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Abstract. A classical result of Dirac’s shows that, for any two edges
and any n − 2 vertices in a simple n-connected graph, there is a cycle
that contains both edges and all n− 2 of the vertices. Oxley has asked
whether, for any two elements and any n−2 cocircuits in an n-connected
matroid, there is a circuit that contains both elements and that has a
non-empty intersection with all n − 2 of the cocircuits. By using Sey-
mour’s decomposition theorem and results of Oxley and Denley and Wu,
we prove that a slightly stronger property holds for regular matroids.

1. Introduction

The cocircuits of the graphic matroid, M(G), are exactly the minimal
edge cut-sets of G. In particular, the set of edges incident with a vertex
always contains a cocircuit in the associated polygon matroid. For this
reason it has become common, when seeking a matroid analogue of a graph-
theoretical result, to replace the word “vertex” with the word “cocircuit”
whenever it appears in the statement of the result, and to see whether the
new statement holds for matroids in general.

For example, Oxley [5] asked whether the following natural matroid ana-
logue of a result by Dirac is true. Dirac proved that for any two edges
and any n− 2 vertices in a simple n-connected graph, there is a cycle that
contains both of the edges and that meets all n− 2 of the vertices [2].

Problem 1.1. Suppose that M is an n-connected matroid, where n ≥ 2. Let
e and f be distinct elements of M and let C∗

1 , . . . , C∗
n−2 be cocircuits. Does

there always exist a circuit, C, of M , such that e, f ∈ C, and C ∩ C∗
i 6= ∅

for all i ∈ {1, . . . , n− 2}?

It is clear that the answer to this question is affirmative when n = 2.
Oxley has proved that this is also the case when n = 3.

Theorem 1.2. [5, Theorem 1.1] Suppose that M is a 3-connected matroid.
For every pair, {e, f}, of distinct elements of E(M) and every cocircuit,
C∗, of M , there is a circuit that contains {e, f} and meets C∗.

Denley and Wu [1] prove that the matroid property described in Prob-
lem 1.1 holds for the class of graphic matroids. In fact they prove a stronger
result. If S is a set of paths in a graph, and the members of S are pairwise
vertex-disjoint, then we shall say that S is a set of independent paths.
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Theorem 1.3. [1, Theorem 2.1] Let G be an n-connected graph, where
n ≥ 2. Let S be a set of independent paths of total length s, and let T be a
set of t cocircuits, where s + t = n and t ≥ 1. Then there is a cycle of G
that contains each path of S and meets every cocircuit in T .

We will prove that the property described in Problem 1.1 holds for the
class of regular matroids. In fact we will show that it holds even using a
slightly stronger version of connectivity.

Recall that a k-separation of a matroid, M , is a partition, (X, Y ), of
E(M), such that min{|X|, |Y |} ≥ k, and r(X) + r(Y )− r(M) ≤ k− 1. The
matroid M is said to be n-connected if M has no k-separation where k < n.
The Tutte connectivity (often just the connectivity) of M , denoted by λ(M),
is the greatest integer, n, such that M is n-connected. If there exists no
such greatest integer, then λ(M) is taken to be infinite.

Tutte connectivity fails to completely capture the notion of graph con-
nectivity, since an n-connected matroid with at least 2(n− 1) elements has
no circuit of size less than n. The next notion of connectivity that we
consider is a direct analogue of graph connectivity. For an integer k ≥ 1,
a vertical k-separation of a matroid, M , is a partition, (X, Y ), of E(M)
such that min{r(X), r(Y )} ≥ k, and r(X) + r(Y ) − r(M) ≤ k − 1. If
r(X)+r(Y )−r(M) = k−1, then we shall say that (X, Y ) is an exact verti-
cal k-separation. We say that M is vertically n-connected if M has no vertical
k-separations where k < n, and the vertical connectivity of M , denoted by
κ(M), is the greatest integer, n, for which M is vertically n-connected. If
no such integer exists then we define κ(M) to be equal to r(M).

Proposition 1.4. [4, Theorem 8.2.5] If G is a connected graph, then κ(M(G))
is equal to the connectivity of G.

For the sake of brevity, we shall assign names to two properties of classes
of matroids.

Definition 1.5. Suppose that M is a class of matroids and that n ≥ 2 is
an integer. We shall say that M has the A(n)-property (respectively, the
B(n)-property) if, whenever e and f are elements of M , an n-connected
member (respectively, a simple, vertically n-connected member) of M, and
C∗

1 , . . . , C∗
n−2 are cocircuits of M , then there exists a circuit, C, of M , such

that e, f ∈ C and C ∩ C∗
i 6= ∅ for all i ∈ {1, . . . , n− 2}.

