex ui ∈ {u1 , . . . , us}. Let P1 be
the path contained in P that joins u1 to ui. The path P1 is non-empty, as f
is not a loop. The set containing P1, f and l is a tight handcuff, so it spans
a cyclic flat. This cyclic flat meets C exactly in P1, so if g is an edge in P1,
the unique clone of g must also be in P1. But then the path joining g to its
clone is shorter than P , as P1 is properly contained in P . This contradicts
our hypothesis on e and e′ being chosen to make P as short as possible.

We will now assume that f joins u1 to some vertex vi ∈ {v1 , . . . , vt}.
Let P2 be the path contained in R that joins v1 to vi. Note that f cannot
be parallel to e or e′, as this would create a triangle of M that meets, but
is not contained in, C. The set containing P2, e, f and l is a bad bicycle.
Therefore we will assume that u1 is not incident with a loop.

Since u1 is incident with at least four edges, there are links, f and f ′,
that are incident with u1 and are not in C.

Suppose that f and f ′ join u1 to vertices in {u2 , . . . , us}. We may assume,
without loss of generality, that there exist integers 1 < i ≤ j ≤ s such that f
is incident with ui and f ′ is incident with uj. Let P3 be the path contained
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in P that joins u1 to uj. The set {P3, f, f ′} is a bicycle and the cyclic flat
spanned by this bicycle meets C exactly in P3. Since P3 is non-empty and
properly contained in P , we may again find a clonal pair in C that is joined
by a path shorter than P .

We will now assume that exactly one of {f, f ′} joins u1 to a vertex in
{u1 , . . . , us}. Assume that f joins u1 to ui, and that f ′ joins u1 to vj . Let
P4 be the path contained in P that joins u1 to ui, and let P5 be the path
contained in R that joins v1 to vj . The set {P4, P5, e, f, f ′} is a bad bicycle
unless i = s and j = t. In this case {P4, P5, e, f, f ′} spans M , so its closure
certainly contains e′. However, if this is the case, then {P4, e′, f, f ′} is a
bad bicycle.

We must assume that both f and f ′ join u1 to vertices in {v1 , . . . , vt}.
We may assume without loss of generality that f joins u1 to vi and that f ′

joins u1 to vj where i ≤ j. Let P6 be the path contained in R that joins v1

to vj . The set {P6, e, f, f ′} is a bad bicycle unless s = 1 and j = t. Let us
assume that this is the case. Note that e and e′ are adjacent in C, and that
f ′ is parallel to e′. Let P7 be the path contained in R that joins vi to vt.
If i 6= 1 then {P7, e′, f, f ′} is a bad bicycle. Therefore we will assume that
i = 1.

We have shown that e and e′ are adjacent in C, that f is parallel to e,
and that f ′ is parallel to e′. Note that |V (G)| = t + s ≥ 5, and s = 1, so
t ≥ 4. Each vertex of G is incident with at least four edges, at most one
of which is a loop, so v2 is incident with a link h. If h joins v2 to u1 or
to v1, then the set containing e, f , h and the edge v1v2 is a bad bicycle.
Therefore we assume that h joins v2 to some vertex vi ∈ {v3 , . . . , vt}. Let
P8 be the path contained in R that joins v1 to vi. We observe that if i 6= t
then {P8, e, f, h} is a bad bicycle. However, if i = t, then we may let P9

be the path contained in R that joins v2 to vt. We conclude the proof of
Lemma 4.11 by noting that {P9, e′, f ′, h} is a bad bicycle. �

Proof of Theorem 4.10. Suppose that M = M(G, A) is a totally free bias
matroid. If the rank of M is at least four, then |V (G)| ≥ 4, and so A is
empty by Lemma 4.11. Thus M = B(G). Therefore we need only consider
the case that r(M) ≤ 3. The only rank-2 totally free matroids are the
uniform matroids with at least four elements, and these are all bicircular,
so we may assume that r(M) = 3.

All non-trivial lines of M are disjoint by Corollary 2.7. It is now
straightforward to show that either M has a U3,7-minor, which contradicts
Proposition 4.9; or M is a restriction of a matroid whose ground set can be
partitioned into three lines. In this case, M is easily seen to be bicircular.

�

Theorem 3.7 and Theorem 4.10 enable us to prove the main result.
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Proof of Theorem 1.3. Let M be the family of GF(q)-representable bias
matroids that have no ∆r-minor. By Theorem 4.10 any totally free
matroid in M is a bicircular matroid, and by Theorem 3.7 there can be only
a finite number of such matroids. The theorem now follows by Lemma 2.5. �
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