If M has the A(n)-property (respectively, the B(n)-property) for all
n ≥ 2, we shall say that M has the A-property (respectively, the B-prop-
erty). Thus it is known that the class of all matroids has the A(2)- and
A(3)-properties, and, furthermore, the class of graphic matroids has the
A-property. If M has the A(n)-property (respectively, the B(n)-property),
and M ∈ M, then we may abuse the terminology slightly and say that M
has the respective property.

The next result shows the relation between the two properties.



CIRCUITS AND COCIRCUITS IN REGULAR MATROIDS 3

Proposition 1.6. Suppose that M is a class of matroids and that n ≥ 2 is
an integer. If M has the B(n)-property, then it also has the A(n)-property.

Proof. We may assume that n > 2, for otherwise M certainly has the
A(n)-property. Let M be an n-connected matroid in M. Suppose that
e, f ∈ E(M), and C∗

1 , . . . , C∗
n−2 are cocircuits of M . If M is not uniform,

then κ(M) ≥ λ(M) [4, Theorem 8.2.6]. Therefore κ(M) ≥ λ(M) ≥ n,
so, in this case, M is vertically n-connected and simple (since n > 2, and
the assumption that M is n-connected and not uniform leads easily to the
conclusion that |E(M)| ≥ 4). Since M has the B(n)-property, it follows
that some circuit of M contains both e and f and meets every one of the
cocircuits.

It is straightforward to show that, if M is uniform, then every cocircuit
of M meets every circuit of M , so the result follows. �

Thus, if a class of matroids has the B-property, it also has the A-property.
It is easy to demonstrate that, for n ∈ {2, 3}, a simple, vertically n-con-

nected matroid is also n-connected. Thus the class of all matroids has the
B(2)- and B(3)-properties. Furthermore, it follows from Theorem 1.3 and
Proposition 1.4 that the class of graphic matroids has the B-property.

Our main result shows that the class of regular matroids has the B-prop-
erty.

Theorem 1.7. Suppose that M is a simple, vertically n-connected regular
matroid, where n ≥ 2. If e and f are elements of M , and C∗

1 , . . . , C∗
n−2 are

cocircuits of M , then there exists a circuit, C, of M such that e, f ∈ C and
C ∩ C∗

i 6= ∅ for all i ∈ {1, . . . , n− 2}.

We prove Theorem 1.7 by showing that the class of cographic matroids
has the B-property. Theorem 1.7 then follows easily, as a consequence of
Seymour’s famous decomposition theorem for regular matroids [6], and the
results by Oxley [5], and Denley and Wu [1].

2. Proof of the main result

Seymour’s decomposition theorem states that any regular matroid can be
constructed using direct sums, and 2- and 3-sums, starting with graphic and
cographic matroids and isomorphic copies of the self-dual binary matroid
R10. A GF(2)-representation of R10 is given by the matrix [I5|A], where I5

is the 5× 5 identity matrix and A is the matrix shown in Figure 1.
The following proposition is a consequence of Seymour’s decomposition

theorem.

Proposition 2.1. If M is a simple, vertically 4-connected regular matroid,
then M is either graphic or cographic, or isomorphic to R10.

Proof. Assume that M is a simple, vertically 4-connected regular matroid.
Then M is also vertically 3-connected. We have already noted that a simple,
vertically 3-connected matroid must be 3-connected.
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A =


1 0 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1


Figure 1. The matrix [I5|A] represents R10 over GF(2).

We will be done if we can show that, for every 3-separation, (X, Y ), of M ,
either |X| = 3 or |Y | = 3, for in this case M is said to be internally 4-con-
nected, and regular matroids that are 3-connected and internally 4-connected
are either graphic, cographic, or isomorphic to R10 [4, Corollary 13.2.6].

Therefore, suppose that (X, Y ) is a 3-separation, and that min{|X|, |Y |} ≥
4. It cannot be the case that (X, Y ) is a vertical 3-separation of M , so ei-
ther r(X) < 3, or r(Y ) < 3. Without loss of generality we will assume the
former. Since M is simple, r(X) = 2. But this implies that M contains a
rank-2 flat containing at least four elements, and hence M has a U2,4-mi-
nor. This contradicts our assumption that M is regular and completes the
proof. �

Since we know that the class of all matroids has the B(2)- and B(3)-prop-
erties, and that graphic matroids have the B-property, to prove Theorem 1.7
it will suffice to prove that the class of cographic matroids has the B-prop-
erty, and that R10 has the B(n)-property for all 2 ≤ n ≤ κ(R10). We will
complete the latter task first.

It is easy to see that the first four columns of the matrix [I5|A], along with
the sixth and ninth columns, form a spanning circuit of R10. Since the auto-
morphism group of R10 acts transitively upon ordered pairs of elements [6],
it follows that every pair of elements in R10 is contained in a spanning cir-
cuit. It is straightforward to show that every spanning circuit meets every
cocircuit, so R10 has the B(n)-property whenever 2 ≤ n ≤ κ(R10).

Before we prove that the class of cographic matroids has the B-property,
we will discuss some preliminary material on vertical connectivity.

Unlike Tutte connectivity, vertical connectivity is not invariant under
duality: the dual of a vertically n-connected matroid need not be vertically
n-connected. It is not difficult to show that (X, Y ) is an exact vertical
k-separation of M if and only if r(X) + r(Y )− r(M) = k− 1, and X and Y
both contain cocircuits of M . Thus, if (X, Y ) is a partition of E(M) such
that

r∗(X) + r∗(Y )− r(M∗) = r(X) + r(Y )− r(M) ≤ k − 1

and X and Y both contain circuits of M , then (X, Y ) is a vertical k′-sep-
aration of M∗ for some k′ ≤ k. We shall call such a separation a cyclic
k-separation of M . We say that M is cyclically n-connected if M has no
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cyclic k-separations where k < n. Thus M is cyclically n-connected if and
only if M∗ is vertically n-connected.

We shall say that a graph, G, is cyclically n-connected if M(G) is cyclically
n-connected. Thus, if G = (V, E) is a cyclically n-connected graph, and X
is a subset of E such that

rM(G)(X) + rM(G)(E −X)− r(M(G)) < n− 1,

then it must be the case that no more than one of X and E −X contains a
cycle.

If X is a set of edges in G, let V (X) denote the set of vertices incident
with edges in X. Since rM(G)(X) is equal to |V (X)| − ω(X), where ω(X)
is the number of connected components in the subgraph induced by X, it
follows that, if G is connected, then

rM(G)(X) + rM(G)(E −X)− r(M(G)) ≤ |V (X) ∩ V (E −X)| − 1.

We shall prove the following theorem.

Theorem 2.2. Suppose that G is a cyclically n-connected graph (where
n ≥ 3), and that M(G) is cosimple. For every pair of edges, e and f ,
and every set of cycles, {C1, . . . , Cn−2}, there exists a cocircuit of M(G)
that contains both e and f and has edges in common with all the cycles in
{C1, . . . , Cn−2}.

Proving this theorem will clearly establish that cographic matroids have
the B-property. Theorem 2.2 will follow almost immediately from the next
lemma.

Lemma 2.3. Suppose that G = (V, E) is a cyclically n-connected graph
(where n ≥ 3), and that M(G) is cosimple. Let e and f be edges of G, and let
C1, . . . , Cn−2 be cycles of G. Suppose there is a cocircuit of M(G) that con-
tains e and f and has edges in common with all the cycles in {C1, . . . , Cn−3}.
Then there exists a cocircuit of M(G) that contains e and f and has edges
in common with all the cycles in {C1, . . . , Cn−2}.

Proof. We will assume that G has no isolated vertices. Then it is clear that
G must be connected. Every cocircuit of M(G) corresponds to a minimal
edge cut-set of G, so there exists a partition, (A, B), of V , such that G[A]
and G[B], the subgraphs induced by A and B, are connected, and ∆(A, B),
the set of edges joining vertices in A to vertices in B, contains both e and
f and shares edges with all the cycles in {C1, . . . , Cn−3}. Suppose that the
lemma is false, so there exists no partition, (A′, B′), of V , such that G[A′]
and G[B′] are connected and ∆(A′, B′) contains both e and f and edges
from every cycle in {C1, . . . , Cn−2}. Then, in particular, Cn−2 has no edges
in common with ∆(A, B). We may assume that the vertices of Cn−2 are
contained in A. Among such partitions, let (A, B) have the property that
|A| is as small as possible.

Let δ(A) be the set of vertices in A that are adjacent to vertices in B.
A vertex, v ∈ δ(A), is bad if v is incident with either e or f , or if there is
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some cycle Ci ∈ {C1, . . . , Cn−3} such that V (Ci) ∩ A = {v}. (Note that
every cycle in {C1, . . . , Cn−3} has vertices in both A and B.) We observe
that there can be at most n − 1 bad vertices in δ(A). Any vertex in δ(A)
that is not bad is good.

If v is a vertex of the graph, H, and deleting v and all the edges incident
with it from H increases the number of connected components, then v is a
cut-vertex of H.

2.3.1. Every good vertex in δ(A) is a cut-vertex of G[A].

Proof. Suppose that v ∈ δ(A) is good, and is not a cut-vertex of G[A].
Consider the partition (A − v, B ∪ v). Both G[A − v] and G[B ∪ v] are
connected, both the edges e and f are contained in the cocircuit ∆(A −
v, B∪v), and every circuit in {C1, . . . , Cn−3} has vertices in both A−v and
B ∪ v. Therefore the minimality of A is contradicted. �

A block of a graph is a maximal connected subgraph that does not have
a cut-vertex. Suppose that the graph, H, has blocks B1, . . . , Bm and cut-
vertices c1, . . . , cn. The block-cutpoint graph of H, denoted by bc(H), has
{B1, . . . , Bm} ∪ {c1, . . . , cn} as its vertices. Two vertices are adjacent in
bc(H) if and only if they correspond to a block and a cut-vertex contained
in that block.

Let B0 be the block of G[A] that contains the cycle Cn−2, and let X be
the set of edges of B0.

2.3.2. The number of vertices in V (X) ∩ V (E − X) does not exceed the
number of bad vertices in δ(A).

Proof. Suppose that V (X)∩V (E−X) contains exactly t vertices, v1, . . . , vt.
For 1 ≤ i ≤ t, the vertex vi is either a cut-vertex of G[A], or a member of
δ(A), perhaps both. By Claim 2.3.1, any vertex in {v1, . . . , vt} that is not a
cut-vertex of G[A] must be a bad vertex in δ(A). Therefore, if none of the
vertices in {v1, . . . , vt} is a cut-vertex of G[A], then Claim 2.3.2 is proved.
Thus we will assume that {v1, . . . , vt} contains at least one cut-vertex of
G[A]. By relabelling, we will suppose that vi is a cut-vertex of G[A] if and
only if i ≤ k, for some integer k ∈ {1, . . . , t}.

For each i ∈ {1, . . . , k} consider a maximal path in bc(G[A]) that has B0

as one of its end-vertices, and that passes through the cut-vertex vi. Let
the other end-vertex of this path be Bi (the degree-one vertices of bc(G[A])
correspond to blocks). It is clear that the blocks B1, . . . , Bk are pairwise
distinct, since bc(G[A]) is a tree [3, Theorem 4.4].

For 1 ≤ i ≤ k, let ci be the unique cut-vertex of G[A] that is incident
with the block Bi. Suppose that Bi contains no vertex in δ(A), other than
perhaps ci. Now Bi must contain a cycle, for otherwise Bi contains only a
single edge, and in this case M(G) is not cosimple. Let X ′ be the edge set of
Bi. Then both X ′ and E −X ′ contain cycles (since E −X ′ contains Cn−2)
and, since |V (X ′) ∩ V (E −X ′)| = 1, it follows that (X ′, E −X ′) is a cyclic
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1-separation. This contradiction shows that there must exist a vertex, ui,
in Bi that is in δ(A) and is not a cut-vertex of G[A].

The set {u1, . . . , uk}∪ {vk+1, . . . , vt} contains t members of δ(A), none of
which are cut-vertices of G[A]. Hence it follows from Claim 2.3.1 that each
of these vertices is a bad vertex and Claim 2.3.2 follows. �

Claim 2.3.2, and our observation that there are at most n−1 bad vertices
in δ(A), implies that t = |V (X) ∩ V (E −X)| ≤ n− 1. Since G is cyclically
n-connected, E−X can contain no cycle. Thus, in particular, every cycle in
{C1, . . . , Cn−3} contains at least one edge of X. But this implies that there
can be at most two bad vertices in δ(A), namely, those incident with e and
f . This in turn implies that t ≤ 2.

Now E − X contains no cycle, and so is a forest. But the subgraph
generated by E − X can contain no degree-one vertices, other than those
incident with some edge in X, for otherwise M(G) would fail to be cosimple.
Since |V (X)∩V (E−X)| ≤ 2 it follows that the subgraph induced by E−X
contains at most two degree-one vertices, and is therefore a path. But G
has minimum degree at least three, so E −X must contain only one edge.
However B contains at least one vertex, and all the edges incident with
that vertex are in E − X. This contradiction completes the proof of the
lemma. �

Proof of Theorem 2.2. We will prove the theorem by induction on n. We
know that the class of all matroids has the B(3)-property, so, in particular,
it follows that Theorem 2.2 holds when n = 3. Assume that n > 3, and
that the theorem holds for n − 1. Let G be a graph such that M(G) is
cosimple and cyclically n-connected. Suppose that e and f are edges of G,
and that {C1, . . . , Cn−2} is a collection of cycles. By the inductive hypothesis
there is a cocircuit that contains both e and f and meets all the cycles in
{C1, . . . , Cn−3}. The proof of the theorem now follows from an application
of Lemma 2.3.

Theorem 1.7 follows from Theorem 2.2, Proposition 2.1, and Theorem 1.3.
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